Modern Fuzzing
Research & Engineering

Andrea Fioraldi
@andreafioraldi

https://twitter.com/andreafioraldi

What 1s Fuzz Testing?

Fuzz Testing, or Fuzzing, is a family of “Software” Testing techniques
that involves providing machine-generated inputs to the System Under
Test (SUT) in order to satisfy some objectives.

What 1s Fuzz Testing?

Fuzz Testing, or Fuzzing, is a family of “Software” Testing techniques
that involves providing machine-generated inputs to the System Under
Test (SUT) in order to satisfy some objectives.

Tg-£05qm) - 3¢

What 1s Fuzz Testing?

Machine-generated inputs can be of any kind, beyond the classic
definition of “unexpected” (by the way, what does it means?) inputs.

What 1s Fuzz Testing?

Machine-generated inputs can be of any kind, beyond the classic
definition of “unexpected” (by the way, what does it means?) inputs.

Fuzzing is often considered related to Random Testing, a technique
that provides inputs sampled uniform independently from the input
space (using a specification maybe, so they are not random bytes in
general).

What 1s Fuzz Testing?

Machine-generated inputs can be of any kind, beyond the classic
definition of “unexpected” (by the way, what does it means?) inputs.

Fuzzing is often considered related to Random Testing, a technique
that provides inputs sampled uniform independently from the input
space (using a specification maybe, so they are not random bytes in
general).

But Fuzzing can generate inputs deterministically, or can generate
inputs mutating previously generated inputs that makes the sampling
from the input space not independent.

Widely discussed SOTA Fuzzing 1n 2022

e Feedback-driven, mainly Coverage-guided

; O
- 883 <7
I8,

Widely discussed SOTA Fuzzing 1n 2022

e Feedback-driven, mainly Coverage-guided
e Can bypass coverage roadblocks (concolic-aided, taint-assisted,

RedQueen, ...)

if (input == Oxabadcafe) {
interesting_code();
}

Widely discussed SOTA Fuzzing 1n 2022

e Feedback-driven, mainly Coverage-guided
e Can bypass coverage roadblocks (concolic-aided, taint-assisted,
RedQueen, ...)

e Input models help to fuzz deeper

<start> = <expr>

<expr> = <term> + <expr> | <term> - <expr> | <term>
<term> = <term> * <factor> | <term> / <factor> | <factor>
<factor> = +<factor> | -<factor> | (<expr>) | <integer> |
<integer>.<integer>

<integer> ::= <digit><integer> | <digit>

<digit> =0 | 1121|3456]| 7] 8|29

Widely discussed SOTA Fuzzing 1n 2022

e Feedback-driven, mainly Coverage-guided
e Can bypass coverage roadblocks (concolic-aided, taint-assisted,
RedQueen, ...)

e Input models help to fuzz deeper

Feleme | Targetnode | Satellite node | TDRSS node | P04 “l'”n:
(user) nod
e C(Can test network interactions () ”““}5ﬁgx\a‘“““ (%)
(DA R A
R ;/}-)»;‘:‘;A /)G)' |
(2 aw [N @A ;| [AD
&Y ,»;’(‘f/"\:;»\; ® 4
, i Y
,:\// IS NG B
& 8

Widely discussed SOTA Fuzzing 1n 2022

e Feedback-driven, mainly Coverage-guided

e Can bypass coverage roadblocks (concolic-aided, taint-assisted,
RedQueen, ...)

e Input models help to fuzz deeper

e (an test network interactions

e (Can fuzz userspace programs, kernel, hypervisors,

Widely used tools 1n 2022

V

We still

Yes, even in heavily-fuzzed

m iS S b U gs projects in 0SS-Fuzz

Still finding these bugs by hand..

Project Zero

News and updates from the Project Zero team at Google

This shouldn't have happened: A vulnerability postmortem
Posted by Tavis Ormandy, Project Zero

Introduction
This is an unusual blog post. | normally write posts to highlight some hidden attack surface or interesting
complex vulnerability class. This time, | want to talk about a vulnerability that is neither of those things. The

striking thing about this vulnerability is just how simple it is. This should have been caught earlier, and | want
to explore why that didn't happen.

In 2021, all good bugs need a catchy name, so I'm calling this one “BigSig”.

First, let’s take a look at the bug, I'll explain how I found it and then try to understand why we missed it for so
long.

