
Reflections on Trusting Docker: Invisible Malware
in Continuous Integration Systems

Florent Moriconi
EURECOM
AMADEUS

Axel Ilmari Neergaard
EURECOM
CUJO AI

Lucas Georget
EURECOM
EDF R&D

LAAS-CNRS

Samuel Aubertin
EURECOM

Aurélien Francillon
EURECOM

Abstract—Continuous integration (CI) is a widely adopted
methodology for supporting software development. It provides
automated generation of artifacts (e.g., binaries, container im-
ages) which are then deployed in production. However, to which
extent should you trust the generated artifacts even if the source
code is clean of malicious code? Revisiting the famous compiler
backdoor from Ken Thompson, we show that a container-based
CI system can be compromised without leaving any trace in the
source code. Therefore, detecting such malware is challenging
or even impossible with common practices such as peer review
or static code analysis. We detail multiple ways to do the initial
infection process. Then, we show how to persist during CI system
updates, allowing long-term compromise. We detail possible
malicious attack payloads such as sensitive data extraction or
backdooring production software. We show that infected CI
systems can be remotely controlled using covert channels to
update attack payload or adapt malware to mitigation strategies.
Finally, we propose a proof of concept implementation tested on
GitLab CI and applicable to major CI providers.

I. INTRODUCTION

DevOps’ mindset encourages the use of Continuous Inte-
gration (CI) to quickly alert developers when a code change
does not meet quality requirements. In practice, a CI system
runs a set of checks (i.e., a CI build) on code changes.
Quality checks can be manual (e.g., peer-review) or auto-
mated. In practice, automated steps of a CI build are often
composed of a compilation, static code analysis (e.g., code
linting tools, vulnerability scanners), binary scanning, tests
(e.g., unit-testing, end-to-end testing, regression testing, func-
tional validation), and deployment of artifacts (e.g., binaries,
Docker images, tarball archives, pip packages) to a remote
registry. Furthermore, CI build servers aim to provide a more
controlled environment than developers’ laptops to increase
security. The CI is orchestrated by a CI orchestrator, notable
examples include Jenkins, GitHub Actions, and Travis CI.
Nowadays, CI orchestrators make extensive use of containers.
Indeed, containers allow identical environments between a
developer laptop, CI build environment, and the production
servers. When a CI build starts (e.g., on code change), the
orchestrator starts a new container. The container is based on
a container image called the CI build image. This image is
generally common to all builds of a specific family (e.g., Java-
based software, Python-based software). It must contain all
the tools required to perform the CI steps: compilers, linters,
code analyzers, test frameworks, company-specific tools, etc.

Therefore, it is common for this image to be customized by
the developers to include the necessary tools. This means that
the construction of the CI image is considered likewise another
software and therefore, it is often built using the CI system
itself. As a consequence, CI systems are considered self-
hosted architectures [1]. Thompson [2] showed that self-hosted
architectures raise new questions about security. This is, in
particular, the case with a C compiler written in C. Thompson
shows that if malware is present in the compiler and re-injects
itself when the compiler is built, then detecting such malware
is challenging. Therefore, to what extent should you trust that
your system is free of malware? In this paper, we show that
the same reasoning can be applied to continuous integration
systems. In particular, we make the following contributions:

• We show that a CI system can backdoor production
software without leaving any trace in the source code
repository

• We show that malware can persist on updates in a self-
hosted CI system

• We show that malware in a CI system can be updated
using hidden channels

• We implement a proof of concept implementation target-
ing Docker-based CI systems

The paper is structured as follows. In Section II, we present
literature on trusting software systems and CI malware. In
Section III, we show how to achieve a CI malware without
any trace in the source code. In Section IV, we detail a proof
of concept implementation targeting Docker. In Section V, we
explore the limits of the approach and mitigation strategies. In
Section VI, we conclude and show future paths of improve-
ment.

