
Avatar2: A Multi-target Orchestration

Platform

Marius Muench, Dario Nisi, Aurélien Francillon & Davide Balzarotti

Workshop on Binary Analysis Research 2018



Introduction

DynamicB inaryA nalysis

1



Motivation

• Having a huge variety of tools is awesome

• But analysis state is mostly local to the single tools

• A lot of effort to integrate specific tools into other

2



Being able to interconnect debuggers,

emulators and analysis frameworks greatly

benefits dynamic binary analysis

2



A link to the past

2014: The avatar framework:

• Connects S2E and OpenOCD/GDB

• Targets ARM firmware

• Partial emulation together with real hardware

• Tightly coupled to S2E and OpenOCD/GDB

Zaddach, Jonas, et al. ”AVATAR: A Framework to Support Dynamic Security Analysis

of Embedded Systems’ Firmwares.” NDSS 2014.

3



A link to the past

2014: The avatar framework:

• Connects S2E and OpenOCD/GDB

• Targets ARM firmware

• Partial emulation together with real hardware

• Tightly coupled to S2E and OpenOCD/GDB

Zaddach, Jonas, et al. ”AVATAR: A Framework to Support Dynamic Security Analysis

of Embedded Systems’ Firmwares.” NDSS 2014.

3



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



Imagine a tool that ...

4



One framework to orchestrate them all?

• Capable of interconnecting a variety of tools

• Expose a consistent API to the analyst

• Easy scriptability

• Operate in an highly asynchronous environment

: Careful crafted architecture required

5



Avatar2- The architecture

Avatar2

Target0

Execution
Protocol

Memory
Protocol

Endpoint0

Register
Protocol

Targetn

Execution
Protocol

Memory
Protocol

Endpointn

Register
Protocol

. . .

. . .

. . .

6



Additional features

• Architecture independent design

• Internal memory layout representation

• Legacy python support

• Peripheral modeling

• Plugin System

• Assembler/Disassembler

• Orchestrator

• Instruction Forwarder

7



Examples

Example I:

Facilitating replication

& reproduction

Example II:

Symbolic Execution

& Complex Software

Example III:

Record & Replay for Firmware

8



Example I - Replicating Harvey

• Proof of concept implementation of HARVEY [1]

• Malware for a COTS PLC

• The plc utilizes multiple boards

• Code injection via JTAG

[1] Garcia, Luis, et al. ”Hey, My Malware Knows Physics Attacking PLCs with

Physical Model Aware Rootkit.” NDSS 2016.

9



Figure 1: Harvey’s modifications to the GPIO-output ISR1

1
Taken from [1]. Original title: ”Figure 5. Original GPIO-output update ISR assembly code compared to

modified subroutine with branch to malicious code.”

10



1 from avatar2 import Avatar, ARMV7M, OpenOCDTarget

2

3 output_hook = ’’’mov r5,0xfffffffd

4 mov r4, r5

5 mov r5, 0

6 b 0x2000233E’’’

7

8 avatar = Avatar(arch=ARMV7M)

9 avatar.load_plugin(’assembler’)

10

11 t = avatar.add_target(OpenOCDTarget, openocd_script=’harvey.cfg’,

12 gdb_executable=’arm-none-eabi-gdb’)

13

14 t.init()

15 t.set_breakpoint(0xd270)

16 t.cont()

17 t.wait()

18

19 t.inject_asm(’b 0x20002514’,addr=0x20002338)

20 t.inject_asm(output_hook,addr=0x20002514)

21

22 t.cont() 11



Example I - Results

• Implementation of PoC in approx. 30 lines of Python

• All of this could –and has – been done without avatar2

• Unified and centralized interface

• Easy to exchange scripts

• Modifications can easily be integrated

12



Example II - Symbolic Execution of Firefox

• Firefox with inserted bug

• Executed concretely inside gdb until function of interest

• Automated memory layout extraction from gdb

• Transfer of layout into angr

• Memory contents copied-on-read

• Symbolic function arguments

• Analysis of only one thread

13



Example II - Results

• Implementation in approx. 60 lines of Python

• Execution statistics:

• Approximatly 10 minutes of runtime2

• 36 executed basic blocks

• 21 uniquely accessed pages

• Found the bug

• angr alone was not able to find the bug

• Could be achieved by tedious population of state without

avatar2

• Demonstrates State Transfer and Orchestration capabilities

2Hardware: VM with four Intel Xeon E5-2650L cores and 16GB of RAM

14



Example III - Recording Firmware Execution

• Dynamic binary analysis of firmware often requires the device

• PANDA [2] allows to record and replay execution

• Allows exchange of executions for further analysis without the

device

[2] Whelan, Ryan J., et al. ”Repeatable Reverse Engineering with the Platform for

Architecture-Neutral Dynamic Analysis.” MIT Lincoln Laboratory Lexington 2015.

15



1 from avatar2 import ARMV7M, Avatar, OpenOCDTarget, PandaTarget

2

3 avatar = Avatar(arch=ARMV7M)

4 avatar.load_plugin(’orchestrator’)

5

6 nucleo = avatar.add_target(OpenOCDTarget, [...])

7 panda = avatar.add_target(PandaTarget, [...])

8

9 rom = avatar.add_memory_range(0x08000000, 0x1000000,

10 file=firmware)

11 ram = avatar.add_memory_range(0x20000000, 0x14000)

12 mmio= avatar.add_memory_range(0x40000000, 0x1000000,

13 forwarded=True, forwarded_to=nucleo)

14

15 avatar.init_targets()

16 [...]

17 panda.begin_record(’panda_record’)

18 avatar.resume_orchestration(blocking=False)

19 [...]

20 avatar.stop_orchestration()

21 panda.end_record()

16



Example III - Results

• Implementation in approx. 30 lines of Python

• Successful recording of firmware’s execution

• Replayable without presence of hardware

• Without avatar2, cumbersome implementation of peripherals

required

• Demonstration of separation between execution and memory

17



Discussion

• So far, only five targets implemented

• Achieving genericity is difficult

• Overhead for implementing new targets varies

• Unsolved challenges for analysis of embedded devices

• Interrupts

• Debug access

18



Conclusion

• Multi-target orchestration is not limited to firmware

• We are just at the beginning ...

• More tomorrow morning!

• ”What You Corrupt Is Not What You Crash: Challenges in

Fuzzing Embedded Devices.”

• Session 1A: IoT, Kon Tiki Ballroom, 12.20pm

19



Artifacts?

• The full framework is open source:

https://github.com/avatartwo/avatar2

• Presented examples at:

https://github.com/avatartwo/bar18_avatar2

• Pre-built vagrant box:

avatar/2bar18 avatar2

20

https://github.com/avatartwo/avatar2
https://github.com/avatartwo/bar18_avatar2


Backup slide #1: Changes to QEMU

Avatar2 provides a costomized QEMU

• All located in a single subfolder: hw/avatar

• New board: Configurable Machine

• Already present in the first avatar

• Allows flexible configuration of emulated hardware

• New peripheral: remote memory

• Communicates with avatar2 via posix message queues

• Utilizes custom remote-memory protocol

21



Backup Slide #2: Event handling in avatar2

• Targets are emitting events

• Events are registered by protocols forwarded to the avatar2

core

• Fast queue for execution state updates

• Enables callbacks and inspection mechanisms

22


