1)

Davide Balzarotti

http://s3.eurecom. fr/~balzarot/

Binary Analysis
Malware

Web Security
Fuzzing

Memory Forensics

HTML

http://s3.eurecom.fr/~balzarot/

o @balzarot

Binary Analysis
Malware

Web Security
Fuzzing

Memory Forensics

https://www.s3.eurecom.fr/~balzarot/security-circus

https://www.s3.eurecom.fr/~balzarot/security-circus

E D'INGENIEUR & CENTRE D
EN SCIENCFS DU NUMEF

Fabio Pagani

Andrea Oliveri
Mariano Graziano

fo-ren-sic
Adjective: Of, relating to, or denoting the application of scientific
methods and techniques to the investigation of crime

Memory forensics
The preservation, collection, validation, identification,

analysis, interpretation, documentation, and presentation
of digital evidences extracted from the memory

(my definition)
Memory forensics:

Reverse Engineering on Steroids

~ros

Attackers often overlook their memory footprint
Many of the kernel artifacts can be used for forensics

Even rootkits designed to hide data in a running system need to
be located somewhere in memory

Certain information (loaded kernel modules, open sockets, ...)
may be difficult to extract otherwise

Some malware samples only reside in memory

Lons

Memory is difficult to acquire

The content of the memory keeps changing so even consecutive image
acquisitions give different results

Data collection requires an efficient approach with a small footprint
Data structures change among different OSs and OS versions

75
Se
1f
89
c4
00
eb
c3
ec

15
5f
89

20
31
ab
8d
c’

39
5d
45
8b
Se
d2
8d
b4
45

£f1
c3
ec
75
5f
£7
b6
26
£0

76
8d
75
fo
5d
f1
00
00
20

41
74
51
29
c3
89

00
00

£7
26
3b
ce
66
cl
00
00
00

f1
00
4d

90
89

00
00

75
Se
1f
89
cd
00
eb
c3
ec

15
5f
89

20
31
ab
8d
c7

39
5d
45
8b
Se
d2
8d
b4
45

£f1
c3
ec
75
5f
£7
b6
26
£0

76
8d
75
fo
5d
f1
00
00
20

41
74
51
29
c3
89

00
00

£7
26
3b
ce
66
cl
00
00
00

fl
00
4d

90
89

00
00

process A

virtual address space

process B

| virtual address space

75
Se
1f
89
cd
00
eb
c3
ec

15
5f
89

20
31
ab
8d
c7

39
5d
45
8b
Se
d2
8d
b4
45

£f1
c3
ec
75
5f
£7
b6
26
£0

76
8d
75
fo
5d
f1
00
00
20

41
74
51
29
c3
89

00
00

£7
26
3b
ce
66
cl
00
00
00

fl
00
4d

90
89

00
00

0xf7fc4380

0x10ba8

0xf7fc4380

L

0xf7 fc4380

3.43322790286038071e-06
44.799987 79296875

-1

0xf7fc4380

0

0xf7 fc44 bB

(nil)

process A

mil)

(nil)

nil)

nil)

-1

0xf7fc43 e0

virtual address space

process B

| virtual address space

— — —

e B e e—
Oxf7fc4380 ey _ ,)343322790286038071e-06
» 0Xf7fc4380 }-—*__\‘___7_,f*-‘{_ 44.79998779296875
0x10bag A ——»! 0xt7tc4380 - 0
- 0xf7fc4380

-1

\
|
|
*, 2| -
0x17 fe44 bA |\ : \ : (nil)
| L 1 2
|I \\; .

| (nil)

E

\ o

0xf7fc43 e0

process A process B
virtual address space virtual address space

[T LT

‘t . T .
I V] Ve S | q a ‘ O V‘ oxfrfcazgo [T — 343322750286038071e.08

T [
» Oxf7fc43E0 - 7

44.799987 79296875

\ B
0x10baf \ e Oxf7Ec4380 | Y s 0
1 0x{7fc43 80

3 | =

2
Oxf7 frd4 b \.I\g \ g % (il
\

AC%HiSi‘hOV\ process A - processB

virtual address space virtual address space

75 15 39 f1 76 41 £7 f1
5e 5f 5d ¢3 8d 74 26 00
1f 89 45 ec 75 51 3b 4d
89 £f2 8b 75 £0 29 ce 19
cd4 20 5e 5f 5d c3 66 90
00 31 d2 £7 £1 89 cl1 89
eb a5 8d b6 00 00 00 00

