
Disposition : Titre CEA isas

DRT/Leti/DSYS/SSSEC/LTSO - Driss ABOULKASSIMI | driss.aboulkassimi@cea.fr

How to exploit EMFI to bypass the Secure-Boot of SoC

Driss ABOULKASSIMI

Simon PONTIE

| driss.aboulkassimi@cea.fr

| simon.pontie@cea.fr

Clément FANJAS | clement.fanjas@cea.fr

Olivier POTIN | potin@emse.fr

Disposition : Sommaire

1. Context & objective

2. EMFI experimental set-up

3. Hardware and Software targets

4. EMFI from µController to SoC

5. Synchronization: issue and solutions

6. Demo in video

7. Conclusion

Agenda

11/07/2023 2DRT/Leti/DSYS/SSSEC/LTSO - Driss ABOULKASSIMI | driss.aboulkassimi@cea.fr

Disposition : Vide

11/07/2023 3

How to bypass the encryption issue in

criminal cases when the software

solutions are limited?
The extracted

data is encrypted

Many commercial

solutions do not

Mobile phones is a key factor in

criminal cases, intrusions, IP,

security threats, and more.

The data stored in these devices

may contain critical evidence, but it

is encrypted!

CONTEXT

OBJECTIVE

Security through encryption and security despite encryption

Context and objective

Disposition : Vide

11/07/2023 4

Hardware attacks

4

EM perturbation
(local)

Power Glitch
(global)

SoC

Clock
perturbation

(global)

Laser beam
(local)

VCC

R

VCC

EM emanations
(local)

Timing
computation

(global)

Power Consumption
(global)

SoC

Side Channel Analysis (SCA) Fault Injection (FI)

Physical access to the target is required: possible in all

judiciary investigation cases

Disposition : Vide

5

Hardware target: SoC complexe device/ packaging

5

Smartphone System-on-Chip on dev-board:

- CPU: quad-core ARM Cortex A53

- Maximum frequency:1.2GHz

- Running frequency during the boot: 800MHz

- Previous work (Gaine et al. 2020):

Using EMFI is possible on SoC boar: by skipping instruction

- Previous work (Fanjas et al. 2022): => best student paper CARDIS’2022

Combined EMFI & SCA attacks to bypass the secure boot of SoC

11/07/2023

Disposition : Vide

11/07/2023 6

Software target: the secure boot

What is the Secure Boot ?

Why it is important ?

Chain of trust where each high privilege program is

authenticated before being executed

To avoid the running of malicious program with high

privilege

Disposition : Vide

11/07/2023 7

FSBL

ROM

Fuses

SoC

The

FSBL/PBL

code is

located in the

SoC ROM

Both codes are implemented

in the L2 cache memory or in

the RAM, The are loaded from

an off-SoC memory

Boot

First Stage /Primary of Boot Loader (FSBL/PBL):
executes the ROM code by:

• Loading the SSBL from the eMMC
• Authenticating the SSBL
• Executing the SSBL

Second Stage of the Boot Loader (SSBL/XBL) for:

• Loading LK/Aboot from the eMMC
• Authenticating the LK/Aboot
• Executing the LK/Aboot

Third boot stage (LK/Aboot):

• Loading the Linux from the eMMC
• Authenticating the Linux Kernel
• Executing the the Linux Kernel

Android OS booting

SSBL/XBL

LK/Aboot

Linux

Kernel

SSBL

LK/Aboot

Noyau

system

data

eMMC

Software target: the secure boot mechanism

Disposition : Titre et contenu 2 colonnes

11/07/2023 8

EMFI experimental set-up

USB

UART

USBUSBUSB

TRIGGER OUT
+5V

STABILIZED POWER SUPPLY
SCOPE

HOME MADE

PROBE

TRIGGER IN

Target

Unit Control TRIGGER

PULSER

Disposition : Titre et contenu 2 colonnes

11/07/2023 9

EMFI experimental set-up

Disposition : Titre et contenu 2 colonnes

11/07/2023 10

EMFI requests

=> The synchronized timing

with the targeted vulnerability ?

t

Where to fire ? When to fire?