II. RELATED WORK

Our work is based on the question raised by Thompson [2]
regarding self-hosted architectures. Thompson showed that one
should not trust any program which was not written by oneself
directly in machine code. He described how self-replicating
programs, called quines [3], can learn and perpetuate knowl-
edge over time. When applied to C compilers, he showed that
it can be leveraged to backdoor the UNIX ”login” command
(e.g., add an attacker-controller password). Indeed, quines can
learn and perpetuate knowledge without any trace in the source
code. Figure 1 illustrates this property. The first step is to

Rules KnowledgeInput Output

'\v' X X

'\v' == '11' '\v' == '11'

'\v' == '11'X

'\v'

'\v'

'\v'

'|'

'|'

Fig. 1. Illustration of the learning process and perpetuation of knowledge in
a compiler. After learning (step 2), compiler is able to apply the knowledge
without explicit rule (step 3).

teach the compiler that \v is equal to ASCII character 11.
Then, even after removing the rule from the source code, \v
will be modified to ASCII character 11 as the rule is now
part of the compiler. Furthermore, the rule will be persistent
when the compiler is compiled again (e.g., compiler update).
Gratzer et al. [4] show that knowledge acquired by quines is
difficult to detect and remove. Compilers are an interesting
target because of their ability to alter source code just before
compilation. Bauer et al. [5] took advantage of compiler bugs
in GCC to create a backdoor. Furthermore, two real-world
attacks leveraged this concept. In 2009, the Win32.Induc.A
virus [6] infected Delphi compilers to add malicious code to
applications built using the compiler. In 2015, Xcodeghost [7]
was one of the most successful attacks on the Apple App
Store. It consisted of a modified Xcode compiler that makes
the applications being spied.

Attacks against CI systems leverage their dependencies to
a large number of components such as code dependencies or
tooling (e.g., linters). Improper configuration of CI [8] can
lead to vulnerabilities [9], [10]. Backdoors [11] often refer to
a long-term compromise of targeted systems. Therefore, the
malicious code should persist on updates. There are different
ways to get initial access to the system in CI environments.

Common vulnerabilities are listed by the OWASP founda-
tion [12]. Notable examples include hypocrite commits [13],
dependency confusion [14], or supply chain attacks (e.g.,
attacks on upstream packages). OSC&R [15] framework de-
scribes common techniques for supply chain attacks, such
as compromising legitimate artifacts or publishing and ad-
vertising malicious ones. Williams [16] shows that attackers
tend to focus on popular projects largely used by the de-
veloper’s community even if they are often better protected.
In addition, malicious code can come directly from project
maintainers [17]. Therefore, malware in CI can come from ma-
licious code in dependency repository [18] or exploits against
pipelines [19]. In addition, bypassing auto-merge rules [20]
or required reviews [21] can help to merge malicious code to
main branch.

Docker is widely used as it provides consistent execution
environment in different systems. However, it raises new
questions about security [22], [23], [24]. Indeed, Docker con-
tainers share the same kernel as the host system. Furthermore,

container images can be made by the community. While
images can be analysed to detect malicious or vulnerable code,
analysis often rely on database of malicious content. This
does not allow the detection of unknown (zero-day) attacks.
Therefore, the use of containers for CI could open up new
security vulnerabilities.

Wheeler [25] proposes a countermeasure to detect attacks
described by Thompson through diverse double-compiling.
It can be combined with other emerging solutions such as
bootstrappable [26] and reproducible [27] builds (i.e., methods
ensuring consistency between binaries and source codes) to
improve trust in software [28]. Regarding supply chain attacks,
attempts have been made to detect and mitigate them, such
as forensic [29] or safeguard levels [30] artifacts. Regarding
Docker, Petazzoni [31] warned about using Docker-in-Docker
as it requires privileged container which makes it easier to
attack the host system. Zero Trust Container Architecture [32]
encourages to always consider the code within the container
as potentially malicious, asking to higher level of security.
In the following section we describe our approach to target
container-based CI systems.

