

09/07/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

FROM RESEARCH TO INDUSTRY

Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr

 Five shades of symbolic execution

for vulnerability hunting

Sébastien Bardin

Senior Researcher, CEA Fellow

CEA LIST

« Cyber in Sophia »

Summer School GDR Sécurité 2023

| 5Sébastien Bardin

https://binsec.github.io/https://binsec.github.io/

The BINSEC Group:
 ADAPT FORMAL METHODS TO BINARY-LEVEL SECURITY ANALYSIS

| 6

• I love Symbolic Execution : it is formal & it works :-)

• Originate from safety & testing, quickly adopted in security

• Questions:
 how can you use Symbolic Execution into a security context ?
 How does code-level security differ from code-level safety?

• This lecture: our experience on adapting Symbolic Execution to several
 binary-level security contexts

 Sébastien Bardin

WHY THIS TALK?
• Focus on code-level security
• Implementation flaws / attacks
• Focus on code-level security
• Implementation flaws / attacks

| 10Sébastien Bardin

And in the end, it works !

| 11

TEAM WORK SINCE 2012

Sébastien Bardin

| Sébastien Bardin

BACK TO BASICS

01001100
00101011
11000101
010 ..

010100111
101101110
111011000
0100 ..

EXECUTABLEOBJECT CODEASSEMBLY CODESOURCE CODE

COMPILE ASSEMBLE LINK

RUN

10110111
11101100
11000101
010 ..

THIRD PARTY
LIBRARY

HAND WRITTEN
ASSEMBLY

INLINE
ASSEMBLY

| Sébastien Bardin

WHY GOING DOWN TO BINARY-LEVEL SECURITY ANALYSIS?

Malware comprehensionMalware comprehensionNo source codeNo source code Post-compilationPost-compilation

Protection evaluationProtection evaluation Very-low level reasoningVery-low level reasoning

| 19

EXAMPLE: COMPILER BUG (?)

• secure source code
• insecure executable
• secure source code
• insecure executable

Sébastien Bardin

| 20

EXAMPLE: third-party component analysis

Sébastien Bardin

• Is it reasonably secure to use that ?

| 21

EXAMPLE: side channel attacks

Sébastien Bardin

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

• Can you retrieve the secret with blackbox access?

| 22

EXAMPLE: side channel attacks

Sébastien Bardin

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

private char[4] secret;

boolean CheckPassword (char[4] input) {
 for (i=0 to 3) do
 if(input[i] != secret[i]) then

return false;
 endif
 endfor
 return true;
}

• Can you retrieve the secret with blackbox access? • Here, yes

| 24

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

| 25

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

| 30

Given a path of a program
• Compute its « path predicate » f
• Solution of f = input following the path
• Solve it with powerful existing solvers

EXAMPLE 2A TOOL OF CHOICE: SYMBOLIC EXECUTION (the fabulous 2005 year)

Find real bugs

Bounded verification

Flexible

Sébastien Bardin

|

Détour : ABOUT FORMAL METHODS AND CODE ANALYSIS

Success in (regulated) safety-critical domains

Sébastien Bardin

| 32

Détour : ABOUT FORMAL METHODS AND CODE ANALYSIS

Success in (regulated) safety-critical domains

• Reason about the
meaning of programs

• Reason about infinite
sets of behaviours• Typical ingredients:

transition systems,
automata, logic, …

Sébastien Bardin

| 33

A DREAM COME TRUE … IN CERTAIN DOMAINS

Sébastien Bardin

| 34

Détour : ABOUT FORMAL METHODS AND CODE ANALYSIS

Success in (regulated) safety-critical domains

• Reason about the
meaning of programs

• Reason about infinite
sets of behaviours• Typical ingredients:

transition systems,
automata, logic, …

Sébastien Bardin

|

Détour : ABOUT FORMAL METHODS AND CODE ANALYSIS

A big success in many more domains!