Still finding these bugs by hand..

Issue 2272: libxml2: heap-buffer-overflow in xmIBufAdd
Reported by fwilhelm@google.com on Tue, Mar 8, 2022, 4:19 PM GMT+1

libxml2 is vulnerable to a heap-buffer-overflow when xmIBufAdd is called on a very large buffer:

int eam at Google

xmiBufAdd(xmIBufPtr buf, const xmlChar *str, int len) {
unsigned int needSize;

[]
needSize = buf->use + len + 2; (A) A vulnerability postmortem

if (needSize > buf->size){
]
if (IxmIBufResize(buf, needSize)){
xmlIBufMemoryError(buf, "growing buffer");

return XML _ERR_NO._MEMORY: s to highlight some hidden attack surface or interesting

Ik about a vulnerability that is neither of those things. The
nple it is. This should have been caught earlier, and | want

In 2021, all good bugs need a catchy name, so I'm calling this one “BigSig”.

First, let’s take a look at the bug, I'll explain how I found it and then try to understand why we missed it for so
long.

Why?
e Fuzzers often tests only the default configuration

e Fuzzers have input length limits

e (Code coverage as feedback is not enough

Why?
e Fuzzers often tests only the default configuration

e Fuzzers have input length limits

e Code coverage as feedback is not enough (beware of path explosion!)

o Fioraldi, D’Elia, Balzarotti. “The Use of Likely Invariants as Feedback for
Fuzzers”
o Mantovani, Fioraldi, Balzarotti. “Fuzzing with Data Dependency Information”

o Herrera, Payer, Hosking. “DATAFLOW - Towards a Data-Flow-Guided Fuzzer”

An Example

int wavlike_msadpcm_init (SF_PRIVATE #*psf, int blockalign, int samplesperblock)

{

MSADPCM_PRIVATE *pms ;
unsigned int pmssize ;

pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 * psf->sf.channels * samplesperblock

pms->samples

= pms->dummydata ; // array in pms
pms->block = (

unsigned char*) (pms->dummydata + psf->sf.channels * samplesperblock) ;
pms->channels = psf->sf.channels ;
pms->blocksize = blockalign ;

An Example

int wavlike_msadpcm_init (SF_PRIVATE #*psf, int blockalign, int samplesperblock)

{

MSADPCM_PRIVATE *pms ;
unsigned int pmssize ;

pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 * psf->sf.channels * samplesperblock

pms->samples

= pms->dummydata ; // array in pms
pms->block = (

unsigned char*) (pms->dummydata + psf->sf.channels * samplesperblock) ;
pms->channels = psf->sf.channels ;
pms->blocksize = blockalign ;

An Example

static int msadpcm_decode_block (SF_PRIVATE *psf, MSADPCM_PRIVATE *pms)
{

sampleindx = 2 * pms->channels ;

while (blockindx < pms->blocksize)

{
bytecode = pms->block [blockindx++] ;
pms->samples [sampleindx++] = (bytecode >> 4) & Ox0F ; // heap overflow bug
pms->samples [sampleindx++] = bytecode & OxOF ;

An Example

static int msadpcm_decode_block (SF_PRIVATE *psf, MSADPCM_PRIVATE *pms)

{
sampleindx = 2 * pms->channels ;
while (blockindx <|pms->blocksize)
{
bytecode = pms->block [blockindx++] ;
pms->samples [sampleindx++] = (bytecode >> 4) & Ox0F ; // heap overflow bug
pms->samples [sampleindx++] = bytecode & OxOF ;
}
}

This only happens when the program is in a specific state, characterized by a
small allocation size for the pms buffer and a pms->blocksize value sufficiently
high to force the loop to write out of the bounds of the array.

However, none of these requirements can be extracted from code coverage, as there
are no branches in the program that involve these thresholds

An Example

pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 * psf->sf.channels * samplesperblock

blockalign

Invariant Condition
blockalign € {0,2,256}
blockalign <
samplesperblock

samplesperblock

Why?

e Fuzzers often tests only the default configuration
e Fuzzers have input length limits

e (Code coverage as feedback is not enough

e Harnessing to cover all the code is hard (especially for devs)

Why?

e Harnessing to cover all the code is hard (especially for devs)

o We can generate them automatically
m Ispoglou, Austin, Mohan, Payer. “FuzzGen: Automatic Fuzzer Generation”
m Babié, Bucur, Chen, IvanCié¢, King, Lemieux, Szekeres, Wang. “FUDGE: Fuzz

Driver Generation at Scale”

Why?

e Harnessing to cover all the code is hard (especially for devs)

o We can generate them automatically
o We need introspection of what the fuzzer can cover

m Fuzz Introspector ()

https://github.com/ossf/fuzz-introspector

Why?