III. OUR APPROACH

We propose a new approach to compromise continuous
integration systems. The approach does not leave any traces
in source code repositories. Therefore, the compromise cannot
be detected by auditing code repositories, a widely used way
to assess software security. Figure 2 shows a general overview
of the approach. Our approach requires that at least one
component of the CI system use a self-hosted architecture.
We detail in the following section how we identify the best
location for the malware. Then we detail the self-injection
process to persist on CI updates. We present possible strategies
for the initial infection process. Finally, we present a few
possible attack payloads and how the malware can be remotely
controlled using hidden channels.

A. Self-hosted architecture

We propose malware that does not leave any trace in
source code repositories. Therefore, this excludes storing the
malicious code in the CI system code repository. Furthermore,
the malicious code must be stored in a component (e.g.,
Docker client, Docker daemon, shell, test framework) that is in
a self-hosted architecture. Without self-hosted architecture, the
malware would be overwritten by a clean component version
(i.e., build from repository source code free of malware) on
CI updates. Custom build images are commonly used to avoid
reinstalling all the necessary tools (e.g., linters) each time
the CI build is started, leading to a self-hosted architecture.
As CI updates might happen often (e.g., new features, bug
fixes, upgrade tool versions), targeting a component in a
self-hosted architecture is required for long-term compromise.
Figure 3 shows the workflow for building the CI build image.
It shows up that the CI build image is built from the CI build
container. Furthermore, the CI build container is created from
the CI build image. Therefore, this is a self-hosted architecture

CI
container

Source code Docker container Docker image

CI Build image
source code

+ self-injection
+ attack payload

CI
image

CI
container

CI Build image
source code

Target software
source code

CI
image

Target
software

A B

Initial infection
Self-reproduction & payload

Fig. 2. Overview of initial infection and after infection modes (self-reproduction and payload). In green, the source code is free of malware. In red, the
infected containers and images. (A) refers to initial infection using hypocrite commits, and (B) refers to initial infection using an in-container vulnerability
(e.g., dependency confusion).

Container image registryContinuous integration server

CI Build
image

Lint
Code scan

Docker build
Docker push

Source image for CI build containers

CI build image
source

Self-hosted
architecture

Fig. 3. Overview of a Continuous Integration self-hosted architecture. CI
container is created from the CI build image, and CI build image is built in
the CI container.

for components inside the build container. However, some
components might be external to the CI container. Figure 4
shows different strategies for building Docker images in a con-
tinuous integration build container. When building a Docker
image using Docker client (1) or in-container tool (2) such as
Kaniko [33], this is a self-hosted architecture. However, this
is not a self-hosted architecture if the building is done by an
external component such as host Docker daemon, Docker-in-
Docker, or distributed system. In practice, Docker-in-Docker
is a very common architecture pattern for CI as it helps to
target a full containerized architecture. Using the host Docker
daemon is a bad practice as it gives root access to the host
system from a CI build container [34]. External systems (e.g.,
distributed build systems) are tailored for specific needs, such

Build container

Docker daemon

(b) TCP

Host
docker daemon

(a) Bind mount (c) TCP

Continuous integration server

DIND container

(1) Docker client
(2) Kaniko

Fig. 4. Overview of different strategies for building Docker images from CI
container. Docker client (1) or in-container build tool (2), such as Kaniko,
can be used. The Docker client connects either to the host Docker daemon
(a), a daemon in another container, i.e., Docker-in-Docker (b), or an external
daemon over the network (c).

as very large build volumes, and are rarely used. Therefore,
to support Docker-in-Docker (dind) architecture, we must
implement the malware in a self-hosted component. It means
targeting software that is stored in the CI build container. This
is the case with the Docker client and in-container build tools
such as Kaniko. Docker client is a Command Line Interface
(CLI) tool that interacts with the Docker daemon, whether
the daemon is in another container (dind), on the host system
over a bind mount, or in an external system. Therefore, we
choose to implement the malware in the Docker client instead

of the Docker daemon. The same approach can be applied
to Kaniko. However, as the Docker client is more widely
used than Kaniko, we focus on the Docker client. Indeed,
the Docker client interacts with the Docker daemon to send
build context (i.e., Dockerfile, source files, parameters) to the
daemon. In the following section, we detail how the Docker
client can re-inject the malware when building the CI image
that contains the Docker client.