TLS 1.3

Sébastien Bardin

| 36

WAIT ??!!! Verification is undecidable

Cannot have analysis that
• Terminates
• Is perfectly precise

On all programs

Sébastien Bardin

| 37

• Weakest precondition calculi [1969, Hoare]
• Abstract Interpretation [1977, Cousot & Cousot]
• Model checking [1981, Clarke - Sifakis]

They knew it was impossible, so they did it anyway

Answers
• Forget perfect precision: bugs xor proofs
• Or focus only on « interesting » programs
• Or put a human in the loop
• Or forget termination

Cannot have analysis that
• Terminates
• Is perfectly precise

On all programs

Sébastien Bardin

| 38

• Weakest precondition calculi [1969, Hoare]
• Abstract Interpretation [1977, Cousot & Cousot]
• Model checking [1981, Clarke - Sifakis]

They knew it was impossible, so they did it anyway

Answers
• Forget perfect precision: bugs xor proofs
• Or focus only on « interesting » programs
• Or put a human in the loop
• Or forget termination

Cannot have analysis that
• Terminates
• Is perfectly precise

On all programs

Sébastien Bardin

| 42

Back in 2005 ...

Sébastien Bardin

Despite some successes, still several issues

• Lack of robustness
• False positive (centered on proving safety)
• May require (lots of) annotations Find real bugs

Robust

Reasonable scale

« Moving from a dream of automatic verification to a reality of automated debugging »
T. A. Henzinger

| 44

Given a path of a program
• Compute its « path predicate » f
• Solution of f = input following the path
• Solve it with powerful existing solvers

EXAMPLE 2A TOOL OF CHOICE: SYMBOLIC EXECUTION (rebirth in 2005)

Find real bugs

Bounded verification

Flexible

Sébastien Bardin

| 46

PATH PREDICATE COMPUTATION & SOLVING

Y0 = 0 /\ Z0=3SMT Solver

my input!!

Blackbox
solvers

Boolector

Sébastien Bardin

| 47

PATH PREDICATE COMPUTATION & SOLVING

Y0 = 0 /\ Z0=3SMT Solver

my input!!

Beware
 Path explosion
Constraint solving cost

Blackbox
solvers

Key ingredients
 Path search
Constraint solving

Many optimizations
Preprocessing, caching, etc.
Search heuristics, path pruning, merge, etc.
Concretization

Sébastien Bardin

| 48Sébastien Bardin

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »
• Keep going when symbolic

reasoning fails
• Tune the tradeoff genericity

- cost

| 49Sébastien Bardin

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »
• Keep going when symbolic

reasoning fails
• Tune the tradeoff genericity

- cost

| 50Sébastien Bardin

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »
• Keep going when symbolic

reasoning fails
• Tune the tradeoff genericity

- cost

| 51Sébastien Bardin

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »
• Keep going when symbolic

reasoning fails
• Tune the tradeoff genericity

- cost

| 52Sébastien Bardin

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »
• Keep going when symbolic

reasoning fails
• Tune the tradeoff genericity

- cost

| 53Sébastien Bardin

ABOUT ROBUSTNESS (imo, the major advantage)

« concretization »

• Replace symbolic values by runtime values

• Keep going when symbolic reasoning fails

• Tune the tradeoff genericity - cost

« concretization »

• Replace symbolic values by runtime values

• Keep going when symbolic reasoning fails

• Tune the tradeoff genericity - cost

Very powerful

• Unsupported code
• Too costly reasoning
• Multi-thread
• Self-modification or packing
• …

| 54

Some optimizations

Sébastien Bardin

• formula simplifications
 [memory, specific patterns]

• formula caching

• reuse of concrete models

• better modelling

• concretization

• ML-based (non-)solving

• …

• Search heuristics
 Coverage, goal, novelty
 ML-based search

• Path merging

• Path pruning (past, future)

• …

• parallelism
• pre-compilation
• ratio symbolic - concrete
• optimized implementations

| 55

Take away

Sébastien Bardin

Pros

• Find real bugs
• Robust (concretization)

• Pay as you go : bounded verification vs bug hunt


• Flexible : properties, kind of analysis
 local proofs, relational analysis, probabilistic,

repair, synthesis, ...

