
Prevalence and Impact
of Low-Entropy Packing Schemes

in the Malware Ecosystem

Alessandro Mantovani (EURECOM), Simone Aonzo (UniGe), Xabier Ugarte Pedrero (CISCO),
Alessio Merlo (UniGe), Davide Balzarotti (EURECOM)

1

Packing

2

Scope / Packing Definition

(Our definition of) packing implies

● Original code present, but NOT in an executable form
● Real code recovered at run-time

(Our definition of) packing does NOT include

● JIT compilers
● Droppers
● Emulators (Themida)
● Shellcode

3

● Fundamental in malware analysis

● Wrong classification ⇒

○ costly and time-consuming dynamic analysis trying to unpack the sample

○ pollute the datasets used in many malware analysis studies

○ even worse, EVASION

● Our (false) friend: the entropy

○ compressed/encrypted data has high entropy levels

Packed or not packed: that is the question

4

Our Agenda

1. The propagation of low-entropy packed samples
2. The adopted schemes
3. Current tools/approaches vs. low-entropy packed malware

5

Dataset
Do malware authors use low-entropy schemes to evade entropy checks?

● 50.000 Portable Executable files (excluding libraries and .Net applications)
● 2013 - 2019
● Classified as malicious by more than 20 antivirus engines
● Entropy H < 7.0

○ entire file [1]
○ each section [2]
○ overlay data

[1] Lyda and Hamrock. Using entropy analysis to find encrypted and packed malware (2007).

[2] Han and Lee. Packed PE file detection for malware forensics (2009).

Ugarte-Pedrero, Balzarotti, Santos, Bringas.

Deep packer inspection: A longitudinal study of the complexity of run-time (2015)

pefile -- Python module

Manalyze -- static analyzer for PE executables

6

Packer Detector (⅕)
...

xor eax, eax

mov WORD PTR [0x2000], 0x9090

...

0x00000000

0x00000000

...

0x00001234

0x00002000

0x00002004

0x00001232

PC
Lists status

WL = []

WXL = []

7

Packer Detector (⅖)

0x00001234

0x00002000

0x00002004

0x00001232PC

Lists status

WL = []

WXL = []

...

xor eax, eax

mov WORD PTR [0x2000], 0x9090

...

0x00000000

0x00000000

...

8

Packer Detector (⅗)

PC

Lists status

WL = [
(0x1234,0x2000);
(0x1234, 0x2001)
]

WXL = []

After executing the
current instruction the
memory at 0x2000 will
be written

0x00001234

0x00002000

0x00002004

0x00001232

...

xor eax, eax

mov WORD PTR [0x2000], 0x9090

...

0x00000000

0x00000000

...

9

Packer Detector (⅘)

PC

Lists status

WL = [
(0x1234,0x2000);
(0x1234, 0x2001)
]

WXL = []

Other instructions not
affecting the memory
at 0x2000

0x00001234

0x00002000

0x00002004

0x00001232

...

xor eax, eax

mov WORD PTR [0x2000], 0x9090

...

0x00009090

0x00000000

...

10

Packer Detector (5/5)

PC

Lists status

WL = [
(0x1234,0x2000);
(0x1234, 0x2001)
]

WXL = [(0x1234,
0x2000)]

0x00001234

0x00002000

0x00002004

0x00001232

...

xor eax, eax

mov WORD PTR [0x2000], 0x9090

...

0x00009090

0x00000000

...

11

Packer Detector - False Negatives
● False Negatives -- packed samples detected as not packed

○ unexpected crash

○ virtual environment detection

○ missing dependencies

○ incorrect command line arguments

● We discarded the samples that did not exhibit a sufficient runtime behavior
○ did not invoke at least 10 disk or network-related syscalls

○ samples whose executed instructions did not span at least five memory pages

● 50.000 - 3.705 = 46.295

12

Hidden high-entropy data
While packed with a high-entropy scheme, these samples evaded our set of filters

● Encrypted data, but the data was
○ not stored in any of the section
○ nor in the overlay area

● 11.6% (5.386/46.295)
○ dominated by two families: hematite and hworld

● E.g., hematite
○ file infector
○ area created between the PE header and the first section

PE header
Encrypted data

.text

.data

Encrypted data

13

Packer Detector - Results
31.5% (14.583/46.295) ⇒ entropy alone is a very poor metric to select packed samples

14

Schemes Taxonomy w.r.t. Entropy

1. Decreasing

○ Byte Padding

○ Encoding

2. Unchanged

○ Transposition

○ Monoalphabetic Substitution

3. Slightly Increasing

○ Polyalphabetic Substitution

15

Scheme Classifier
Relies on the output of Packer Detector ⇒ Written and eXecuted List [WXL]

● Every packing scheme needs to follow the same steps while unpacking

○ locate and access the source buffer that contains the packed data

○ perform operations on such data

○ write the unpacked data in the destination buffer

● We use PANDA to perform deterministic record and replay of a sample

○ ⟨PCx , AWy⟩ ∈ [WXL]
○ backward data-flow analysis to locate the source buffer

● Decision making based on the byte distribution of source and destination buffers
16

Scheme Classifier - Results

17

Case Study: Custom Encoding (Emotet)
Two layers of packing

● The second layer uses a custom high-entropy encryption with an 8-bytes long

key

● The first layer reduces the entropy from 7.63 to 6.57

● Custom encoding + byte padding

● Packed data and keys stored in the sections: “.rsrc” and “.rdata”

18

Signature and Rule-Based Packing Detection
● Detect It Easy (DIE)

○ signatures based on a scripting language

● PEiD
○ signatures only contain low-level byte patterns

● Manalyze
○ signatures
○ PE structure heuristics

■ unusual section names
■ sections WX
■ low number of imported functions
■ resources bigger than the file itself
■ sections with H > 7.0

19

Signature and Rule-Based Packing Detection - Results

● DIE detects no well-known packer in our entire dataset

● PEiD and Manalyze generated a large number of false positives
○ detected the presence of packing more often in unpacked samples than in the packed group

● Manalyze alerts are based on sections names used by some off-the-shelf packers
○ why the malware authors used those names?
○ they could be fake clues used on purpose to deceive automated tools

20

ML Packing Detection

● 15 approaches deal with this problem (SOTA)

● Several features categories

○ PE structure, heuristics, opcodes, n-grams, statistics, entropy

● Features vector (W): union of all features from previous studies

○ A separate features vector excluding the entropy (W̃) 😉

● The most popular classifiers: SVM, RF, MLP

● Dataset: low entropy packed + not packed (~40K)

21

ML Packing Detection - Results

NO classifier was able to identify accurately low-entropy packed malware!

Considering H Not Considering H

22

Conclusions
● Low-entropy packing schemes are a real and widespread problem

● Existing static analysis techniques are unsuccessful against them

○ Entropy ❌

○ Signature and Rule-Based ❌

○ Machine Learning ❌

● There is need for new solutions

● Low-entropy packing schemes must be considered in future experiments

-- Thank you for your attention --
23