B. Reproduction mechanism

When building a Docker image in the CI, the malware must
be able to re-inject itself when a new CI build image is built:
this is the self-reproduction mechanism. As presented in the
previous section, we choose to hide the malware in the Docker
client as it is present in the CI build image. It can be installed
manually by developers (i.e., through a package manager or
rarely by compilation) or taken from a base Docker image
(e.g., docker:latest image). The Docker client should detect
if the image being built is the CI build image or an image
of interest for the attack payload. We detail in Section III-D
potential attack payload actions. The Docker client might rely
on the image name or build context heuristics to identify the
image being built. As the Docker client has access to the build
context, it can check for the presence of specific files in the
build context (i.e., source code). For instance, it might check
for the presence of the program /usr/bin/docker. We
can re-inject the malware in any Docker image containing
the client. However, to reduce the detection risk, we would
rather try to re-inject the malware only when the CI image
is built. For this purpose, we rely on image names and other
rules, such as filenames that only appear in CI build images
(e.g., test framework, Docker client). Before being able to self-
reproduce, an initial infection must be performed.

C. Initial infection

The initial infection requires modifying the CI build image.
Executing arbitrary code can accomplish this during image
build or by directly altering the CI image in the registry.
We detail below different strategies that internal or external
attackers can apply. Therefore, our approach does not require
a complicit actor (e.g., a company employee). Initial infection
should only be done once, then, self-reproduction will ensure
the malware will stay in the CI systems even on updates.

a) Malicious commit: The most straightforward method
to execute attacker-controlled code during CI image build is
to insert malicious code in the source code repository that
defines the CI system. Qiushi et al. [13] show that patch
proposals injecting new vulnerabilities can be accepted in
large open-source software projects like the Linux kernel.
Therefore, the same method can be considered in a corporate
environment. However, directly committing malicious code
to the repository might be challenging when enforcing peer
review and code scanning. To reduce the risk of detection,
malicious code can be hidden by proposing a code change
that looks legitimate (e.g., adding a new code linter in CI)
and relies on a remote compromised package. However, the

malicious commits approach requires access to a code manage-
ment system (i.e., internal network access, credentials), which
might be challenging for an external attacker. Another option
is to leverage a vulnerability in dependencies management.

b) Compromised dependency: Builds often rely on a
large number of dependencies. These dependencies can be
internal to the company or public (e.g., open-source). Public
dependencies can be leveraged to execute malicious code with-
out committing to the target repository source code. Indeed,
dependency confusion [14] allows running attacker-controlled
code in a continuous integration build server. The approach
leverages how package managers (e.g., pip, npm) handle
multiple registries. By default, they look up all configured
registries and select the package with the highest version. Fur-
thermore, public registries are commonly enabled by default
(e.g., PyPI for Python pip). Therefore, creating a package on
a public registry with the same name as an internal package
and a higher version leads to dependency confusion. JFrog
Artifactory, a widely used software to host internal artifacts,
was vulnerable to dependency confusion. While attempts [35],
[36] have been made to mitigate these attacks, they are difficult
to deploy at scale (e.g., not backward-compatible). Therefore,
dependency confusion is still applicable to a wide range of
systems.

c) Image registry compromising: Another way to com-
promise a CI image is to directly alter the image in the registry.
Every CI build runs with a user that has privileges. For the
build to succeed, these privileges are required: pull source
code, download dependencies, or push artifacts. However, a
poorly configured CI system might allow CI users to access
or modify resources out of the scope of the current build. For
instance, the CI users might have full read/write access to the
container image registry, allowing any build to alter any stored
image. This can happen when a unique user is shared across
builds, or privileges are assigned to the CI server (e.g., EC2
IAM policy [37], IP-based permission). Credentials might be
wrongly populated [38] to pull requests (PRs). Furthermore,
opening PRs is often allowed for a large group of users. This
might lead to the compromise of registry credentials, allowing
manipulation of stored images.

