
What You Corrupt Is Not What You Crash:

Challenges in Fuzzing Embedded Devices

Marius Muench1 Jan Stijohann2,3

Frank Kargl3 Aurélien Francillon1 Davide Balzarotti1

1EURECOM
2Siemens AG

3Ulm University



Introduction

• Embedded devices are becoming increasingly more important

• Vulnerabilities go beyond misconfigurations, weak

authentication, hard-coded keys, etc.

• Fuzz testing is a popular and effective method for uncovering
programming errors

• A variety of work improves input generation and fault

detection for fuzzing

1



Problem Statement

How efficient are we at fuzzing embedded devices?

Can we do it better?

2



Fuzzing, Corruptions & Crashes



Starting Point

Corruption 6= Crash

3



Embedded Devices: A minimalistic classification

Type-I:

General purpose OS-based

Type-II:

Embedded OS-based

Type-III:

No OS-Abstraction

4



Challenge #1: Fault Detection

• Lack of basic features, such as:

• Memory Management Unit (MMU)

• Heap consistency checks

• Canaries

• Often only solution: Basic liveness checks

5



Challenge #2: Performance & Scalability

• Fuzzing greatly benefits from parallelization

• This would mean 1 device per instance

• Frequent restarts are required

• Fast for software, slow for full systems

6



Challenge #3: Instrumentation

• Hard to retrieve coverage information

• Tools for turning silent corruptions into observable ones rarely
available

• Unsupported instruction set architecturess

• Operation tied to OS-specific features

7



Measuring the effect of memory corruptions

• Five common types of memory corruptions

• Insertion of artificial bugs in two popular open source
programs

• Expat

• mbedTLS

• Trigger condition inspired by LAVA [1]

• Vulnerable programs are compiled for four different devices

[1] Dolan-Gavitt, Brendan, et al. ”Lava: Large-scale automated vulnerability

addition.” IEEE Symposium on Security and Privacy (SP), 2016.

8



Effects of Corruptions accross different systems

Platform

Desktop Type-I Type-II Type-III

Format String 3 3 7 7

Stack-based buffer overflow 3 3
3

(opaque)

!

(hang)

Heap-based buffer overflow 3
!

(late crash)
7 7

Double Free 3 3 7
7

(malfunc.)

Null Pointer Dereference 3 3
3

(reboot)

7

(malfunc.)

9



Possible Directions for Improvement

• Static Instrumentation

• Binary Rewriting

• Pysical Re-Hosting

• Full Emulation

• Partial Emulation

• Hardware-Supported Instrumentation

10



Possible Directions for Improvement

• Static Instrumentation

• Binary Rewriting

• Pysical Re-Hosting

• Full Emulation

• Partial Emulation

• Hardware-Supported Instrumentation

10



Leveraging (partial) emulation to

improve fuzz testing



Set-up: Overview

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emulation MMIO Peripherals

Fuzz 
Inputs

Figure 1: Setup for fuzzing utilizing partial emulation

Code will be available at: https://github.com/avatartwo/ndss18_wycinwyc
11

https://github.com/avatartwo/ndss18_wycinwyc


Set-up: Target

• The vulnerable expat program, as seen in the last part

• Focus on a Type-III device

• Fuzzed in four different configurations

12



Set-up: Native

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emula�on MMIO Peripherals

Fuzz 
Inputs

1. Native (NAT)

2. Partial Emulation with Memory Forwarding (PE/MF)

3. Partial Emulation with Peripheral Modeling (PE/PM)

4. Full Emulation (FE) 13



Set-up: PE/MF

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emula�on MMIO Peripherals

Fuzz 
Inputs

1. Native (NAT)

2. Partial Emulation with Memory Forwarding (PE/MF)

3. Partial Emulation with Peripheral Modeling (PE/PM)

4. Full Emulation (FE) 14



Set-up: PE/PM

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emula�on MMIO Peripherals

Fuzz 
Inputs

1. Native (NAT)

2. Partial Emulation with Memory Forwarding (PE/MF)

3. Partial Emulation with Peripheral Modeling (PE/PM)

4. Full Emulation (FE) 15



Set-up: FE

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emula�on MMIO Peripherals

Fuzz 
Inputs

1. Native (NAT)

2. Partial Emulation with Memory Forwarding (PE/MF)

3. Partial Emulation with Peripheral Modeling (PE/PM)

4. Full Emulation (FE) 16



Set-up: Fuzzer

• boofuzz [2], a python-based fuzzer based on Sulley

• Configured to trigger the corruptions with different ratios

• Used for 100 fuzzing sessions over one hour each

[2] https://github.com/jtpereyda/boofuzz

17

https://github.com/jtpereyda/boofuzz


Set-up: Corruption Detection

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emula�on MMIO Peripherals

Fuzz 
Inputs

1. Native (NAT)

2. Partial Emulation with Memory Forwarding (PE/MF)

3. Partial Emulation with Peripheral Modeling (PE/PM)

4. Full Emulation (FE) 18



Set-up: Corruption Detection

Avatar2

PANDA

boofuzz

Embedded Device

Analysis
Plugis

Emula�on MMIO Peripherals

Fuzz 
Inputs

1. Native (NAT)

2. Partial Emulation with Memory Forwarding (PE/MF)

3. Partial Emulation with Peripheral Modeling (PE/PM)

4. Full Emulation (FE) 19



Set-up: Corruption detection

• 6 simple heuristics, monitoring the execution:

1. Segment Tracking

2. Format Specifier Tracking

3. Heap Object Tracking

4. Call Stack Tracking

5. Call Frame Tracking

6. Stack Object Tracking

20



Measuring Fuzzing Throughput

0 5 10
Corruption Ratio [%]

102

103

104

#I
np

ut
s

No Heuristics:
Native
Partial Emulation/Memory Forwarding
Partial Emulation/Peripheral Modeling
Full Emulation
Combined Heuristics:
Partial Emulation/Memory Forwarding'
Partial Emulation/Peripheral Modeling'
Full Emulation'

21



Discussion, Future Work &

Conclusion



Insights from the experiments

• Liveness checks only is a poor strategy

• Full emulation is good - but rarely possible

• Partial emulation can already help

• But introduces significant performance overhead

22



Limitations and Future Work

• We focused on improving fault detection

• Other challenges of fuzzing (e.g., input generation) not

addressed in this work

• Our experiments focused on artificial vulnerabilities

• Good for improving our initial understanding

• We investigated solutions based on partial emulation

• Other approaches still open for research

23



Conclusion

• Fuzzing embedded devices requires a paradigm shift

• (Partial) emulation can improve fault detection

• We need good emulators

• Fuzzing of embedded devices needs more investigation

24


	Fuzzing, Corruptions & Crashes
	Leveraging (partial) emulation to improve fuzz testing
	Discussion, Future Work & Conclusion