3 58 B 26 00 00 00 o Interpretation

Investigation

How to traverse
data structures to recover
high-level information

Acguisition

How to acquire a
faithful copy of the
physical memory

How to recover layout,
location, and
semantics of key
data structures

Interpretation

(pre-20059)
Carving

Memory Forensics 0.1

Looking for something IN something

Looking for something IN something

Looking for something IN something

— Structured Data Analysis —

Looking for something IN something

— Carving —

2Y Rules/HeurisTics

Manually Written

Mernory rorensics 1.0

Very Time Consuming

Rules/Heuristics
Manually Written

Difficult o Port to other Systems

-

Very Time Consuming

y

93]
- —4

7

Rules/Heuristics
Manually Written

Difficult o Port to other Systems

-

Very Time Consuming

Rules/Heuristics
Manually Written

S

Lack of meltrics to assess

Alternatives? < S
Precision, Reliability, Robustness..

Difficult o Port to other Systems

-

Very Time Consuming

P \ 7

, Rules/Heuristics
Manually Written

S

Lack of meltrics to assess

-~

Alternatives? < S
Precision, Reliability, Robustness..

. |

Hard to compare ditferent options

‘t . * .
I V] V e S | q a | O V‘ oxfrfcazgo [T — 343322750286038071e.08

o N
) Oxfrfcagsn _\ - 44.799987 79296875
0x10ba8 | f—w Ox{7fc4380 | 0
1 | _¥ 0xf7fc4380
-1 |
W 2 I
OxtTEcaabs | | ———)
|\ Y ! \
\)
II B
I P 1
2 .'I \ (nil) (o) 1 i
III‘ L - -
|
1
\ 0 \-—
\\ \.I (nil)
\ ~_ | '
- | 1
(nil) I\
-1
N 0xf7fc43e0
1
L) L] L]
A C% M | S | ‘ O V] process A process B
virtual address space virtual address space

L[]

LTI

75 15 39 f1 76 41 £7 f1
5e 5f 5d ¢3 8d 74 26 00
1f 89 45 ec 75 51 3b 4d
89 £f2 8b 75 £0 29 ce 19
cd4 20 5e 5f 5d c3 66 90
00 31 d2 £7 £1 89 cl1 89
eb a5 8d b6 00 00 00 00

3 58 B 26 00 00 00 o Interpretation

Investigation

Back to the Whiteboard: a Principled Approach for
the Assessment and Design of Memory Forensic
Techniques — Usenix 2019

Acguisition

75 15 39 f1
5e 5f 5d c3
1f 89 45 ec
89 £2 8b 75
c4 20 5e 5f

Forensics — ACM TOPS 2019

76
8d
75
f0
5d

41 £7
74 26
51 3b
29 ce
c3 66

Introducing the Temporal Dimension to Memory

ec c7 45 £0 20 00 00

f1
00
4d

90
89

00
00

5 1 — T
0xf7fc43 80 —— i 343322790286038071e-06

» Ox{7fc4380 —— 7 44.799987 79296875

\
0x10ba8 \ - Oxf7Fc4380 [
| 0
| | _& 0x{7fc43 80
-1 |

. I\
0x17 fe44 bA '|\ \ : _
| [- 2
l \

i
2 .'I \ (nil)

[mil)

lil)

AutoProfile: Towards Automated Profile
Generation for Memory Analysis
ACM TOPS 2022

