
Back to the Whiteboard: a Principled Approach for the
Assessment and Design of Memory Forensic Techniques

Fabio Pagani and Davide Balzarotti

Usenix Security ’19

Memory Forensics - Introduction

Infected
Machine

Memory
Dump

Analysis Evidence

1

Memory Forensics - Introduction

Infected
Machine

Memory
Dump

Analysis Evidence

1

Memory Forensics - Introduction

Infected
Machine

Memory
Dump

Analysis

Evidence

1

Memory Forensics - Introduction

Infected
Machine

Memory
Dump

Analysis Evidence

1

Memory Forensics - Introduction

Infected
Machine

Memory
Dump

Analysis Evidence

1

Memory Forensics - Analysis

Extract the following information:
• List processes, kernel modules
• Open files, memory mappings, sockets..
• System information: routing table, kernel logs..

... and much more: Volatility (the most used memory forensic
framework) has more than 100 plugins for Windows!

2

Memory Forensics - Analysis

Extract the following information:
• List processes, kernel modules
• Open files, memory mappings, sockets..
• System information: routing table, kernel logs..

... and much more: Volatility (the most used memory forensic
framework) has more than 100 plugins for Windows!

2

Memory Forensics - Listing Processes

task_struct

init_task

task_struct task_struct

next
prev

tasks

next
prev

tasks
next
prev

tasks
……

pid_hash

linux_pidhashtable

3

Memory Forensics - Listing Processes

task_struct

init_task

task_struct task_struct

next
prev

tasks
next
prev

tasks

next
prev

tasks
……

pid_hash

linux_pidhashtable

3

Memory Forensics - Listing Processes

task_struct

init_task

task_struct task_struct

next
prev

tasks
next
prev

tasks
next
prev

tasks

……

pid_hash

linux_pidhashtable

3

Memory Forensics - Listing Processes

task_struct

init_task

task_struct task_struct
linux_pslist

next
prev

tasks
next
prev

tasks
next
prev

tasks
……

pid_hash

linux_pidhashtable

3

Memory Forensics - Listing Processes

task_struct

init_task

task_struct task_struct
linux_pslist

next
prev

tasks
next
prev

tasks
next
prev

tasks
……

pid_hash

linux_pidhashtable 3

Motivations

Forensic analyses are manually created by humans.

• Are there other techniques to list processes?
Linux kernel 4.19: ~6000 structures with ~40000 fields

• How can we compare them?
Shortest one? Most stable across different kernels?

4

Motivations

Forensic analyses are manually created by humans.

• Are there other techniques to list processes?
Linux kernel 4.19: ~6000 structures with ~40000 fields

• How can we compare them?
Shortest one? Most stable across different kernels?

4

Motivations

Forensic analyses are manually created by humans.

• Are there other techniques to list processes?
Linux kernel 4.19: ~6000 structures with ~40000 fields

• How can we compare them?
Shortest one? Most stable across different kernels?

4

Contributions

Build a graph of
kernel structures

Define metrics to
evaluate analyses

1

24

2

8 1
1

5 24

5

Study analyses as paths
on the graph

task_struct

task_struct task_struct

task_struct

init_task

5

Contributions

Build a graph of
kernel structures

Define metrics to
evaluate analyses

1

24

2

8 1
1

5 24

5

Study analyses as paths
on the graph

task_struct

task_struct task_struct

task_struct

init_task

5

Contributions

Build a graph of
kernel structures

Define metrics to
evaluate analyses

1

24

2

8 1
1

5 24

5

Study analyses as paths
on the graph

task_struct

task_struct task_struct

task_struct

init_task

5

Kernel Graph - Creation

worklist← kernel global variables;
while worklist ̸= ∅ do

s← worklist.pop();
new_structs← Explore(s);
worklist.push(new_structs);

end while

Challenge
Kernel “abstract data types”

6

Kernel Graph - Creation

worklist← kernel global variables;
while worklist ̸= ∅ do

s← worklist.pop();
new_structs← Explore(s);
worklist.push(new_structs);

end while

Challenge
Kernel “abstract data types”

6

Kernel Graph - ADT Challenge

task_struct task_struct task_struct

list_head
tasks

list_head
tasks

list_head
tasks

……

7

Kernel Graph - ADT Challenge

task_struct task_struct task_struct

list_head
tasks

list_head
tasks

list_head
tasks

……

list_head
children

list_head
children

list_head
children

7

Kernel Graph - ADT Challenge

task_struct task_struct task_struct

list_head
tasks

list_head
tasks

list_head
tasks

……

list_head
children

list_head
siblings

list_head
siblings

7

Kernel Graph - ADT Challenge

Solved with a Clang plugin that analyzes the kernel AST

list_add(&p->tasks, &init_task.tasks);
list_add(&p->sibling, &p->children);

struct task_struct.tasks -> struct task_struct.tasks
struct task_struct.children -> struct.task_struct.siblings

8

The Graph

• 100k Structures
(Nodes)

• 840k Pointers
(Edges)

9

Metrics - Rationale

Metrics should capture different aspects of memory forensics:

• Non-atomic memory acquisition (i.e. kernel driver)

• Layout of kernel structures changes across different kernel
versions and configurations

• Attackers can modify kernel structures

10

Metrics - Rationale

Metrics should capture different aspects of memory forensics:

• Non-atomic memory acquisition (i.e. kernel driver)

• Layout of kernel structures changes across different kernel
versions and configurations

• Attackers can modify kernel structures

10

Metrics - Rationale

Metrics should capture different aspects of memory forensics:

• Non-atomic memory acquisition (i.e. kernel driver)

• Layout of kernel structures changes across different kernel
versions and configurations

• Attackers can modify kernel structures

10

Metrics - Rationale

Metrics should capture different aspects of memory forensics:

• Non-atomic memory acquisition (i.e. kernel driver)

• Layout of kernel structures changes across different kernel
versions and configurations

• Attackers can modify kernel structures

10

Proposed Metrics

• Atomicity
• Stability
• Consistency
• Generality
• Reliability

11

Proposed Metrics

• Atomicity
• Stability
• Consistency
• Generality
• Reliability

11

Metrics

Atomicity: distance in memory between two connected structures

0x10

0x40

0x50

0x20

0x60

0x50 0x90

0x70

0x10

12

Metrics

Stability: how long an edge remains stable in a running machine
• 25 snapshots at [0s, 1s, 5s, ..., 3h]

1s

10s

15s

30s

12

Metrics

Consistency: Atomicity + Stability

7

3

3

3

A

B

12

Evaluation of Current Analyses

Volatility Plugin

#
Nodes

Stability
(s) Fast Slow

linux_arp

13 12,000 3 3

linux_check_creds

248 2 3 3

linux_check_modules

151 700 3 3

linux_check_tty

13 30 3 3

linux_find_file

14955 0 7 7

linux_ifconfig

12 12,000 3 3

linux_lsmod

12 700 3 3

linux_lsof

821 0 7 7

linux_mount

495 10 3 7

linux_pidhashtable

469 30 3 7

linux_proc_maps

4722 0 7 7

linux_pslist

124 30 3 3

13

Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s) Fast Slow

linux_arp 13

12,000 3 3

linux_check_creds 248

2 3 3

linux_check_modules 151

700 3 3

linux_check_tty 13

30 3 3

linux_find_file 14955

0 7 7

linux_ifconfig 12

12,000 3 3

linux_lsmod 12

700 3 3

linux_lsof 821

0 7 7

linux_mount 495

10 3 7

linux_pidhashtable 469

30 3 7

linux_proc_maps 4722

0 7 7

linux_pslist 124

30 3 3

96% of the nodes→ giant strongly connected component
(contains on average 53% of total nodes)

13

Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability
(s)

Fast Slow

linux_arp 13 12,000

3 3

linux_check_creds 248 2

3 3

linux_check_modules 151 700

3 3

linux_check_tty 13 30

3 3

linux_find_file 14955 0

7 7

linux_ifconfig 12 12,000

3 3

linux_lsmod 12 700

3 3

linux_lsof 821 0

7 7

linux_mount 495 10

3 7

linux_pidhashtable 469 30

3 7

linux_proc_maps 4722 0

7 7

linux_pslist 124 30

3 3

Stability: 3 paths never changed in over 3 hours
11 paths changed in less than 1 minute

13

Evaluation of Current Analyses

Volatility Plugin #
Nodes

Stability Consistency
(s) Fast Slow

linux_arp 13 12,000 3 3
linux_check_creds 248 2 3 3
linux_check_modules 151 700 3 3
linux_check_tty 13 30 3 3
linux_find_file 14955 0 7 7
linux_ifconfig 12 12,000 3 3
linux_lsmod 12 700 3 3
linux_lsof 821 0 7 7
linux_mount 495 10 3 7
linux_pidhashtable 469 30 3 7
linux_proc_maps 4722 0 7 7
linux_pslist 124 30 3 3

Consistency: 5 inconsistent plugins when fast acquisition
7 inconsistent plugins when slow acquisition

13

Finding New Ways to List Processes

Much harder than expected!

• Hundreds of millions of paths when considering the shortest paths from
every root node to every task_struct

• Not every path represent an heuristics, because heuristics must be generated
by an algorithm

To limit the path explosion problem:

• Removed every root node that is not connected to every task_struct
• Remove edges used by known techniques (i.e. tasks field)
• Remove similar edges (parallel edges with same weights)
• Merge similar paths into templates (struct type + remove adjacent same type
nodes)

Resulted in 4000 path templates!

14

Finding New Ways to List Processes

Much harder than expected!

• Hundreds of millions of paths when considering the shortest paths from
every root node to every task_struct

• Not every path represent an heuristics, because heuristics must be generated
by an algorithm

To limit the path explosion problem:

• Removed every root node that is not connected to every task_struct
• Remove edges used by known techniques (i.e. tasks field)
• Remove similar edges (parallel edges with same weights)
• Merge similar paths into templates (struct type + remove adjacent same type
nodes)

Resulted in 4000 path templates! 14

Kernel Graph - New Heuristics Results

Category Root Node #
Nodes

#
task_struct Stability Generality Consistency

cgroup css_set_table 172 156 10.00 29/85 7

cgrp_dfl_root 186 156 10.00 29/85 3

memory/fs dentry_hash 58383 23 0.00 36/85 7

inode_hash 14999 23 1.00 36/85 7

workers wq_workqueues 427 69 200.00 39/85 3

All implemented as Volatility plugins!

15

A Principled Approach to Memory Forensics

Forensics analyses can be extracted and evaluated in a
principled way!

• Kernel graph to model kernel structures
• Set of metrics to capture memory forensics aspects
• Experiments to study current and future techniques

16

A Principled Approach to Memory Forensics

Forensics analyses can be extracted and evaluated in a
principled way!

• Kernel graph to model kernel structures
• Set of metrics to capture memory forensics aspects
• Experiments to study current and future techniques

16

Future Work

Our framework enables more future research!

https://github.com/pagabuc/kernographer

17

Questions?
Twitter: @pagabuc

Email: pagani@eurecom.fr

17

Kernel Graph - New Heuristics Templates

Examples

struct hlist_head [128] - struct css_set - struct
task_struct

struct hlist_bl_head *- struct dentry - struct inode -
struct vm_area_struct - struct mm_struct - struct
task_struct

18