• Rather natural to combine with dynamic analysis

Pros

• Find real bugs
• Robust (concretization)

• Pay as you go : bounded verification vs bug hunt


• Flexible : properties, kind of analysis
 local proofs, relational analysis, probabilistic,

repair, synthesis, ...

• Rather natural to combine with dynamic analysis

Some issues & challenges

• Beware of #paths ! (loop, functions)
 fully modular SE ?

• Beware of constraints (crypto mainly)

• End-to-end analysis : scale ?
• Local analysis : initialization ?

• Advanced langage features ?
 OO, functional, dynamic code, etc.

Some issues & challenges

• Beware of #paths ! (loop, functions)
 fully modular SE ?

• Beware of constraints (crypto mainly)

• End-to-end analysis : scale ?
• Local analysis : initialization ?

• Advanced langage features ?
 OO, functional, dynamic code, etc.

| 61

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

| 62

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

| 63

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

| 64

CHALLENGE: BINARY CODE LACKS STRUCTURE

• Instructions?
• Control flow?
• Memory structure?

Sébastien Bardin

| 65

DISASSEMBLY IS ALREADY TRICKY! • code – data ??
• dynamic jumps (jmp eax)

• Recovering the CFG is already a
challenge!

Sébastien Bardin

| 66Sébastien Bardin - Seminar CEA - FB, 2021

BINARY CODE SEMANTIC LACKS STRUCTURE

Problems
• Jump eax
• Untyped memory
• Bit-level resoning

| 67

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

09/07/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

New challenge : safety is not hyper-property :-)

Sébastien Bardin

Information leakage Properties over pairs of executions

09/07/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

New challenge : safety is not hyper-property :-)

Information leakage Properties over pairs of executions

• New problems

• Hyperproperties
• Quantitative

• Identify « bugs that matters »

| 70

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

| 71

CHALLENGE: ATTACKER

Sébastien Bardin

Nature is not nice Attacker is evil

| 72Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

| 73Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our current attacker plays the rules: respects the program interface
• Can craft very smart input, but only through expected input sources

| 74Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our attacker plays the rules: respects the program interface
• Can craft very smart input, but only through expected input sources

• What about someone who really do not play the rules?
• Side channel attacks
• Micro-architectural attacks
• Fault injections

| 75Sébastien Bardin

Another Line of attack : ADVERSARIAL BINARY CODE

• self-modification
• encryption
• virtualization
• code overlapping
• opaque predicates
• callstack tampering
• …

• self-modification
• encryption
• virtualization
• code overlapping
• opaque predicates
• callstack tampering
• …

| 83

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

Commissariat à l’énergie atomique et aux énergies alternatives Auteur

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

 32bit, 64bit

https://binsec.github.io/https://binsec.github.io/

Commissariat à l’énergie atomique et aux énergies alternatives Auteur

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

 32bit, 64bit

https://binsec.github.io/https://binsec.github.io/

| 89

Key 1: INTERMEDIATE REPRESENTATION [CAV’11]

• Concise
• Well-defined
• Clear, side-effect free

Sébastien Bardin

| 90

INTERMEDIATE REPRESENTATION

• Concise
• Well-defined
• Clear, side-effect free

Sébastien Bardin

| 92

Given a path of a program
• Compute its « path predicate » f
• Solution of f = input following the path
• Solve it with powerful existing solvers

EXAMPLE 2Key 2: SYMBOLIC EXECUTION

Find real bugs

Bounded verification

Flexible

Sébastien Bardin

• Binary-level
• Optimized symbolic engines
• Both proof and vulnerabilities

| 96

ALSO: STATIC SEMANTIC ANALYSIS
(harder, doable on some classes of programs) [vmcai 11, fm 16]

Reason about all paths
• Prove things

Complete verification

Sébastien Bardin

| 97Sébastien Bardin - Seminar CEA - FB, 2021

REMINDER: BINARY CODE SEMANTIC LACKS STRUCTURE

Problems
• Jump eax
• Untyped memory
• Bit-level resoning

| 100

Dealing with dynamic jumps in SE is easy

Sébastien Bardin

| 101Sébastien Bardin

Get a first target
• Then solve for a new one
• Get it, solve again, …
• Get them all!

