PeerRushMining for Unwanted P2P Traffic

Babak Rahbarinia^a, Roberto Perdisci^{a,b}, Andrea Lanzi^c, Kang Li^a

^aUniversity of Georgia

bGeorgia Tech cEURECOM

Introduction

- P2P traffic represents a significant fraction of all Internet traffic
 - Apps: File Sharing, VoIP, P2P Botnets, ...
- Net admins need to categorize traffic that crosses their network's perimeter
 - Detect malware infections related to P2P botnets
 - Identify/block some types of P2P traffic
- Identifying P2P traffic can aid Net-based IDSes

Previous Work

- Several papers on P2P traffic detection
 - Port numbers, Sig-based, DPI, statistical traffic analysis
- Very little research on non-sig-based P2P traffic categorization
 - Profiling P2P traffic (Hu et al., Computer Networks'09)
 - only applied to non-encrypted traffic, very few apps
- Some work on P2P botnet detection
 - BotMiner (Gu et al.), Statistical traffic fingerprints (Zhang et al.), Traders or Plotters? (Yen et al.), ...
 - Cannot distinguish between different P2P botnets

PeerRush Goals

- Detect and categorize P2P traffic
 - Generic/flexible traffic categorization approach
 - Statistical traffic features
 - Agnostic to payload encryption
- Identify unwanted P2P traffic
 - "unwanted" depends on network management and security policies
 - Includes malicious traffic, such as P2P botnets
 - May include other legit but unwanted apps, such as file sharing (eMule, BitTorrent, etc.)

PeerRush: System Overview

P2P Host Detection - Overview

- Input: live network traffic
- Approach: statistical two-class classifier
- Output: IPs that generate P2P traffic

P2P Host Detection - Features

$$[f_1, f_2, ..., f_k]$$

- Statistical features
 - # TCP/UDP "connections" with no DNS query
 - # failed connections (peer churn effect)
 - Non-DNS dst IPs scattered in many different networks
 - successful, failed, and all connections
- Non-P2P traffic has low feature values
 - e.g., web traffic
 - Most non-P2P connections "start" with DNS query
 - Only few failed connections

P2P Traffic Categorization - Overview

Input:

- traffic from each P2P host
- P2P management flows
- Approach:
 - Application profiles modeled by one-class classifiers
- Output:
 - P2P traffic profile matches

P2P Traffic Categorization - Features

- Different P2P apps generate different traffic
 - Use different P2P protocols
 - Connect to different network of peers
- P2P management (or control) flows
 - P2P traffic overall depends on user activities
 - need to find user-independent features!
 - better to focus on P2P control traffic
 - e.g., periodic "keep alive" messages
 - protocol-specific, more user-independent
- 1st goal
 - separate management flows from data flows

Finding Management Flows

- Heuristics-based approach
 - 1. Consider only non-DNS flows
 - 2. Consider long-lived (TCP/UDP) flows
 - packet exchange for a significant portion of analysis window
 - 3. Leverage inter-packet delays
 - Data transfers typically involve bursts of packets
 - Management messages are exchanged periodically

Management Flow Features

- Distribution of bytes per packet (BPP)
- Distribution of inter-packed delays (IPD)
 - Find top n BPP and IPD peaks
 - Measure peak location and relative height

11

P2P App Profiles

- One-class classification approach
 - Each traffic profile trained using only examples of traffic from target app
 - Flexibility: different decision function and threshold per each app

Evaluation Datasets

- 5 ordinary (non-malicious) apps
 - Several days per app
 - Hundreds of GB of traffic

Automated UI input

Evaluation Datasets

- Traffic from 3 real-world P2P botnets
 - Storm, Waledac, Zeus P2P (encrypted)

- Non-P2P traffic
 - about 5 days of CS dept. network
 - custom sniffing, anonymizes packets "on the fly"
 - pruned all src IPs that are suspected P2P hosts
 - any query to *.skype.com, any match of Snort P2P rules
 - 21 out of 931 hosts pruned overall

Eval of P2P Host Detection

- Cross-validation on non-malicious apps
 - Datasets: ordinary P2P traffic + non-P2P traffic
 - Classifier: Boosted Decision Trees

time window	\mathbf{TP}	\mathbf{FP}	AUC
60 min	99.5%	0.1%	1
40 min	99.1%	0.8%	0.999
20 min	98.4%	1.1%	0.999
10 min	97.9%	1.2%	0.997