(nil

]‘/
i
/

f
o
/

/

(nil) |

An OS-agnostic Approach to Memory Forensics
NDSS 2023

process A
virtual address space

L[]

process B
virtual address space

LTI

2 In the Land of MMU. Multiarchitecrue, OS-agnostic
Virtual Memory Forensics — ACM TOPS 2022

Interpretation

Acguisition

75
Se
1f
89
c4d
00
eb
c3
ec

15
5f
89

20
31
ab
8d
c7

39
5d
45
8b
Se
d2
8d
b4
45

f1
c3
ec
75
5f
£7
b6
26
£0

76
8d
75
f0
5d
f1
00
00
20

41
74
51
29
c3
89

00
00

£7
26
3b
ce
66
cl
00
00
00

£l
00
4d

90
89

00
00

The physical address space is NOT contiguous:
> sudo cat /proc/iomem

Hardware peripherals map registers or parts of their
integrated memory into the physical address space via
Memory Mapped I/0

Any attempt to read the memory mapped to a device
would probably crash the system

OxXEFFFFFFF

O a0 C00

OxEFO3FFFFF,

Qs GO

Ox OO0 00

OxEACI G0

O EQ D000

Qi TFFF (=102

Oz OO QEs0R

OxDOOFand

Q% OIOECC

[LA o i

[REJRi el Tca [cd B,

e OO FCE0

[RES e e e I

PCT MMIO

PCIT MMIO

PCT MMIO

ACPI Tables

Memory

Upper BIOS

Lower BIOS

POT Oiption BOMs

Video Window

EBDA

Memory

Software Acquisition
Use software to read and dump the memory from within the system

Hardware Acquisition

Access memory from DMA
Firewire, PCIl-Express, USB 4, Intel DCI, Jtag

VM Acquisition
Atomic acquisition
New technologies like AMD Secure Encrypted Virtualization
can block any type of memory dump from the hypervisor

Crash dumps, hybernation files, ..

Cold boot attacks

Software Acauisition

Cold boot attacks

[

Immortal DMA Warrior, FPGA DMA with
Custom Unique PClLeech Firmware up
to 275 MB/s Speed, FPGA DMA USB-
C/PCle Connection, FPGA USB Firmware
Flash Capable, PCiLeech DMA,
Development Board, DMA, FPGA

Brand: IMMORTAL DMA
50 W&k &% v 1rating

Currently unavailable.
We don't know when or if this item will be back in stock.

Brand IMMORTAL DMA
Hardware USB, PCI
Interface

Style Classic

About this item

* Pre-Flashed Individual Custom Firmware (PClLeech): Firmware
customized to prevent detection from some of the toughest anti-
cheats and malware. Each individual customized firmware of
PClLeech is destroyed aftering being flashed to your FPGA DMA

P T PO TS £ HIWS HIWYS PN HE W

The Problem of (lack of) Atomicity

A complete memory acquisition takes several
minutes, during which the OS is running

The Problem of (lack of) Atomicity

A complete memory acquisition takes several
minutes, during which the OS is running
T

When idle, the Linux kernel performs over
300K write operations per second

The Problem of (lack of) Atomicity

A complete memory acquisition takes several
minutes, during which the OS is running
T

When idle, the Linux kernel performs over
300K write operations per second

—
—

Writes on kernel Writes on Total size Unique physical Time required

Mode address space MMIO regions (GiB) ages (ratio)
(Millions) g 8 pag

USB SATA USB SATA USB SATA USB SATA USB SATA
Bufs 874 811 59824 37778 6.01 5.58 249340 249204 1.81x 1.53x
ex FAT 1005 938 96112 61772 6.89 6.43 251074 250728 1.79x 1.33x
Ext4 818 757 60692 35696 5.61 5.20 249421 248873 1.76x 1.16x
Ext4 no journal 776 719 61744 36443 5.33 4.95 249439 248864 1.78x 1.10x
F2FS 951 910 61329 36743 6.51 6.23 249406 249379 2.04x 1.33x
NTES 796 739 61329 38711 5.48 5.09 249411 249129 1.75x 1.31x
FAT32 1404 1317 84456 89542 9.65 9.06 250328 250908 2.39x 1.82x
XFS 632 569 57605 34255 441 3.97 249405 249041 1.62x 1x
Bufs D. I/O 49137 37708 9147061 6707022 344.04 265.19 75037 78885 255.76x 73.00x
exFAT D. I/O 10698 4713 5204034 3950081 73.20 32.11 466 497 109.34x 15.85x
FAT32 D. /O 16657 6000 9138277 5773820 114.15 40.88 1125 1127 236.71x 19.58x
Network 1336 - 1000453 - 8.64 - 488 - 2.73x -