Dealing with dynamic jumps in SE is easy

| 102Sébastien Bardin

a single big array: solvers die

common solution: concretization

our solution: heavy simplification

Dealing with memory is harder

• Bit-level resoning theory of bitvectors (ok)⇒ theory of bitvectors (ok)
• Untyped memory theory of arrays⇒ theory of bitvectors (ok)

| 104

• Makes the difference!

Sébastien Bardin

Tuning the solver: intensive array formulas
[LPAR 2018] (Benjamin Farinier)

• Dedicated data structure (list-map)
• Tuned for base+offset access
• Linear complexity

| 117

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

| 118

OUTLINE

• Shades of Symbolic Execution for Security
 Standard usage
 Robust symbolic execution (CAV 2018, 2021)
 Relational symbolic execution (S&P 2020)
 Haunted symbolic execution (NDSS 2021)
 Adversarial symbolic execution (ESOP 2023)

 Sébastien Bardin

| 120

Vulnerability finding with symbolic execution
 (Godefroid et al., Cadar et al., Sen et al., etc.)

Intensive path exploration

Challenge = path
explosion

Sébastien Bardin

| 121

Vulnerability finding with symbolic execution
 (Godefroid et al., Cadar et al., Sen et al., etc.)

Intensive path exploration
Target critical bugs

Challenge = path
explosion

Sébastien Bardin

| 122

Vulnerability finding with symbolic execution
 (Heelan, Brumley et al.)

Intensive path exploration
Target critical bugs
Directly create simple
exploits

Challenge = path
explosion

Sébastien Bardin

| 123

What about hard-to-find bugs ?
[SSPREW’16](with Josselin Feist et al.)

Use-after-free bugs
• Very hard to find
• Sequence of events
• DSE gets lost

Sébastien Bardin

| 124

What about hard-to-find bugs ?
[SSPREW’16](with Josselin Feist et al.)

Use-after-free bugs
• Very hard to find
• Sequence of events
• DSE lost

Guide SE with an
unsound static analysis

Sébastien Bardin

| 131

OUTLINE

• Shades of Symbolic Execution for Security
 Standard usage
 Robust symbolic execution (CAV 2018, 2021)
 Relational symbolic execution (S&P 2020)
 Haunted symbolic execution (NDSS 2021)
 Adversarial symbolic execution (ESOP 2023)

 Sébastien Bardin

| 132

• Problem : not all bugs are equal

Sébastien Bardin

• Attacker• Binary code • Properties

| 134

• Standard symbolic reasoning
 may produce
 false positive in practice

• for example here:
• SE will try to solve a * x + b > 0
• May return a = -100, b = 10, x = 0

• Problem: x is not controlled by the user
• If x change, possibly not a solution anymore
• Example: (a = -100, b = 10, x = 1)

Robust symbolic execution [CAV 2018, CAV 2021]

What?!!

Safety is not
security …

Sébastien Bardin

| 135

• Standard symbolic reasoning
 may produce
 false positive in practice

• for example here:
• SE will try to solve a * x + b > 0
• May return a = -100, b = 10, x = 0

• Problem: x is not controlled by the user
• If x change, possibly not a solution anymore
• Example: (a = -100, b = 10, x = 1)

Robust symbolic execution [CAV 2018, CAV 2021]

What?!!

Safety is not
security …

In practice: canaries, secret key in
uninitialized memory, etc.

