
Beyond Precision and Recall: Understanding

Uses (and Misuses) of Similarity Hashes in

Binary Analysis

Fabio Pagani 1, Matteo Dell’Amico 2, Davide Balzarotti 1

1EURECOM

2Symantec Research Labs

ACM Conference on Data and Application Security and Privacy 2018



Introduction

The need to compare files is stronger than ever before

(Source: VirusTotal)

1



Introduction

The need to compare files is stronger than ever before

(Source: VirusTotal)

1



Fuzzy Hash - Intro

10000111011100

11111001010000

01001111000011

10001001111010

10000111011100

11111001010000

01001111000011

10001001111101

a539a73212d9

a539a73212d5

Compare

Similarity 90%

2



Fuzzy Hash - Intro

• File Agnostic (no static analysis)

• Fast

• Hash comparison

2



Fuzzy Hash - Intro

2



Fuzzy Hash - Tools

• ssdeep (2006) and mrsh-v2 (2012)

• Context Triggered Piecewise Hashing

• Match if large part are in common (chapter in a text file)

• sdhash (2010)

• Statistically Improbable Features - 64-byte strings

• Match if such strings are in common (phrases in a text file)

• tlsh (2013)

• N-Grams frequencies

• Match if frequency is common (similar words, same language)

3



Motivation

4



Motivation

4



Motivation

4



Motivation

4



Motivation

?
4



Binary Analysis Scenarios

• Scenario 1: library identification in statically linked binaries

• Scenario 2: applications compiled with different toolchains

• Scenario 3: different versions of the same application

5



Scenario 1: Library Identification

• 5 Linux libraries statically compiled in a C program

• Two test: entire object file, .text section only

Algorithm
Entire object .text segment

TP% FP% Err% TP% FP% Err%

ssdeep 0 0 - 0 0 -

mrsh-v2 11.7 0.5 - 7.7 0.2 -

sdhash 12.8 0 - 24.4 0.1 53.9

tlsh 0.4 0.1 - 0.2 0.1 41.7

Potential Problems

• Library Fragmentation (1MB binary vs 13KB object)

• Relocations

6



Scenario 1: Library Identification

• 5 Linux libraries statically compiled in a C program

• Two test: entire object file, .text section only

Algorithm
Entire object .text segment

TP% FP% Err% TP% FP% Err%

ssdeep 0 0 - 0 0 -

mrsh-v2 11.7 0.5 - 7.7 0.2 -

sdhash 12.8 0 - 24.4 0.1 53.9

tlsh 0.4 0.1 - 0.2 0.1 41.7

Potential Problems

• Library Fragmentation (1MB binary vs 13KB object)

• Relocations

6



Scenario 1: Library Identification

• 5 Linux libraries statically compiled in a C program

• Two test: entire object file, .text section only

Algorithm
Entire object .text segment

TP% FP% Err% TP% FP% Err%

ssdeep 0 0 - 0 0 -

mrsh-v2 11.7 0.5 - 7.7 0.2 -

sdhash 12.8 0 - 24.4 0.1 53.9

tlsh 0.4 0.1 - 0.2 0.1 41.7

Potential Problems

• Library Fragmentation (1MB binary vs 13KB object)

• Relocations

6



Scenario 1: Library Identification - Takeaways

• Matching statically linked libraries is a difficult task

• Major Problems:

• Size binary � size object file (impacts CTPH and tlsh)

• Relocations (∼ 10% of bytes changed) (impacts sdhash)

7



Scenario 2: Re-compilation

• Two dataset:
• Small: ls, sort, tail, base64, cp

• Large: wireshark, ssh, sqlite3, openssl, httpd

• 5 compiler flags (O0..0s)

• 4 compiler (gcc-5, gcc-6, clang, icc)

8



Scenario 2: Re-compilation - Flags Results

ssdeep (0% FP)

9



Scenario 2: Re-compilation - Flags Results

sdhash (0% FP) Small Dataset

9



Scenario 2: Re-compilation - Flags Results

sdhash (0% FP) Large Dataset

9



Scenario 2: Re-compilation - Flags Results

tlsh (0% FP)

9



Scenario 2: Re-compilation - Flags Results

tlsh (1% FP)

9



Scenario 2: Re-compilation - Flags Results

tlsh (5% FP)

9



Scenario 2: Re-compilation - Flags Results

tlsh (10% FP)

9



Scenario 2: Re-compilation - Takeaways

• sdhash shines in this scenario

• tlsh is suitable as well, but has higher FP rate

• Programs compiled with O0 are the hardest to

match

10



Scenario 3: Program Similarity

Keeping the toolchain constant we tested:

• Small differences at assembly level (benign)

• Small differences at source level (benign)

• Different version of the same application

(malware)

11



Scenario 3: Program Similarity - Assembly Level

• Program under test: ssh-client

• Applied transformations:
• random insertion of NOPs

• random swapping of two instruction

12



Scenario 3: Program Similarity - Assembly Level

13



Scenario 3: Program Similarity - Assembly Level

We found cases where only 2 nops were enough to
zero the similarity

What happened

1. some function are shifted down → intra-code references needs

to be adjusted

2. .text section size increases → following sections are shifted

down

3. references to this sections need to be adjusted (.rodata)

4. In total 8 sections changed

13



Scenario 3: Program Similarity - Source Level

• Program under test: ssh-client

• Applied modifications:
• Different comparison operator (<→≤ )

• New condition

• Change of a constant

Results are hard to predict because the compiler has

aggressive optimization

14



Scenario 3: Program Similarity - Source Level

Change ssdeep mrsh-v2 tlsh sdhash

Operator 0 – 100 21 – 100 99 – 100 22 – 100

Condition 0 – 100 22 – 99 96 – 99 37 – 100

Constant 0 – 97 28 – 99 97 – 99 35 – 100

14



Scenario 3: Program Similarity - Different version

• Malware under test:
• Grum (Windows)

• Mirai (Linux)

• Applied modifications:
• New C&C domain (real and long)

• Evasion: real anti-analysis tricks to detect debugger

and virtualization

• New functionality : collect and send the list of user

present in the system

15



Scenario 3: Program Similarity - Different version

Change
ssdeep mrsh-v2 tlsh sdhash

M G M G M G M G

C&C domain (real) 0 0 97 10 99 88 98 24

C&C domain (long) 0 0 44 13 94 84 72 22

Evasion 0 0 17 0 93 87 16 34

Functionality 0 0 9 0 88 84 22 7

“M” and “G” stand respectively for “Mirai” and “Grum”

15



Scenario 3: Program Similarity - Takeaways

• tlsh shines in this scenario

• If binary sections are moved expect a low

similarity

16



Conclusion

Today we sheds light on the behavior of fuzzy hashing.

• CTPH → falls short in most tasks (used by VirusTotal)

• sdhash → same program compiled in different ways

• tlsh → different version of the same program

17