Fle Edt View Took Window Felp .
ok 75 T bt G 5 RGOMBRPEGHN | e O
sub_148001158

e Harnessing to |=:mms EEEEEE——— Nl

0.00 wub_140001000 0x140002300 o/1

:::m:g g ?!; ©0.00 mub_140001030 02140002030 o/3 0 /12 33 0

sub_140861268 bty

sub_1400816F8 === ©.00 wub_140001100 cx142003100 o/s 0/ 7z .
O w st = ‘:" =3 | 24.00 sub_ 140001130 | Dx1400013325 2/ €/ as 138 1

€ Can genera sweema i =

sub_140001418 o —— ©0.00 wub_1400011e0 0x140002220 o/3 0/ 1s 46 z

Sub_l40081ad0 = 0.00 sub_140001210 cxi4c001210 o/ o/s 26 1

:::M::: g— . 0.0 wub_140001230 Cx145001230 /3 o/ 10 29 1
o We need introiseis =] s '

sub_140082558 =
sub_140082668

sub_140802780 ﬁ—
sub_1408827¢c8 -

B Fuzz Intjesesae g z i B

sub_1408029¢0

sub_140802368 =y
sub_140802aF8 b
sub_140802b58 SRR
sub_148002648 | ST
sub_140863288 7 i
sub_140083320 ==
sub_148003820 BT
s s e

[W | Tags = S £.00 wub_140002€e0
Cross R '."" oy ‘ = __Faan U= ©0.00 sub_140002700
» Filter (1) P s
Pt rzmas
[148083237 gaes. st
e .
.‘EEEEE&EE 5
H % 3 0.00 wub_140002a20 0 /17
s 7

Sl

‘Selection: 0x1400012b0 to 0x1400012b2 (0x2 bytes} PEv Graphv Options v

£z x (ST PSS R T TS § S SRR G G T S)
5 sasd s :

£Z | 1“ . - 65,244 -

S

https://github.com/ossf/fuzz-introspector

Beyond
memory

A SQL injection is not causing
a segfault in your application

corruption
bugs

Several paths are SOTA

e Differential fuzzing

o Cryptofuzz ()
o Maier, FaRler, Seifert. “Uncovering Smart Contract VM Bugs Via Differential

Fuzzing”

https://github.com/guidovranken/cryptofuzz

Several paths are SOTA

e Differential fuzzing

o Cryptofuzz ()
o Maier, FaRler, Seifert. “Uncovering Smart Contract VM Bugs Via Differential

Fuzzing”
e (Custom bug detectors

o Handwritten bug detectors, useful for memory safe languages (e.g. Java

)

o Custom sanitizers (e.g.

0 Mining invariants and automatic insertion of assertions

m Daikon, Puriftfy,

https://github.com/guidovranken/cryptofuzz
https://www.code-intelligence.com/blog/log4j-bug-detectors
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49053

Several paths are SOTA

A2)
\!?‘4

Oliver Chang

e Differential fuzzin
& Proof that fuzzing can discover exploitable

o Cryptofuzz (vulnerabilities that aren't memory corruption! OSS-
Fuzz discovered a very interesting command injection

o Maier, FaRkler, Seifert. “Uncovering Sm: vulnerability which was just fixed:

Fuzzing”

e Custom bug detectors i “‘Command 1[.
injection via wordexp

o Handwritten bug detectors, useful for 1 I
ca "

e

o Custom sanitizers (e.g. @ i
S » oliverchan; ened

S Mlnlng inva Plants and aUtomatlc lnsert: Command injection via wordexp call. - Issue #368 - syoyo/tinygltf

m Daikon, Purify,

https://github.com/guidovranken/cryptofuzz
https://www.code-intelligence.com/blog/log4j-bug-detectors
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49053

Can we do better?

e Improve invariants mining, the coverage problem causes too many
false positive and locally valid constraints unsuitable for

fuzzing

Can we do better?

e Improve invariants mining, the coverage problem causes too many

false positive and locally valid constraints unsuitable for

fuzzing

e Build large databases of bug patters (?)