Sébastien Bardin

| 136

Problems with standard reachability?
• Value in blue is checked against canary
• Canary is a parameter

• In practice, only 2^-32 to bypass canary
• Not considered an attack
• In practice, only 2^-32 to bypass canary
• Not considered an attack

Still, Symbolic Execution reports a bug
• just need canary ==rrrr
• False positive

Still, Symbolic Execution reports a bug
• just need canary ==rrrr
• False positive

Sébastien Bardin

| 138

Problems with standard reachability? (2)

• Randomization-based protections
• Guess the randomness

• Bugs involving uninitialized memory
• Guess memory content

• Undefined behaviours
• Exist also in hardware

• Stubbing functions (I/O, opaque, crypto, …)
• Guess the hash result …

• Underspecified initial state

Sébastien Bardin

| 139

Our proposal [CAV 2018, CAV 2021, FMSD 2022]

Sébastien Bardin

| 142

Adapting BMC and SE

Sébastien Bardin

| 143

Proof-of-concept implementation

Sébastien Bardin

| 144

Case-studies: 4 CVE

Sébastien Bardin – 2022

| 145

CVE-2019-19307 in Doas: beyond attacker-controlled input

Sébastien Bardin – 2022

| 149

Stepping back

Sébastien Bardin

• Robust reachability draws a line between some good bugs and bad bugs
• Based on replicability
• Potential applications : better bug finding, bug priorization, test suite evaluation

• Several formalisms can express robust reachability [games, ATL, hyperLTL, CTL]

• Yet no efficient software-level checkers

• A few prior attempts, on different dimensions
• Quantitative or probabilistic approaches (model checking, non interference)
• Automated Exploit Generation (Avgerinos et al., 2014)
• Test Flakiness (O’Hearn, 2019) [a specific case of robust reachbaility]
• Fair model checking (Hart et al., 1983)

• Qualitative « all or nothing » robust reachability may be too strong
• Mitigation : add user-defined constraints over the uncontrolled variables

| 154

OUTLINE

• Shades of Symbolic Execution for Security
 Standard usage
 Robust symbolic execution (CAV 2018, 2021)
 Relational symbolic execution (S&P 2020)
 Haunted symbolic execution (NDSS 2021)
 Adversarial symbolic execution (ESOP 2023)

 Sébastien Bardin

| 155

• Problem : some security properties are not mere safety

Sébastien Bardin – KLEE workshop
2022

• Attacker• Binary code • Properties

| 156

« True » security properties (a.k.a. hyper-properties)

Information leakage Properties over pairs of executions

Sébastien Bardin – KLEE workshop
2022

| 158

SECURING CRYPTO-PRIMITIVES
-- [S&P 2020] (Lesly-Ann Daniel)

timing attacks
cache attacks
(secret-erasure)

Sébastien Bardin – KLEE workshop
2022

| 159

SECURING CRYPTO-PRIMITIVES
-- [S&P 2020] (Lesly-Ann Daniel)

Relational symbolic execution
Follows paires of execution
Check for divergence

Sébastien Bardin – KLEE workshop
2022

| 160

SECURING CRYPTO-PRIMITIVES
-- [S&P 2020] (Lesly-Ann Daniel)

• 397 crypto code samples, x86 and ARM
• New proofs, 3 new bugs (of verified codes)
• Potential issues in some protection schemes
• 600x faster than prior workl

Relational symbolic execution
Follows paires of execution
Check for divergence
Sharing, dedicated preprocessing

Sébastien Bardin – KLEE workshop
2022

| 161

Stepping back

Sébastien Bardin

• Symbolic execution efficient for simple but important relational problems
• constant time (different flavours)
• secret erasure

• What about stronger relational properties ? [ex : non-interference, equivalence]
• The proposed method allows to find bugs
• Main issue for generalization : quadratic number of pairs of paths

• What about quantitative reasoning ? [QIF]
• Can try to use #SMT solvers, yet beware of scale / expressivity
• Still the quadratic #pairs of paths problem

| 163

OUTLINE

• Shades of Symbolic Execution for Security
 Standard usage
 Robust symbolic execution (CAV 2018, 2021)
 Relational symbolic execution (S&P 2020)
 Haunted symbolic execution (NDSS 2021)
 Adversarial symbolic execution (ESOP 2023)

 Sébastien Bardin

| 164

• Problem : what if the attacker can observe more behaviours?

Sébastien Bardin – 2022

• Attacker• Binary code • Properties

| 165

Speculative executins and Spectre attacks

Sébastien Bardin – KLEE workshop
2022

| 166

Challenge !

Sébastien Bardin – 2022

| 167

Challenge !

