
Sebastian Poeplau

EURECOM and Code Intelligence

Aurélien Francillon

EURECOM

SymQEMU
Compilation-based symbolic execution for binaries

Motivation

● Want fast and flexible binary-only symbolic execution

○ Idea: apply compilation-based symbolic execution [1] to binaries

● Why would you want to work without sources?

○ Proprietary dependencies

○ Security audits (e.g., firmware analysis)

○ Large projects with complex build systems, multiple source languages, etc.

● Why not use one of the existing solutions?

○ Often need to choose between speed and flexibility

○ High complexity

2

[1] Poeplau and Francillon: Symbolic execution with SymCC: Don’t interpret, compile! USENIX Security 2020

QSYM

● Based on dynamic binary instrumentation

○ Intel Pin to insert symbolic handling at run time

○ Symbolic semantics at the x86 machine-code level

● High performance, conceptually simple

● Architecturally inflexible

○ Tied to the x86 instruction set

● Tedious implementation

○ Need to implement symbolic handling for each x86

instruction

3

Yun et al.: QSYM: A practical concolic execution engine tailored for hybrid fuzzing, USENIX 2018

angr

● Dynamically translate binary to

VEX, then interpret symbolically

● Fast path for concrete execution:

Unicorn CPU emulator

● Very flexible

● Low execution speed

○ Python implementation

○ Interpretation is slower than

compiled code

4

Shoshitaishvili et al.: SoK: (State of) The art of war: Offensive techniques in binary analysis, S&P 2016

S2E

● Basic idea: QEMU + KLEE

○ QEMU’s TCG ops are lifted to

LLVM bitcode

○ Bitcode is fed to KLEE

● Entire operating system inside

● Conceptually very flexible

○ Implemented for x86 only

● Highly complex

5

Chipounov et al.: Selective symbolic execution, HotDep 2009 and

 The S2E platform: Design, implementation, and applications, ACM TOCS 2012

Goals

● Speed!

● Architectural flexibility

○ Firmware analysis requires support for many CPU types

○ Analysis host may be different from target architecture

● Robustness

○ Don’t want to write disassemblers ourselves

● Simplicity

○ Make a system that others can extend

6

SymQEMU
Design and implementation

● QEMU is reliable and flexible

● Compilation-based symbolic

execution is fast

● Approach: insert symbolic

handling during binary

translation

7

SymQEMU: Implementation

● Modified QEMU

○ Insert symbolic handling during binary

translation (~2,000 lines of C code)

○ Symbolic semantics at the level of TCG ops

● Simple implementation

○ Small instruction set

○ Backend reused from SymCC (i.e., QSYM)

● Flexibility (inherited from QEMU)

○ Support AArch64 with 17 lines of code

● High performance (see next slides)

8

Evaluation
Three sets of experiments:

1. Google FuzzBench

2. Whole-program analysis

3. Benchmark comparison

9

FuzzBench: Summary

● Google FuzzBench: evaluation service for fuzzers

○ Tests fuzzers on open-source targets

○ 12 fuzzers, 21 targets, 24 hours, 15 iterations (~10 CPU core years)

○ Experiments performed by Google, resulting in a detailed report

(special thanks to Google’s Abhishek Arya, Jonathan Metzman and Laurent Simon)

● SymQEMU

○ Hybrid fuzzing with AFL: one AFL process in distributed mode, one SymQEMU process,

exchanging new inputs between the two (like SymCC and QSYM evaluations)

○ Second-highest score overall (without using source code)

○ Outperformed all others on 3 out of 21 targets

○ Better than pure AFL on 14 out of 21

10

Full report available at http://s3.eurecom.fr/tools/symbolic_execution/symqemu.html

Whole-program analysis: Setup
● Targets

○ Open source: OpenJPEG, libarchive, tcpdump (like SymCC evaluation)

○ Closed source: rar (freely available, friendly license)

● Systems under test

○ SymQEMU, QSYM, SymCC (open-source targets only): hybrid fuzzing with AFL

○ S2E: symbolic exploration with default search strategy

○ Pure AFL

○ 3 CPU cores for each configuration

● Intel Xeon Platinum 8260 CPU with 2GB of RAM per core

○ See the paper for fineprint regarding S2E

● 24 hours, 30 iterations (~5 CPU core years)

11

Whole-program analysis: Results
● SymQEMU significantly outperforms QSYM, S2E

and pure AFL

● Performance comparable with SymCC

(but without using source code)

12

Benchmark experiments: Setup

● Goal

○ Investigate performance differences in a more controlled environment

● Methodology

○ Concolic execution of fixed paths

○ OpenJPEG, tcpdump, libarchive

○ 1,000 randomly selected test cases each (generated during whole-program analysis)

○ Execute in SymQEMU, QSYM and SymCC

○ Measure time spent in execution and SMT solving, respectively

13

Benchmark experiments: Results

● SymQEMU executes faster than QSYM, closer to SymCC

● Side note: SymCC’s queries are the easiest to solve

○ See discussion in the paper

14

Compilation-based symbolic execution
works on binaries

and yields a highly flexible system.
SymQEMU inserts symbolic handling into binaries during dynamic binary translation

Significantly faster than state of the art, performance comparable with source-based SymCC
Works on closed-source software

15

Thank you!
sebastian.poeplau@eurecom.fr
aurelien.francillon@eurecom.fr

https://github.com/eurecom-s3/symqemu
(code, docs, evaluation details)

16

