
Taming Transactions:

Towards Hardware-Assisted Control Flow

Integrity using Transactional Memory

Marius Muench, Fabio Pagani, Yan Shoshitaishvili,

Christopher Kruegel, Giovanni Vigna, and Davide Balzarotti

The 19th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID 2016)

Outline

0100100001100101
0110110001101100
0110111101010111
0110111101110010
0110110001100100

Control Flow Integrity

-

 Abadi et al., ‘05

Architectural Support Commodity Features

+ ? Hardware-Assisted CFI

 HAFIX (Dave et al., ’15)

 SOFIA (de Clarq et al., ’16)

 HCFI (Christoulakis et al., ’16)

 CFImon (Xia et al., ’12)

 PathArmor (van der Veen et

al., ‘15)

 CCFI (Mashtizadeh et al, ’15)

Transactional Memory

Herlihy & Moss: “Transactional Memory:

Architectural Support for Lock-Free Data

Structures” (1993)

Serializability Atomicity

COMMIT ABORT

Transactions

Transactional Synchronization eXtensions

 XTEST

XACQUIRE

XRELEASE

XBEGIN

XEND

XABORT

Restricted Transactional

 Memory

Hardware Lock

Elision

XACQUIRE LOCK ADD [rax], 1
;execute critical section

XRELEASE LOCK SUB [rax], 1

Hardware Lock Elision

 Elides Hardware Locks

 Prefix Based

• XACQUIRE, XRELEASE

• Used instead of LOCK-prefix

• Backwards compatible

 Failed Transaction

• Rollback of changed memory

• Re-execution with traditional

locking

XBEGIN __fall_back_path
;execute critical section

XEND

Restricted Transactional Memory

 Marks Code Regions as

Transactional

 Instruction Based

• XBEGIN, XEND, XABORT

• Not backwards compatible

 Failed Transaction

• Rollback of changed memory

• Execution of fall-back path

• Reason of failure stored in RAX

Transactional Aborts

 Conflicts on shared data

• Different value of elided lock (HLE)

 Instruction based aborts

• Imperative

– XABORT, CPUID, PAUSE

• Implementation dependent

→ Context switch sensitivity

 Transactional Nesting Limit

-

COMMIT ABORT

TSX-based CFI

Can we leverage Intel’s TSX to enforce CFI?

16/09/2016 -

TSX-based CFI

 Enclose every control-flow transfer with a

transaction

 Use fall-back paths to verify integrity

 Focus on label-based approaches

RTM

 No labels

 Clobbered RAX in Fall-

back Path

 XEND outside of

transaction yields

SEGFAULT

HLE

 Elided Lock Value as

Label

 Virtual Fall-back path

required

TSX-based CFI

TSX-based CFI: Example

TSX-based CFI: Example

Enter Transaction

TSX-based CFI: Example

Enter Transaction

Leave Transaction

TSX-based CFI: Example

Enter Transaction

Leave Transaction Verify Presence of XEND Instruction

TSX-based CFI: Example

Enter Transaction

Leave Transaction

Continue Normal Execution

Verify Presence of XEND Instruction

TSX-based CFI: Example

Enter Transaction

Leave Transaction

Continue Normal Execution

Terminate Program

Verify Presence of XEND Instruction

Prototype Implementation

Evaluation

Conclusion

 Can we leverage Intel’s TSX to enforce CFI?

• Yes!

• We proposed two methods for CFI enforcement:

• RTM-based

• HLE-based

 Interesting side-effects

 Mediocre performance (for now)

 Implementation will be released on github:

 https://github.com/eurecom-s3/tsxcfi

Intel’s Control Flow Enforcement Technology

 Preview released in June 2016

 Backward-Edges: Shadow Stack

 Forward-Edges: ENDBRANCH Instruction

• Indirect branch forces CPU to enter WAIT_FOR_ENDBRANCH state

• Similar to RTM-based CFI

• No hardware available yet!

This Slide is Intentionally Left Blank

Bonus-Example: TSX-based CFI (HLE)

18/09/2016 - - p 24

Enter Transaction

Leave Transaction

Test for Transactional Execution

Store Label Verify Presence of Label

Terminate Program