• Main idea :
• Smart encoding of speculation
• Can be seen as dedicated merge + targeted

simplifications
Sébastien Bardin – 2022

| 168

Good first results, still some work :-)

• Fun fact : spectre-pht protections may be vulnerable to spectre-stl

Sébastien Bardin

| 169

Stepping back

Sébastien Bardin

• Some progress, but still a lot to do :-)

• More and more sources of speculations
• Generic approach ? (cf Ponce de Leon et al.)
• Link with micro-architecture people

• Criticity of the reported problems ?

| 175

OUTLINE

• Shades of Symbolic Execution for Security
 Standard usage
 Robust symbolic execution (CAV 2018, 2021)
 Relational symbolic execution (S&P 2020)
 Haunted symbolic execution (NDSS 2021)
 Adversarial symbolic execution (ESOP 2023)

 Sébastien Bardin

| 177

• Problem : what about the attacker capabilities ?

Sébastien Bardin

• Attacker• Binary code • Properties

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Context

❏ Many techniques and tools for security evaluations.
❏ Usually consider a weak attacker, able to craft smart inputs.
❏ Real-world attackers are more powerful: various attack vectors + multiple actions

in one attack.

❏

Electromagnetic pulses Laser beamPower glitch Clock glitch

Hardware attacks

Rowhammer

Software-implemented hardware attacks

DVFSFaultline

Load Value InjectionRace condition Spectre

Micro-architectural attacks

Man-At-The-End attacks

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Context

❏ Many techniques and tools for security evaluations.
❏ Usually consider a weak attacker, able de craft smart inputs.
❏ Real-world attackers are more powerful: various attack vectors + multiple actions

in one attack.

❏

Electromagnetic pulses Laser beamPower glitch Clock glitch

Hardware attacks

Rowhammer

Software-implemented hardware attacks

DVFSFaultline

Load Value InjectionRace condition Spectre

Micro-architectural attacks

Man-At-The-End attacks

• How to deal with that ?
• Principled adversarial reachability ⇒ theory of bitvectors (ok)
• Efficient adversarial symbolic execution + optims⇒ theory of bitvectors (ok)

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Adversarial reachability

Goal: have a formalism extending standard reachability to reason about a program execution in
presence of an advanced attacker.

Adversarial reachability: A location l is adversarialy reachable in a program P for an attacker
model A if S0 ↦* l, where ↦* is a succession of program instructions interleaved with faulty
transitions.

187

input s0

state at location l
faulted transition

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Forking encodings

192

x := y x := y

x := faulti

nbf ++

Non deterministic choice
between fault or normal
if nbf < maxf

❏ Covers all adversarial behaviors
❏ Number of path exponential with #

fault injection points

Original Forking

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Forkless encodings and Adversarial Symbolic Execution

193

x := y

❏ Covers all adversarial behaviors
❏ Only 1 path (cool!)
❏ More complex formulas (too many possible injection points)

x := ite herei ? faulti : y

herei ∈ [0,1], Σ herei ≤ maxf

Original Forkless

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Early Detection of fault Saturation (EDS)

194

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections along a path

SAT with a fault margin
or SAT with exactly the fault
budget
or infeasible

FASE FASE-EDS

We need maxf faults to
go beyond that point on
that path.

Potentially faulted
instruction (with ite)

Instruction not faulted

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Injection On Demand (IOD)

195

FASE FASE-IOD

Faulted instruction

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections
❏ Additional queries

We can’t go beyond that
point on that path without
more faults.

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Injection On Demand (IOD)

196

FASE

We can’t go beyond that
point on that path without
more faults.

Faulted instruction

FASE-IOD

Path predicate switched for
the faulted one

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections
❏ Additional queries

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Injection On Demand (IOD)

197

FASE

Faulted instruction

FASE-IOD

We can’t go beyond that
point on that path without
more faults.

Bonus: under-
approximation of nbf

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections
❏ Additional queries

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

RQ2 - scaling without path explosion

201

➔ Forking explodes in explored paths while FASE doesn’t.
➔ Translates to improved analysis time overall.