SECLISTS .ORG

Security Incidents mailing list archives

a_By Date B GBy Thread &3

List Archive Search

Re: Digital forensics of the physical memory

From: Harlan Carvey <keydet89 () yahoo com>
Date: Fri, 17 Jun 2005 09:35:16 -0700 (PDT)

One of the issues in particular is that he starts off
by mentioning the FU rootkit and the SQL Slammer worm,
both of which are specific to Windows...and then
presents examples using only a Linux system. He
states in the paper that similar work can be done on
Windows systems, but never provided any information to
that effect.

Based on entries I made to my blog the other day, I
ended up having a conversation w/ someone from MS
about this very issue. The issue of using dd.exe to
image Physical Memory goes beyond the fact that there
don't seem to be any maps describing how physical
memory 1is used by Windows systems, and that memory
used by processes consists of both RAM and the
pagefile. Additional issues include, as you pointed
out, that while the imaging process is occurring, the
kernel memory (and even user-mode memory) is
changing...so what you end up with is a smear, for
want of a better term.

Even tools like pmdump.exe and LiveKD
(SysInternals.com) are not sufficient for collecting
user-mode memory, b/c they do not lock or suspend
memory.

A

T1

T2

T3

FESSENIABERIAEEES

b
r
ARRRRARR ARRARRR
AR A AR E R LA R L L)
ARRRRRARA ABRRARRR
lllllllllllllllll m
L SN
r R i
AAAARARL AARRRAAR
ARAXXXX ABRAARRRA
ARRRARAR
\, 4
r ™ r
................. BEBBBBBB BBEEEBB
EEEEEEB EEEBEEB
ErA oo EEBEBEB BEEBEEB
. J

FESSENIABERIAEEES

A

iiiiiiiiiiiiiiiii

A

T1

T2

iiiiiiiiiiiiiiiii

FESSENIABERIAEEES

FEEEERAEEEEEAEEE

iiiiiiiiiiiiiiiii

FESSENIABERIAEEES

A

FEEEERAEEEEEAEEE

Introducing the Temporal Dimension to Memory Forensics

$./vol.py -f dump.raw --profile=... --pagetime pslist
<original pslist output>

Accessed physical pages: 171
Acquisition time window: 72s
. o XXX ===XXXX==XX=XX===XXX=XX=X=XXXX-XXX]

Ongoing experiments repeated on 10 dumps

ALL contain inconsistencies in
page tables

The kernel is ALWAYS affected

Dozens of processes with
corrupted address spaces

Two cases in which the pages of
one process get attributed to
another

InvesTigation

f
. Bxffffe@n1225883c
exffffepal
Ffed01225

ffffeoo 8ed
.. Bx¥#fffed@1224ab00@
exfffeaa121a040980

exffffe1219b2900:wininit. e

axffffeanlllece3en
exffffeaalllaiigen
f: 226

exffffoda1228
.o BxffffesBl121c53008
.. Bxffffeeai2iadcose

Acguisit

75
Se
1f
89
c4
00
eb
c3
ec

2819-84-

19-84

2819-24-
2019-84-29

15
5f
89

20
31
a5
8d
c7

29

29

39
5d
45
8b
Se
d2
8d
b4
45

lon

f1
c3
ec
75
5f
£7
b6
26
£0

76
8d
75
f0
5d
f1
00
00
20

41
74
51
29
c3
89

00
00

£7
26
3b
ce
66
cl
00
00
00

f1
00
4d

920
89

00
00

oxf7fcdagn [*

(nil)

process A

B
= 3,433 22700286038071 e-06
— 44.799987 79296875
0
(mil)

(nil)

-1

(nil)
Oxf7fc43e0

1

process B

Interpretation

Virtual-to-Physical Memory Translation

©

The V2P translation is performed in hardware by the
Memory Management Unit (MMU) based on in-memory data structures
and dedicated CPU registers that are configured by the OS

The translation process can involve segmentation and paging.
Some architectures use one or the other, some use both.