Both questions are applicable regardless of the target: µC or SoC

=> On the sensitive

location on the to EMFI

Disposition : Vide

EMFI: from µController to SoC

11

EM probe features

EM probe position for X axis

EM probe position for Y axis

Perturbation range time

Pulse With

Setting the Voltage threshold

Number of attempts

[> 380 V] [0 mm, 12 mm]

[0 mm, 14 mm]

[0 ns, 400 ns]

[#0, #9999]

Wire size: 150 -> 40 µm
Probe Diameter: 1500 -> 750 µm
Number of spires: 10 -> 6

[Probe #1, Proble #2]

[6ns]

EMFI

Around 100 V 2.9 mm

SoC

3.2mm

7.1 mm

7.8mm

µC Atmel
8-bit

Tclk=62.5ns (@16MHZ)

Tclk=0.83ns (@1.2GHz)

#1 (répétabilité ≈ 100%)

#2000 (repeatability ≈ 1%)

30 Tclk
Jitter

(désynchronisation)

<< Tclk for 8-bits ATMEL µC

SoC [Fanjas et al. 2022]

µC Atmel 8-bit

11/07/2023

Disposition : Titre et contenu 2 colonnes

11/07/2023 12

EMFI Process on SoC in 4 steps

Vulnerability analysis: identification of a vulnerable instruction in the authentication

process

Defining the parameters of the EMFI set-up

Proposing solutions for synchronizing the vulnerability with the EM injection

Implementing the EMFI attack

Step 1:

Step 2:

Step 3:

Step 4:

Disposition : Vide

11/07/2023 13

Vulnerability analysis : Linux Kernel Authentication

SHA256 HASH_1

RSA HASH_2

Public key

Linux kernel

image

Signed HASH

==

(1)

(2)
(3)

Skipping LSR allows to bypass the LK authentication

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Disposition : Titre et contenu 2 colonnes

14

How to fire ?

• Executing a computation/program with a known

result/output: ‘’Fault Observer’’.

• Observing the output of this program: testing injection with

different parameters
Methodology:

(1) The target waits for an order

(2) The PC sets the pulse parameters and moves the XYZ axis

(3) The PC sends an order to the target

(4) The target rise a GPIO into the pulser trigger input

(5) A pulse is injected during the Fault Observer

(6) The Fault Observer results are sent to the PC

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

11/07/2023

Disposition : Titre et contenu 2 colonnes

11/07/2023 15

Where to fire ?

Faults mapping area with SoC IR imaging as background.

• Pulse voltage = 400V

• Pulse Width = 10ns

6000µm

7000µm
2000µm

1500µm

Step = 500µm

≈1/4 of the total SoC surface Step = 50µm

Zoom in the faulty area

Fault model: Instruction skip

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Disposition : Titre et contenu 2 colonnes

11/07/2023 16

A triggering event is used as temporal reference to synchronize the injection.

tvuln = delay between the triggering event and the vulnerability.

tFI= delay between the triggering event and the attack.

Vulnerability

tFI

tvuln

Time

When to fire ?

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

The attack is successful when tvuln = tFI

=> the injection and the vulnerability happen at the same time

Disposition : Titre et contenu 2 colonnes

11/07/2023 17

Δtvuln : to be reduced to improve the success rate of the attack

When to fire ?

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

tFI

Δtvuln

Time

Distant Triggering Event

Close Triggering

Event

tFI

Δtvuln

Time

The trigger should be as close as possible to the vulnerability.

Disposition : Titre et contenu 2 colonnes

11/07/2023 18

Synchronization solutions

Go !

Solution 1: Trigger with fully controlled output such as GPIO

=> the attack is synchronized thanks to the signal implemented/captured in/from

the target.

The synchronization is optimal but it needs a high level of control over the target

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization

Step 4: EMFI implementation

Disposition : Titre et contenu 2 colonnes

11/07/2023 19

Synchronization solutions

Solution 2: Trigger on uncontrolled I/O

=> the attack is synchronized thanks to the signal implemented/captured in/from

the target.

Not accurate and the fully control of the target is not required

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization

Step 4: EMFI implementation

Disposition : Titre et contenu 2 colonnes

11/07/2023 20

Synchronization solutions
Solution 3: Triggering on a Side-Channel event

=> The attacker has a great degree of freedom in the event choice

Real time analysis of EM signal is required: high frequency events analysis and

detection is a real challenge

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Step 1: Step 2:

Disposition : Titre et contenu 2 colonnes

11/07/2023 21

Synchronization by Frequency Detection: EM Side
Channel Analysis based

Vulnerable

Instruction

160

140

120

100

80

60

40

20

0 0,2 0,4 60, 8,0 1 ,1 2 41, ,61 1,8

124,5

MHz

-90

-100

-110

-120

-130

-140

-150

dB/Hz)(

Step1: Offline spectrogram analysis of the EM emanations

=> Secure Boot Sequence before the Linux Kernel authentication

Time (ms)

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Disposition : Titre et contenu 2 colonnes