Can we do better?

e Improve invariants mining, the coverage problem causes too many
false positive and locally valid constraints unsuitable for
fuzzing

e Build large databases of bug patters (?)

e Maybe it’s time to start approaching program analysis problems

with ML without the “wanna find something to apply this model”

bias

Wanna build
a fuzzer and

Good luck.

compare with
the others?

Problem: Fuzzers Fragmentation

From

https://fuzzing-survey.org/

Cause: Monolithic Codebases

Fuzzers are

= Designed to be tools

= Not designed with code reuse in mind
= Hard to extend

Many fuzzers are incompatible forks of others (usually AFL)

This makes them incompatible with orthogonal techniques

How to Create a Fuzzer Then?

e Fork an existing fuzzer (the n-th AFL-something)

e C(Create a custom fuzzer from scratch

Custom Fuzzer Engineering Issues

e Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

Custom Fuzzer Engineering Issues

e Lack of code reuse, you will have to spend a lot of time in
adapting different techniques from different fuzzers

e Reinventing the wheel, you will code the same code to do that same

thing that all others do again and again

Custom Fuzzer Engineering Issues

e Lack of code reuse, you will have to spend a lot of time in
adapting different techniques from different fuzzers

e Reinventing the wheel, you will code the same code to do that same
thing that all others do again and again

e Naive design, typically just a mutator

Custom Fuzzer Engineering Issues

e Lack of code reuse, you will have to spend a lot of time in
adapting different techniques from different fuzzers

e Reinventing the wheel, you will code the same code to do that same
thing that all others do again and again

e Naive design, typically just a mutator

e Scaling, you cannot adapt it easily to multi-core or -machine

L1bAFL

e

Contributors 26

e R 7L G
LY R

+ 15 contributors

Languages
. | il
® Rust 60.3% C 36.5% ® C++17%

® Makefile 0.9% ® Shell 0.4%
Dockerfile 0.2%

What?

LibAFL is a library for fuzzers that are

- Fast (low IPC, runtime overhead)

- Scalable (almost linearly to 200+ cores)

- Portable (Android, Windows, MacOS, Linux, Kernels, ...)

- State-of-the-Art (Hybrid-, Grammar-, Token-, Feedback-Fuzzing)

- Multi-instrumentation (binary-only Frida & Qemu, Clang, Python,...)

And, most importantly, very extendable with your own components.

MattGorko/
Tartiflette

Snapshot fuzzing with KVM and LibAFL

a2 ®o v 67

Contributors Issues Stars

MattGorko/ c
Tartiflette

Snapshc ' ©

epi052/feroxfuzz

A structure-aware HTTP fuzzing library

tispuffin/tlspuffin
M attG O rkO/ A symbolic-model-guided fuzzer for TLS

Tartiflette

Snapshc ' ©

A2 ® 57

s e p i O 5 2 Contributors Issues

Contrit

A structure-aware HTTP fuzzing library

A1 ®1

Contributor Issue

Is fuzzer X

We don’t know. Really, we can

better ‘than only speculate about this.
) &

Current benchmarking metrics

e (Code coverage over time

e Bugs over time

e Speed

e CVEs found (lol)

e Reached coverage for each fuzz case (not so used, IMO useful to

benchmark structured mutators)

Standard benchmarks ATM

FuzzBench: Fuzzer Benchmarking As a Service

FuzzBench is a free service that evaluates fuzzers on a wide variety of real-world benchmarks, at
Google scale. The goal of FuzzBench is to make it painless to rigorously evaluate fuzzing research and
make fuzzing research easier for the community to adopt. We invite members of the research
community to contribute their fuzzers and give us feedback on improving our evaluation techniques.

FuzzBench provides:

An easy API for integrating fuzzers.

Benchmarks from real-world projects. FuzzBench can use any OSS-Fuzz project as a benchmark.

A reporting library that produces reports with graphs and statistical tests to help you understand

the significance of results.

To participate, submit your fuzzer to run on the FuzzBench platform by following our simple guide.
After your integration is accepted, we will run a large-scale experiment using your fuzzer and

generate a report comparing your fuzzer to others, such as AFL and libFuzzer. See a sample report.