Virtual-to-Physical Memory Translation

Segmented address

L}l//ngex/ L}/iﬁg_e{ L}/ége{ L}/ﬁg,e{ Offset
RADIX ROOT > Huge
| Page
i Ly —‘ »
L, 78— .
| > J > J »
L J L J L J
R T RE
Directory tables Page tables Pages
2
Page address Offset

Physical address

Virtual-to-Physical Memory Translation

Segmented address

(yioget |, Cytoges |, Crtuaed | Aziaged | ot
RADIX ROOT i\-\l Huge . & J ’
| Page)
| NS 1'*;' T f.fkf/j,
> .
. .
. -
—a T
‘,:,) 1"- 3=
__ . J :i%r_J
f:,_.‘_,.j; ? 3 S;\\ Pages
¥ P] h_ﬁél Offset

Multiarchitecture OS-Agnostic Virtual Memory Forensics

radix-tree

vrscy jntel ARM

hash table

V
7

p ew e’ p c Power

fully customizable

MIPS

Multiarchitecture OS-Agnostic Virtual Memory Forensics

I
WJorg? 7 kno h

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics

ANDREA OLIVERI, Eurecom, France
DAVIDE BALZAROTTI » Eurecom, France

The first step required to perform any analysis of a physical memory image is the reconstruction of the virtual address spaces, which
allows translating virtual addresses to their corresponding physical offsets. However, this phase is often overlooked and the challenges
related to it are rarely discussed in the literature. Practical tools solve the problem by using a set of eustom heuristics tailored on a
very small number of well-known operating systems running on few architectures.

In this paper, we look for the first time at all the different ways the virtual to physical translation can be operated in 10 different CPU
architectures. In each case, we study the inviolable constraints imposed by the MMU that can be used to build signatures to recover
the required data structures from memory without any knowledge about the running operating system. We build a proof-of-concept

tool to experiment with the extraction of virtual address spaces showing the challenges of performing an OS-agnostic virtual to

physical address translation in real 1d ios. We conduct experiments on a large set of 26 different OSs and a use case on a real
hardware device. Finally, we show a possible usage of our technique to retrieve information about user space processes running on an

unknown O8 without any knowledge of its internals
CCS Concepts: « Applied computing — System forensics; Security and privacy — Operating systems security.

Additional Key Words and Phrases: memory fi ics, 08 ic: f ics, virtual memory, MMU

ACM Reference Format:
Andrea Oliveri and Davide Balzarotti. 2022. In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics. 1, 1
(April 2022), 33 pages. https://doi.org/ 10.1145/AANNNNNANAKANRN

1 INTRODUCTION

The problem of recovering semantic information from low-level data is common to many areas of computer security. In
particular, this is the main obstacle when performing a physical memory analysis—a task that is key for both memory
forensics and virtual machine introspection. The problem, often called the semantic gap, captures the challenge of
“interpreting low level bits and bytes into a high level semantic state of an in-guest operating system” [35]. However,

at a closer look, the semantic gap can be further divided into two different aspects: the reconstruction of the virtual

address spaces (which deal with translating pointers expressed as virtual addresses to their phvsical position in the

Physical to Virtual Memory Translation

” PEg™— JEu BN B B B .