D. Payload

Malware has a payload, i.e., a part of code that can take ac-
tion. For malware targeting desktops, the payload often allows
monitoring of the user: recording keyboard keys, listening to
ambient sound, copying files, etc. In the context of a CI build
environment, malware can access and modify sensitive data.
Indeed, CI is often used to build artifacts that will be deployed
to production. It aims to provide a more secure solution
than developers’ laptops. An attack payload might record
and exfiltrate sensitive data such as environment variables or
program source codes. Furthermore, the payload can alter the
source code before compilation. In practice, it might create
vulnerabilities in production software, such as authentication
bypass. Finally, the payload can consist of network analysis
and lateral movement over the network. Indeed, CI servers are

1) Read Docker build context from filesystem

2) Send context to Docker daemon

Continuous integration server

Code linters
Vulnerability

scanners Docker build Docker push

Malware

Docker CLI, i.e., /usr/bin/docker

RUN sed -i s/deny/allow auth.c add layer

Target
software
source

Backdoored
target software

image

Build container

Fig. 5. Overview of on-the-fly injection of malicious code during Docker build. In red, malicious code is inside the Docker client. Backdoor code is injected
in the build context before sending it to the Docker daemon.

often in the internal network perimeter. The attack’s payload
depends on the attacker’s motivation and can therefore change
over time. To this aim, we present strategies for remotely
updating the malware in the following section.

E. Command & Control

After initial infection, malware might require to be updated.
Indeed, target programs evolve (e.g., new code), or new
security systems can be deployed. To this end, we developed
a methodology for Command and Control (C&C) for the
malware. C&C aims to be less detectable than reusing the
initial infection workflow. In the context of a CI server,
downloading packages from public registries (e.g., PyPI, npm)
is common. Therefore, we can leverage this property to C&C
the malware. By uploading a package to a public registry that
the malware will download, we can C&C the malware. To
further reduce the risk of being detected, the package should
look like a standard package (e.g., code linter). However, some
files inside the package will contain hidden material using
steganography. Therefore, detecting that downloaded packages
contain malicious code will be challenging. Other notable
options for C&C include DNS tunneling [39] or git-based
tunneling. Encrypted files in git (e.g., SOPS [40]) are widely
used to securely store and share secrets required for software
development. However, they create a blind spot for code scan-
ners as they do not have encryption keys. This can be leveraged
to hide malicious code behind encryption. Encrypted files will
be decrypted by malware in the CI to update themselves. In
practice, C&C will highly depend on the victim’s infrastructure
and security mechanisms. The next section details how we
created a proof of concept implementation targeting Docker-
based continuous integration systems.

IV. IMPLEMENTATION

To demonstrate practical self-replicating and invisible mal-
ware in CI systems, we wrote a proof of concept implementa-

tion targeting the Docker client [41]. The latest version of the
artifact is available at https://doi.org/10.5281/zenodo.7777331.

Docker Engine follows a client-server architecture consist-
ing of a client communicating with a Docker daemon, acting as
the server, using the HTTP or HTTPS protocol over TCP or a
socket. The daemon creates and manages Docker objects, such
as images and containers, whereas the client sends commands
to the daemon and shows output (e.g., logs) to the user. When
the client instructs the daemon to build a new image, the
client sends a file consisting of build commands to assemble
an image (referred to as a ”Dockerfile”), along with any
other required files (referred to as ”context”). As detailed in
Section III-A, we target the Docker client.

A. Bootstrapping

In the context of CI systems, the Docker client runs within
the CI container: this is a self-hosted architecture. This makes
it an apt target for the creation of self-replicating malware; if
the client rebuilds itself, then it can be patched with a self-
replicating procedure like Thompson’s [2]. Patching the client
requires a bootstrapping [42] phase before the initial infection
of any CI system. The bootstrapping phase is performed by
a custom script that produces a Dockerfile containing build
commands to produce a client capable of self-replication.