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Security scenarios using different fault models

CRT-RSA: [1]
❏ basic vulnerable to 1 reset → OK
❏ Shamir (vulnerable) and Aumuler

(resistant) → TO

Secret-keeping machine: [2]
❏ Linked-list implementation vulnerable

to 1 bit-flip in memory → OK
❏ Array implementation resistant to 1

bit-flip in memory → OK
❏ Array implementation vulnerable to 1

bit-flip in registers → OK

203

[1] Puys, M., Riviere, L., Bringer, J., Le, T.h.: High-level simulation for multiple fault injection evaluation. In: Data
Privacy Management, Autonomous Spontaneous Security, and Security Assurance. Springer (2014)
[2] Dullien, T.: Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics
in Computing (2017)
[3] de Ferrière, F.: Software countermeausres in the llvm risc-v compiler (2021),
https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-15h00-Fran%C3%A7ois-de-Ferri
%C3%A8re.pdf
[4] Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis and dynamic symbolic execution in
a toolchain to detect fault injection vulnerabilities. In: PROOFS WORKSHOP (SECURITY PROOFS FOR
EMBEDDED SYSTEMS) (2021)

Secswift countermeasure: llvm-level CFI
protection by STMicroelectronics [3]
❏ SecSwift impementation [4] applied to

VerifyPIN_0 → early loop exit attack with 1
arbitrary data fault or test inversion in valid
CFG

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Case study

WooKey bootloader: secure data storage by ANSSI, 3.2k loc.
Goals:

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate countermeasures from [1]
a. Evaluate original code → We found an attack not mentioned before
b. Evaluate existing protection scheme [1] (not enough)
c. Propose and evaluate our own protection scheme

204

[1] Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection vulnerabilities. In: PROOFS WORKSHOP (SECURITY
PROOFS FOR EMBEDDED SYSTEMS) (2021)
[2] Martin, T., Kosmatov, N., Prevosto, V.: Verifying redundant-check based countermeasures: a case study. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. (2022)

 Sébastien Bardin

Sébastien Bardin

| 205

Stepping back

Sébastien Bardin

• Adversarial reachability takes an active attacker into account
• Well known in cryptographic protocol verification, not for code

• generic: reachability, hyper-reachability, non termination

• Scalability ?
• Which capabilities for the attacker? [link with Hardware security community]
• Strong link with robust reachability

| 207

OUTLINE

• Shades of Symbolic Execution for Security
 Standard usage
 Robust symbolic execution (CAV 2018, 2021)
 Relational symbolic execution (S&P 2020)
 Haunted symbolic execution (NDSS 2021)
 Adversarial symbolic execution (ESOP 2023)

 Backward bounded symbolic execution (S&P 2017)

Sébastien Bardin

| 208

• Problem : sometimes the code itself is adversarial

Sébastien Bardin

• Attacker• Binary code • Properties

| 210

CASE 2: code deobfuscation

• Adversarial code

Malware

| 211

reverse & deobfuscation

The predicate is
always true

The two blocks
are equivalent

All jump targets
are found

• Prove something infeasible
• SE cannot help here

Sébastien Bardin

| 212

BACKWARD-BOUNDED DSE [S&P 2017] (with Robin David)

Backward bounded SE
• Compute k-predecessors
• If the set is empty, no pred.
• Allows to prove things

• Prove things
• Local => scalable

Sébastien Bardin

| 213

Case : THE XTUNNEL MALWARE
-- [BlackHat EU 2016, S&P 2017] (Robin David)

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 40% of code as spurious
• Fully automatic, < 3h [now: 12min]

Backward-bounded SE
+ dynamic analysis

Sébastien Bardin

| 217

Stepping back

Sébastien Bardin

• Backward Bounded SE do allow proof and is scalable

• An attacker can try to evade it with delaying computation
• More advanced notions of bound

• Can be used in other contexts than adversarial code analysis
• Local assertion proofs
• Local finding of dynamic jumps

| 220

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

| 221

OUTLINE

• Introduction

• What every honest person should know about Symbolic Execution

• Challenges of automated binary-level security analysis

• BINSEC & Symbolic Execution for Binary-level Security

• Shades of Symbolic Execution for Security

• Conclusion, Take away and Disgression

Sébastien Bardin

|

Safety is not security, fun new problems

Sébastien Bardin

• Attacker• Binary code • Properties

| 228Sébastien Bardin

SOME KEY PRINCIPLES BEHIND OUR WORK?