1. Structural Signatures derived by inviolable MMU constraints

2. Validation Rules based on inviolable constraints imposed
by other CPU subsystems
(e.g., pages containing the Interrupt Address Table should be mapped in all VASS)

3. Binary code analysis to recover MMU-related CPU registers

Physical to Virtual Memory Translation

MMUShell

https.//github.com/eurecom-s3/mmushell

0s Architectures MMU modes
4,0 % % % % & &
38 & > s€7<%sy l0ry Translation
=4 AEuNpiasos |SSeESSSStSiaiii
2 g S e EERSSEE
& o g > +m ¥ OO oo
1 9Front[24] He €
. Barrelfish[17] Ue 00
: Darwin[4] Heo &
' Embox([5] Re > De 3
1 FreeBSD Me® ®® ®e
. GenodeOS[6] m @ 2
' HaikuOS[7] Heo & ®
1 HelenOS[8] m @ o0 0 o
. Linux Buildroot[3] Me 000900000
: Linux Debian Me o0 £ (N
: MacOS 9 h:) &
1 MacOS X H 3 &
. Minix3[9] m @ ®
: MorphOS[10] m O o
' NetBSD Me 00 ; %
. Mumos[29] Me @
: ONX[11] RO @
. rCore[13] Me o0 e
1 ReactOS[14] m @ £
. RedoxOS[15] m @ &
: vxWorks[19] R @ 2
1 Windows 10 HO 2@ ®
. Windows 95 MO @
! Windows NT H () £
Windows XP HO & 0
XV6[20] Me [

Investigation

0x{7fc4380 44.799987 79296875
0x10bag ——» Oxf7fc4380 0
7 0xf7fc4380
2
Oxf7fc44b8 % ¥l o)
2
Yol : (nil) B
ation Volatility Fram 2 (nil)
-1
-1
(nil)
(nil)
-1
T 0x{7fc43e0

exffifesnz
a1

fffeedl21c530€
exffffeppi2ladcage

Acquisition

virtual address space virtual address space

r
|
o o

g
A

-

i

pﬁysical-m-emory-
75 15 39 £f1 76 41 £7 f£f1
5e 5f 5d c3 8d 74 26 00
1f 89 45 ec 75 51 3b 4d
89 £2 8 75 £0 29 ce 19
c4 20 5e 5f 5d ¢3 66 90
00 31 d2 £7 £1 89 cl1 89
eb a5 8d b6 00 00 00 00

S Interpretation

The Problem with Profiles

©

Memory Forensics is based on PROFILES, which contain precise
descriptions of all the kernel data structures necessary to perform the analysis.

Q1: Can we automatically generate profiles starting from the dump itself?

Q2: Can we perform some analysis also without any profile?

The Problem with Profiles

The important is NOT how much kernel structures change across kernels

But how much they change within a single version — because of
user configurations or compiler options.
E.g., The layout of task_struct Is shaped by more than 60 different #ifdef

Modern kernels also support structure layout randomization as a form of
protection against exploitation

Automated Profile Generation

While the st ruct definitions are lost during the compilation
process, they are “reflected” in the code itself.

Automated Profile Generation

struct creds{

uint32 t wid:
}_””‘m-t A, mov QWORD PTR [rdi+0x10], rsi

’ mov DWORD PTR [rdi+0xc],edx
struct task{ ret

struct task =*next;

struct creds cred;
#ifdef CONFIG_TIME

uint64_t start_time;
#endif push rbx

char xname; .
i mov rbx,rdi

mov QWORD PTR [rdi+@0x18], rsi
void setup_task(struct task *t,
char *new_name, mov DWORD PTR [rdi+@xc], edx
int gid) xor edi, edi

{ call 0x1030 <time@plt>

t->name = new_name;

t-sEved jad = gl mov QWORD PTR [rbx+@x10], rax
#ifdef CONFIG_TIME pop rbx

t->start_time = time(NULL); ret
#endif
3

Automated Profile Generation

Symbols + Functions

4
Kernel s — Access .) Volatility
Source Plugin Chains Exploration Profile
/7%
2/
\ v, \ A
Clang Angr

*AutoProfile: Towards Automated Profile Generation for Memory Analysis

Automated Profile Generation

4 JEE BN B B B =

Version Release Date Configuration Used Fields Extracted Fields

4.19.37 04/2019 Debian 234 220 ()
4.19.37 04/2019 Debian + RANDSTRUCT 234 194 (83%)
5.6.19 03/2020 Raspberry Pi 227 217 (95%)
4.4.71 06/2017 OpenWrt 236 216 (92%)
3.18.94 05/2018 Goldfish (Android) 239 220 (92%)
2.6.38 03/2011 Ubuntu 226 213 (94%)