a) Achieving self-replication: To achieve self-replication,
two separate files are needed: (1) a Dockerfile with build
commands to compile a Docker client (referred to as the
”genesis Dockerfile” to avoid confusion), and (2) a patch of
the Docker client source code. The build commands in the
genesis Dockerfile must contain all required material to build
a Docker client. The patch of the Docker client source code
must include a procedure that detects when a target Dockerfile
sent to the daemon (1) uses a base image containing a Docker
client or (2) when a Docker client is assembled from scratch.
It is noteworthy that the original (i.e., non-malicious) Docker
client can come from the Docker base image, from package

https://doi.org/10.5281/zenodo.7777331

manager (e.g., apt), or from source. When the procedure
detects one of these aforementioned scenarios, it applies the
Docker client patch to the client version compiled in the
build commands of the genesis Dockerfile. Afterwards, the
procedure must replace the build commands in the target
Dockerfile corresponding to the Docker client (base image or
assembly) with the commands from the genesis Dockerfile.
This procedure is based on the self-replication logic of a
quine [3]. We choose to compile the malicious Docker client in
the build container to avoid fetching a malicious docker client
over the network (that could be detected by intrusion detection
systems). However, it is also possible to fetch the malicious
client from a remote registry to avoid the the complexity of
compiling it during initial infection or self-reproduction.

b) Performing bootstrapping: The custom script that
performs bootstrapping produces a Dockerfile with self-
replicating logic based on the files introduced in the previ-
ous paragraph. The CI can be considered infected once this
Dockerfile is used to assemble a CI image.Every rebuild of
a similar image will then re-inject the self-replicating client
patch. As illustrated in Figure 6, the custom script performs
the following steps to create the aforementioned Dockerfile:

1) Insert the original genesis Dockerfile as a payload within
the client patch.

2) Insert this client patch as a payload into itself.
3) Insert this final patch version as a payload into the

original genesis Dockerfile.
When this Dockerfile is used in real CI systems, the client
patch in the payload will be used to compile the next Docker
client. This new client will then have all the necessary material
to rebuild itself by performing steps 1 and 2.Combined with
the steps outlined in the previous paragraph, we have a
fully self-contained and self-replicating version of the original
Docker client. Thus, when a CI image is built using this new
client, the CI image will be reinfected.

B. Initial infection

Initial infection is the first time our implementation is
injected into a CI system. We tested our approach against
a GitLab instance along with Docker-based GitLab runner.
The initial infection is done in 2 steps: (a) altering a target
Dockerfile and (b) assembling a CI image from the Dockerfile
in the CI.

a) Altering a Dockerfile: The first step of the initial
infection is to alter a target Dockerfile. A target Dockerfile
is any Dockerfile that would result in the build of a CI image.
The alteration includes modifying the target Dockerfile by re-
placing any base image mentioning or creating a Docker client
with the build commands from a bootstrapped Dockerfile. This
corresponds to (A) in Figure 2. This step can be achieved by
any approach mentioned in Section III-C. Any approach that
injects the build commands from a bootstrapped Dockerfile
will result in the build of an infected CI image.

b) Assembling the CI image: Once the build commands
are injected into a target Dockerfile, a new CI image has to be
assembled based on the Dockerfile. In the initial infection, a

clean CI container will assemble the new, malicious CI image
corresponding to (B) in Figure 2. The very first build of the
malicious CI image may be detected, as the target Dockerfile
must contain the build commands from the bootstrapped
Dockerfile. Additionally, the clean CI image will report all
build commands performed in the image build as logs. This
is the default behavior of Docker clients, as the logs support
root cause analysis on failure. Hence, the initial infection may
be revealed unless the target Dockerfile alteration is removed
and logs from the clean CI container are concealed.

c) Future builds of the CI image: Once the initial in-
fection has been successfully performed and the malicious CI
image exists in the CI system, any consecutive build of CI
images will result in malicious CI images. Thanks to the self-
replicating design of the Docker client patch, assembling a CI
image will always result in a malicious image, regardless of
whether the incoming Dockerfile includes the bootstrapping
steps. This eliminates the need for altering a target Dockerfile
anew; no changes to a target Dockerfile are required and
do not need to exist in source code or in code repositories.
The Docker client patch is designed to mask any output
corresponding to build commands taken from the bootstrapped
Dockerfile. Thus, the malicious CI container will not output
any steps taken in self-replication, minimizing the chance of
detection.