Standard benchmarks ATM

Magma: A Ground-Truth Fuzzing Benchmark

th 1gs reached (buggy code executed) and triggered (fault

the captain toolset w

generate a report comparing your fuzzer to others, such as AFL and libFuzzer. See a sample report.

Can we 1improve?

e More representative bugs

e ‘“Automated Magma”

e Changing often the targets (maybe from OSSFuzz) to avoid
overfitting

e Decent synthetic bugs?

Can we 1improve?

e More representative bugs

e “Automated Magma”

e Changing often the targets (maybe from OSSFuzz) to avoid
overfitting

e Decent synthetic bugs?

Can we 1mprove?

3T SENIX

SEEUR"YSYMPUSIUM ATTEND PROGRAM PARTICIPATE SPONSORS ABOUT

FIXREVERTER: A Realistic Bug Injection Methodology for
Benchmarking Fuzz Testing

Authors:
Zenong Zhang and Zach Patterson, University of Texas at Dallas; Michael Hicks, University of Maryland and Amazon; Shiyi Wei, University of Texas at Dallas

Distinguished Paper Award Winner

Abstract:

Fuzz testing is an active area of research with proposed improvements published at a rapid pace. Such proposals are assessed empirically: Can they be shown
to perform better than the status quo? Such an assessment requires a benchmark of target programs with well-identified, realistic bugs. To ease the
construction of such a benchmark, this paper presents FIXREVERTER, a tool that automatically injects realistic bugs in a program. FIXREVERTER takes as input a
bugfix pattern which contains both code syntax and semantic conditions. Any code site that matches the specified syntax is undone if the semantic conditions
are satisfied, as checked by static analysis, thus (re)introducing a likely bug. This paper focuses on three bugfix patterns, which we call conditional-abort,
conditional-execute, and conditional-assign, based on a study of fixes in a corpus of Common Vulnerabilities and Exposures (CVEs). Using FIXREVERTER we
have built REVBUGBENCH, which consists of 10 programs into which we have injected nearly 8,000 bugs; the programs are taken from FuzzBench and Binutils,
and represent common targets of fuzzing evaluations. We have integrated REVBUGBENCH into the FuzzBench service, and used it to evaluate five fuzzers.

Fuzzing performance varies by fuzzer and program, as desired/expected. Overall, 219 unique bugs were reported, 19% of which were detected by just one
fuzzer.

Hard
engineering

There’s a paper about it,
problem solved.

problems

Re-implementing things 1s hard

e Development cost and maintenance

Re-implementing things 1s hard

e Development cost and maintenance
e Re-evaluate techniques to decide if the improvement worths the

effort

Re-implementing things 1s hard

e Development cost and maintenance
e Re-evaluate techniques to decide if the improvement worths the
effort

e (Can we do better simply buying more core?

40
cores

le7

t 0]

Lmplementing things 1s

-imp

Re

0.8

o
S
235/539X3

Development cost and maintenance

impr .|

f the

Re-evaluate techniques to decide i

0.0 1

effort

<
d
+
+
d
e
C
<
d

Can

Re-implementing things 1s hard

e Development cost and maintenance

e Re-evaluate techniques to decide if the improvement worths the
effort

e (Can we do better simply buying more core?

e Lack of production-ready engines for tracing/instrumentation of

exotic targets

Hard targets

FIEHSELLGI , UAU, 5LATUI\GUUI S35 1 QIYS_ L)/,
ar->name = "1d_preload_fuzz.so";
calc_address_range(ar);

(ar->found){
hprintf("[init] ld_preload library mapped at:\tOx%0161x-0x%0161x\n", ar->start, ar->end);
hprintf("[init] target region \tOx%0161x-0x%0161x (IP®)\n", ar->ip6_a, ar->ipo_b);
hprintf("[init] library region \tOx%0161x-0x%0161x (IP1)\n", ar->ipl_a, ar->ip1l_b);

}

uint64_t* ranges = malloc(sizeof(uint64_t)*3);
memset(ranges, 0x0, sizeof(uint64_t)*3);

(get_harness_state()->pt_auto_addr_range_a){
ranges[0] = ar->ip0_a;

ranges[1] ar->ipo_b;
//ranges[0] = 0x555550000000;
//ranges[1] = Ox5F5550000000;
ranges[2] = 0;