Automated Profile Generation

4 JEE BN B B B =

Katana
(very very similar solution published one year later)

https.//github.com/tum-itsec/katana

*Katana: Robust, Automated, Binary-Only Forensic Analysis of Linux Memory Snapshots

Look Mum,
no Profiles!

OS-Agnostic Memory Forensics

\1 e
N B
W\\ T/ - /
#H\\ o '\
AR A
\\#\ T i'\'\ -

OS-Agnostic Memory Forensics

o

| N0 | | n2 |
po |« p1 p2

OS-Agnostic Memory Forensics

T | n2 |
po |« p1 p2
o
\
Y
ni n2
X
po pl p2

OS-Agnostic Memory Forensics

zZzlzlE.

root

next 3! ™1 » next |—» | |
T data T T T child]
> > > | <] 2dj | >
|
root
» | > 1
]
child
<] adj | >
next —e
root
]
child
<] adj | >

OS-Agnostic Memory Forensics

Windows 10 145 6639 36 0 282 0

: -~ P -

: j j | z = % e

: 5 s s & %

' e N e O > oF &

) I Bl el E F g g -

E ~ 0S = = 2 2 5 & |
E Darwin 11 385 127 1214 1801 35

1 = Embox 0 22 35 1131 795 6

: | FreeBSD 86 0 993 1008 895 41

' HaikuOS 4117 64 0 305 232 1184

- HelenOS 25 1173 127 41 45 1 j
: B ”E i0S 20 256 192 5234 229 36 —
: Linux 120 3632 1034 693 5947 46

. Linux (Aarch64) 110 3362 936 229 4985 43

: NetBSD 41 18 1218 1482 406 45

- ReactOS 7 200 49 492 305 12

. ToaruOS 101 0 14 62 229 15

: vxWorks 51 14 199 349 416 13

: Windows XP 38 889 228 463 206 20

:

.

OS-Agnostic Memory Forensics

zZzlzlE.

root

next 3! ™1 » next |—» | |
T data T T T child]
> > > | <] 2dj | >
|
root
» | > 1
]
child
<] adj | >
next —e
root
]
child
<] adj | >

OS-Agnostic Memory Forensics

zZzlzlE.

root

»| next —]
next » ™ 1 next |—p n
T data T T T child]
> > > | <] 2dj | >
|
root
» |] |
]
[child]
o adj | >
next —e

root

child|

e 24j | || foo

OS-Agnostic Memory Forensics

zZzlzlE.

root

»| next —]
next » ™ 1 next |—p n
T data T T T child]
> > > | <] 2dj | >
|
root
» |] |
]
[child]
o adj | >
next —e

root

child|

OS-Agnostic Memory Forensics

zZzlzlE.

root

»| next —]
next » ™ 1 next |—p n
T data T T T child]
> > > | <] 2dj | >
|
root
» |] |

child|

[adj [> ‘ ‘
next —e
root x

child|

OS-Agnostic Memory Forensics

fubar

baz

adj

foo

AN
LT

sl v e s

OS-Agnostic Memory Forensics

Fossil

https.//github.com/eurecom-s3/fossil

OS-Agnostic Memory Forensics

e
3 -
i 8 g 2
]
1 g_ g <
~ -

" E § 8
2 0s 2 = = Other structures
]
1 Darwin ® ® @ e Listof network devices » System locks e Ker-
: nel/user pipes » Kernel parameters
: Embox [] = List of commands
]
1 FreeBSD 9 []
]
] HaikuOSs ® @® e Executable libraries e Kernel/luser pipes
: e Semaphores
. HelenOS e o o
]
I 10s) @ @ e List of network devices » System locks e Ker-
] nel/user pipes » Kernel parameters
]
: Linux ® @ @ e Fiesinszsysfs e Network protocols
: Linux ® @® @ e Fiesinszsysfs e Network protocols
] (A Arch6d)
]
1 MNetBSD ® ® ® = Kemel tasks
]
: ReactOS O & O
: ToaruOS ® @® & Devices’ list » Processes’ environment
: vxWorks @& O e Devices' list » Open sockets
]
1 Windows XP e @ O
| |