• Robustness & precision are essential
• SE is a good starting point
• dedicated robust and precise (but not sound) static analysis are feasible

• Can be adapted beyond the basic reachability case
• variants (backward, relational, robust, etc.)
• combination with other techniques

• Finely tune the technology
• Tools for safety are not fully adequate for security
• Dedicated preprocessing
• Dedicated merging

| 229

• SMT solvers are powerful weapons
• But (binary-level) security problems are terrific beasts

• Finely tuning the technology can make a huge difference

Under the hood: finely tune the technology

• 600x faster than prior approach• Some queries: 24h => 1min

Sébastien Bardin

Commissariat à l’énergie atomique et aux énergies alternatives Auteur

Do it with style!

Malware
deobfuscation

X-Tunnel

400k instrs → 40% junk

2017

1h30

2022

12 min

Constant time
verification

13 well-known crypto primitives

from OpenSSL, BearSSL, etc.

2020

3h + 2 TO

2022

3 min

ANSSI
challenges

souk : 271 paths

unicorn : 109 instrs

TO

3h

30 s

30 min

Test suite
extension

Cyber Grand Challenge

from 1 to 14 seeds

Coverage : 437 → 2769

August

45 min

November

2 min

Semi-relational SE

Backward bounded SE

Smart path merging, faster memory reasoning

Incremental concolic engine

| 233

BINSEC is available

• I love Symbolic Execution : it is formal & it works :-)

• Security is not safety
• Binary level, true security properties, important bugs, attacker model, etc.

• Still, Symbolic Execution is flexible enough to accomodate that
• New exciting theoretical questions
• Complicated algorithmic issues (push solvers to their edges)
• Promising applications

• Some results in that direction, still many exciting challenges

Conclusion

Sébastien Bardin

https://binsec.github.io

- We are hiring !
- Many open postdoc / PhD positions

sebastien.bardin@cea.fr

Fun for FM/PL researchers Benefit system security

09/07/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

 Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr

THANK YOU
We hope you enjoyed the journey

	Diapo 1
	Diapo 5
	Diapo 6
	Diapo 10
	Diapo 11
	Diapo 16
	Diapo 17
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 24
	Diapo 25
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 42
	Diapo 44
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 83
	Diapo 86
	Diapo 87
	Diapo 89
	Diapo 90
	Diapo 92
	Diapo 96
	Diapo 97
	Diapo 100
	Diapo 101
	Diapo 102
	Diapo 104
	Diapo 117
	Diapo 118
	Diapo 120
	Diapo 121
	Diapo 122
	Diapo 123
	Diapo 124
	Diapo 131
	Diapo 132
	Diapo 134
	Diapo 135
	Diapo 136
	Diapo 138
	Diapo 139
	Diapo 142
	Diapo 143
	Diapo 144
	Diapo 145
	Diapo 149
	Diapo 154
	Diapo 155
	Diapo 156
	Diapo 158
	Diapo 159
	Diapo 160
	Diapo 161
	Diapo 163
	Diapo 164
	Diapo 165
	Diapo 166
	Diapo 167
	Diapo 168
	Diapo 169
	Diapo 175
	Diapo 177
	Diapo 178
	Diapo 179
	Diapo 187
	Diapo 192
	Diapo 193
	Diapo 194
	Diapo 195
	Diapo 196
	Diapo 197
	Diapo 201
	Diapo 203
	Diapo 204
	Diapo 205
	Diapo 207
	Diapo 208
	Diapo 210
	Diapo 211
	Diapo 212
	Diapo 213
	Diapo 217
	Diapo 220
	Diapo 221
	Diapo 227
	Diapo 228
	Diapo 229
	Diapo 231
	Diapo 233
	Diapo 238