}
{
/* fix this later */
ranges[0] = OxFFFFFFFFFFFFFO00;
ranges[1] = oxfffffffffffffoo1;
ranges[2] = 0;

}

/* submit the address ranges for IPT tracing even if our target has compile-time instrumentations */
//1if(!get_harness_state()->afl_mode){

kAFL_hypercall(HYPERCALL_KAFL_RANGE_SUBMIT, (uintptr_t)ranges);
//}

(get_harness_state()->pt_auto_addr_range_b){
ranges[0] = ar->ipl_a;
ranges[1] = ar->ip1_b;
ranges[2] = 1;

}
/* fix this later */
ranges[0] = OXFFFFFFFFFFFFFOO1;
ranges[1] = oxfffffffffffffooz;
sranges[2] = 1;

}

/* submit the address ranges for IPT tracing even if our target has compile-time instrumentations */
//1f(!get_harness_state()->afl_mode){

kAFL_hypercall(HYPERCALL_KAFL_RANGE_SUBMIT, (uintptr_t)ranges);
/71

FISPIST LG , VAU, DLLTUI\GUUI T3> 1 QIYS_L)),

ar->name = "1d_preload_fuzz.so";

Hard targets o

hprintf("[init] ld_preload library mapped at:\tOx%0161x-0x%0161x\n", ar->start, ar->end);
fo Tt o “irget region tOx%0161x-0x%0161x (IPO)\n", ar->ip6_a, ar->ipo_b);
- o X |brary region tOx%0161x-0x%0161x (IP1)\n", ar->ipl_a, ar->ip1_b);

P Command Prompt X+ v

(base) c:\work\codes\wtf\targets\hevd>server.bat --address=tcp://192.168.2.41:31337 .
[loc(sizeof(uint64_t)*3);

Lzeof (uint64_t)*3);

)->pt_auto_addr_range_a){
’0_a;

’0_b;

55550000000 ;

5550000000 ;

vd$./fuzz-kvm.sh —-address tcp://192.168.2.41:31337/ */
:FFFFFFFFFO00;
HFFFFFffffool;

ranges for IPT tracing even if our target has compile-time instrumentations */
te()->afl_mode){
JERCALL_KAFL_RANGE_SUBMIT, (uintptr_t)ranges);

)->pt_auto_addr_range_b){
S - -1 a;
ranges[1] = ar->ip1_b;
ranges[2] = 1;

e / }
& OverclOk / wtf
/* fix this later */
ranges[0] = OxFFFFFFFFFFFFFOO1;
ranges[1] = oxfffffffffffffee2;
sranges[2] = 1;
1

/* submit the address ranges for IPT tracing even if our target has compile-time instrumentations */
//1f(!get_harness_state()->afl_mode){
kAFL_hypercall(HYPERCALL_KAFL_RANGE_SUBMIT, (uintptr_t)ranges);
5

FISPIST LG , VAU, DLLTUI\GUUI T3> 1 QIYS_L)),

ar->name = "1d_preload_fuzz.so";

Hard targets o

hprintf("[init] ld_preload library mapped at:\tOx%0161x-0x%0161x\n", ar->start, ar->end);
£ tTrrtt 7 “arget region tOx%0161x-0x%0161x (IPO)\n", ar->ip6_a, ar->ipo_b);
=1 Command Prompt X - o X ibr, ~ tOx%0161x-0x%0161x (IP1)\n", ar->ipl_a, ar->ip1_b);

(base) c:\work\codes\wtf\targets\hevd>server.bat --address=tcp://192.168.2.41:31337|

itf/targets/hevd$./fuzz-kvm.sh --address tcp://192.168.2.41:31337/

has compile-time instrumentations */

)->pt_auto
a:

& OverclOk / wtf

/* submit the address ranges IPT tracing even if our target has compile-time instrumentations ¥,
//1f(!get_harness_state() f1_mode){
kAFL_hypercall(HYPERCALL_KAFL_RANGE_SUBMIT, (uintptr_t)ranges);
5

Hard targets

e Usability gap
e Emulation-based fuzzing tools are out-of-date

e We need something like “Step till the break point, put the input

in $rdi, snapshot fuzz from here”

Ask more about fuzzing at

https://discord.gg/gCraWct

Thanks y'all