Windows 10 e ©® o

OS-Agnostic Memory Forensics

: 3

i y £ § &
i e = & g‘
: § = S -
1 & ':_ = .
E 0S Z 5§ & &
. Darwin 2 10 11 7
. Embox 17 O

. FreeBSD 24 31 26
' HaikuOS 6 1 11

. HelenOS 4 1 1
: i0S 2 2 15
: Linux 5 286 26 15
" Linux (AArch64) 4 22 19 24
' NetBSD 2 6 18 O
' ReactOS 5 12

' ToaruOS 3 2 3

E vxWorks 4 2

' Windows XP 5 1 2

' Windows 10 41 O O O

Investigation

Interpretation

Memory Forensics as a Graph Exploration Problem

©

The goal of the analyst is to traverse the graph of kernel data structures
to locate the information she needs.

Each rule (e.g., a plugin to list processes) corresponds to a set of paths
on the graph.

. - “gmm,. 6K Unique Structures

- struct tagk_struct : i

ik ""-n wr "

I ke task Jgtruct

i Eliﬁ'f":"-r”'f;.'.' " ¥

- B
strlek css’ set : i]
struck css_set 3) " struct request_gueue
strud E Cgroup_réot . =4

struct ¢oroup_root

100K Kernel Objects (nodes)
840K Pointers (edges)

.

- struct mprr_l__cgroup
© struct blkeg R

53% of nodes (and 96% of
those used by Volatility)

| are part of a single strongly-
W | connected component

i tvpes
e, . memary
-’;"“"3: B trace
' ‘Zi"',-.' W other
i - . devices

strust meunt

6K Unique Structures
40K Fields

struct tagk_struct

: ’““““‘“*‘
.
4 2.5 million different paths exist in the kernel graph to reach the |ects (nodes)
 mmeew, VETY SAME target object starting from a global variable, dges)
- and only counting the paths with no more than 10 edges!!

za
o e
- N

Sz /4 | 53% of nodes (and 96% of
I - | those used by Volatility)
| are part of a single strongly-
m | connected component
24 - B
f B devices
B oroc

Memory Forensics as a Graph Exploration Problem

task_struct

task_struct [task struct

task_struct

Memory Forensics as a Graph Exploration Problem

cl
3

e
R

B BN B B BN B B O = NS
v

Memory Forensics as a Graph Exploration Problem

Ugrtes™" jJEu BN B BN B B .

Atomicity Stability

(distance between two structures) (how often the pointers are updated)

55s

Memory Forensics as a Graph Exploration Problem

Back to the Whiteboard: a Principled Approach
for the Assessment and Design of Memory
Forensic Techniques
Fabio Pagani and Davide Balzarotti, EURECOM

https://www.usenix.org/conference/usenixsecurity19/presentation/pagani

This paper is included in the Proceedings of the
28th USENIX Security Symposium.
August 14-16, 2019 - Santa Clara, CA, USA
978-1-939133-06-9

™ cans.. T

» Automated

» Automated

Knowledge-based

Zevro-Knowledge

Quantitative Measurements — optimal Solutions

(for a given metric)

HeurisTics

Manual » Aufomated

Knowledge-based

T

Zevro-Knowledge

q&‘“"‘{ davide.balzarotti@eurecom.fr

Y e@balzarot

@ http://s3.eurecom.fr/~balzarot

“Wet the Appetite” by Midjourney

mailto:davide.balzarotti@eurecom.fr

	ClearShot: Eavesdropping on Keyboard Input from Video
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