11/07/2023 22

Synchronization by Frequency Detection: EM Side
Channel Analysis based

Step2: trigger Generation based on Characteristic Frequency Detection

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Frequency

Detector
OUTPUT

fuser
INPUT

1/fuser

t0 t1

After the fuser detection it is needed to generate the trigger signal

Disposition : Titre et contenu 2 colonnes

11/07/2023 23

Synchronization by Frequency Detection: EM Side
Channel Analysis based

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization

Step 4: EMFI implementation

This system is equivalent to a bandpass filter with a central

frequency fuser selectable between 10MHz and 6GHz
21

Software Defined Radio

ADC

F(Hz) F(Hz)

DAC

F(Hz)

Trigger

fuser

EM

FPGA

Frequency

selection

Frequency

translation
Bandpass

filter

Disposition : Titre et contenu 2 colonnes

11/07/2023 24

Synchronization by Frequency Detection: EM Side
Channel Analysis based

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

fuser needs to stay active during at least 450 ns to be detected

Dmin

Frequency

Detector
OUTPUT

fuser
INPUT

1/fuser

∆t is the delay between the activation of fuser and its detection

∆t
Results

∆tavg 2.5 µs

∆tstd 60 ns

Dmin 450 ns

Disposition : Titre et contenu 2 colonnes

11/07/2023 25tvuln

GPIO

Frequency

Detector output

Vulnerable

instruction (LSR)

Synchronization by Frequency Detection: EM Side
Channel Analysis based

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation Delay measurement between the frequency detector output and the vulnerability

• We use a modified Little Kernel which rises a GPIO just after the vulnerability.

• We set the frequency detector to trigger on the 124,5MHz frequency we identified before.

Disposition : Titre et contenu 2 colonnes

11/07/2023 26

Synchronization by Frequency Detection: EM Side
Channel Analysis based

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation Delay measurement between the frequency detector output and the vulnerability:

measures performed 10000 times to identify the mean delay and the jitter

tries10000
Mean = 80.57 µs
STD = 0.476 µs

µs80.57

µs0.50.5µs

Implementation of EMFI

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Fault injection
EM probe

Pulser

400V

Host
computer

6 ns100 ns

x

y

z
Motorized XYZ
stage

Powersupply

V
C

C

G
N

D

Trigger

UART

UART

UART

Campaign
scheduler

Side channel
EM probe

Target

mixer Amplifier

I/Q RF

DAC
Digital

I/Q

USB

Software Defined Radio
f

H(f)

FPGA

Aux Out

Detection threshold

Real-time
IQ analysis

Power
around

UART

Disposition : Vide

28

Results

15000 attacks performed in 18 hours

Step 2: EMFI parameters

Step 1: vulnerability analysis

Step 3: Attack synchronization
Step 4: EMFI implementation

Scenarios Results

Crash 7005 (46,777%)

No effect 7912 (52,75%)

Authentication bypass 83 (0,53%)

≈ 1 bypass every 15 minutes

11/07/2023

Disposition : Vide

11/07/2023 29

Conclusion

Where to fire:
• Identification of the sensitive area to EMFI
• Identification of the vulnerability in the Secure Boot Software process

When to fire:
• new synchronization method to trigger hardware attacks based on the

detection of high frequency event
• By using this synchronization method we successfully synchronized a

fault injection with the vulnerability:

The bypass of Linux Kernel authentication is possible by EMFI

Disposition : Titre et contenu 2 colonnes

11/07/2023 3030

From the white-box To the black-box

Measuring the EM activities to

identifying the hotspots or active

points of the target gives a good

understanding of the sensitive

electromagnetic (EM) area.

Identifying the crash area

by utilizing maximum

power and a large probe

Discussion around where to fire

If the fully access to the target is

possible: Executing a “fault

observer” will provide a

significate support for EMFI

implementation

EM

Hot-spot

Disposition : Titre et contenu 2 colonnes

3131

Perspective/ongoing: when to fire
From the white-box To the black-box

Analysis the EM activities of

malicious program vs the

original one: defining the range

time corresponding to the

reject of the code by the target

Comparing the EM

activities of SB:

enabled vs disabled

Trigger with fully controlled

output such as GPIO

In controlled environment

Requests an open target

Needs to flash the target

11/07/2023

Disposition : Titre et contenu 2 colonnes

11/07/2023 32

We have a funded PhD offer:

Do not hesitate to contact me for any requests at:

driss.aboulkassimi@cea.fr

http://talentimpulse.cea.fr/index.php?module=default&group=offresthese&IDfiche=22041

Disposition : Contact

Astuce : Prénom NOM = 1 niveau - Email / Tél, = 2 niveau

Driss ABOULKASSIMI

Thank you for your attention