Separate "hold-out" test on P2P Botnets

Time Win.	Botnet	Instances	\mathbf{TPs}	IPs detected
	Storm	306	100%	13 out of 13
60 min	Zeus	825	92.48%	1 out 1
	Waledac	75	100%	3 out 3
10 min	Storm	1,834	100%	13 out of 13
	Zeus	4,877	33.46%	1 out of 1
	Waledac	444	100%	3 out of 3

Eval of P2P Categorization

- App profile = one-class classifier
 - Different "optimum" classifier configuration per app
 - Cross-validation results

	App.	#Inst.	Configuration	TP	FP	AUC
Skype	526	60min; KNN; 32 feat.; PCA	96.54%	0.74%	0.998	
	579	10min; Parzen; 16 feat.; -	91.27%	1.00%	0.978	
eMule	387	60min; Parzen; 16 feat; Scal.	90.64%	0.92%	0.989	
	483	10min; KNN; 8 feat.; PCA	88.40%	1.16%	0.961	
Hrogtwird	382	60min; KNN; 12 feat.; PCA	85.58%	0.96%	0.966	
	467	10min; KNN; 8 feat.; PCA	92.68%	1.25%	0.989	
μ Torrent	370	60min; KNN; 8 feat.; -	92.94%	1.30%	0.948	
	609	10min; Parzen; 4 feat.; Scal.	94.55%	1.24%	0.992	
Vuze	376	60min; KNN; 8 feat.; -	91.92%	0.95%	0.979	
	514	10min; KNN; 8 feat.; PCA	84.18%	1.17%	0.964	
Storm	162	60min; Parzen; 16 feat.; -	100%	0%	1.000	
	391	10min; Parzen; 12 feat.; PCA	100%	0%	1.000	
Zeus	375	60min; KNN; 4 feat.; -	97.29%	0.99%	0.996	
	188	10min; KNN;12 feat.; -	94.53%	0.79%	0.976	
	Waledac	37	60min; Gaussian; 12 feat.; PCA	99.99%	0.90%	0.998

Overall Eval of P2P Categorization

ordinary P2P

80% training 20% testing

Botnets

80% training 20% testing

time window: 60 minutes			
Application	\mathbf{TP}	FP	\mathbf{AUC}
Skype	100%	0.86%	1
eMule	93.59%	1.44%	0.9968
Frostwire	88.31%	0.97%	0.9873
μ Torrent	96.97%	1%	0.9789
Vuze	93.1%	0.7%	0.9938
Storm	100%	0%	1
Zeus	96.69%		
Waledac	57.14%	0.83%	0.9420

Classified as "unknown": 3.96% (29 out of 732)

Misclassified as other P2P: 0% (0 out of 732)

Disambiguation needed: 4.64% (34 out of 732)

· Correctly disambiguated: 33, Incorrectly disambiguated: 1

Total misclassified as other P2P: 0.14% (1 out of 732)

Conclusion

- PeerRush allows for flexible and accurate P2P traffic detection and categorization
- Enables detection of unwanted P2P traffic
 - different types of modern P2P botnets
 - unwanted "ordinary" P2P apps
 - agnostic to traffic encryption
- Extensive evaluation
 - 5 ordinary P2P apps + 3 modern P2P botnets
 - High accuracy of different system components
 - Promising results on robustness against traffic noise (results in the paper)

perdisci@cs.uga.edu

Overall Eval of P2P Categorization

ordinary P2P 80% training

20% testing

Botnets

80% training 20% testing

(†)

artificial noise non-P2P traffic mixed to flows

Classified as "unknown": 6.15% (45 out of 732)

Misclassified as other P2P: 0.68% (5 out of 732)

Disambiguation needed: 4.37% (32 out of 732)

· Correctly disambiguated: 32, Incorrectly disambiguated: 0

Total misclassified as other P2P: 0.68% (5 out of 732)

Evaluation Datasets

• 5 non-malicious P2P apps 🚫 🕕 👗

- Skype
- μTorrent
- eMule
- Vuze
- Frostwire
- 3 P2P botnets

- Storm
- Waledac
- Zeus P2P