C. Attacking target software
The Docker client patch introduced in Section IV-A in-

cludes, in addition to its self-replicating code, any extraneous
payload, such as malware. As this payload is packaged with
the malicious CI image, it can perform any type of action that
the CI container is authorized to perform. Moreover, as the
CI container may be used to build other software, the payload
can be targeted toward this build step. This gives a potential
malicious actor a broad attack surface towards any software.

To test this capability, a custom attack was created for
a toy project. The toy project is a C program that checks
for credentials provided by a user, granting access if the
credentials are correct. Moreover, the project is a compiled
program and runs within a Docker container. The compilation
step is performed as the project image is assembled. The
custom attack targets this compilation step during image build.

When the Docker client within the malicious CI image
recognizes that an image for this toy project is being as-
sembled, it modifies the compilation build command. The
modification instructs the Docker daemon to first replace code
in the toy project, and then compile it, similar to what Figure 5
depicts. The replacement disables the credentials correctness
check in the toy project, granting access upon any input. This
capability is enabled by the client being allowed to read the
Dockerfile and context of the toy project. In this case, the
client recognizes the toy project by reading the context tags
provided by a user.

D. Challenges
Many challenges were faced during the implementation of

our proof-of-concept. Challenges were related to the design of

{}

Dockerfile

Client code

{}

Dockerfile

Client code

Step 1

{}
{}

Dockerfile

Client code

Step 3

{}
{}

Dockerfile

Client code

Step 2

{}
{}

Fig. 6. Illustration of bootstrapping flow. Green represents a step taken, while red represents a payload within a program. The leftmost box consists of a
genesis Dockerfile and patches client code. Step 1 inserts the genesis Dockerfile into the patched client code as a payload. In step 2, the patched client code
is inserted into itself as a payload. Finally, the patched code is inserted into the genesis Dockerfile in step 3. The final Dockerfile and client code versions
now contain enough information to perform self-replication.

the malware, constraints in tooling, and designing concealment
of the initial infection, among others.

a) Self-replication: Conceptualizing self-replication in
the context of Docker is the first challenge of the imple-
mentation. Whereas the self-replication presented in [2] only
requires the compiler source code to be changed, infecting
a CI system requires modifying a Dockerfile and patching
the Docker client source code. As Figure 6 illustrates, the
Dockerfile and the client patch contain multiple payload levels.
Each level is required to achieve self-replication; every level
is required such that the client patch can behave as a quine,
outputting its own source code dynamically and re-injecting
the output into a CI image.

b) Payload encoding: Dockerfiles have a custom
domain-specific language for building commands [43]. The
RUN command executes listed arguments in a shell. When
bootstrapping the genesis Dockerfile in Section IV-A, the
Docker client patch is inserted into the genesis Dockerfile as a
payload. The payload is used to modify the source code of the
Docker client before compiling it, where the client is written
in the Go programming language [41]. This modification step
uses both a RUN command and the client patch. This may
result in a clash in syntax as both shell and Go syntax may
have overlaps (such as the escape character \ for strings). To
overcome this issue and any other potential syntax clashes,
all payloads are base64 encoded before any insertion step in
Figure 6.

c) Dockerfile line length: Lines in Dockerfiles are re-
stricted to 65535 characters, restricting the length of build
commands. This length restriction was discovered empiri-
cally. As the bootstrapped Docker client patch exceeds 60000
characters, it will exceed the line length restriction once the

payload is base64 encoded. All payloads were compressed
with Gzip to overcome this restriction before being base64
encoded. As an additional side-effect, the compression aid in
minimizing the footprint of the malware.

d) Log filtering: Another challenge in the implementa-
tion was the masking of output logs. As the daemon executes
build commands, they are logged with a prefix denoting the
command’s execution number. The logs are produced in the
following manner, assuming 3 commands:

Step (1/3) <output of command1>
Step (2/3) <output of command2>
Step (3/3) <output of command3>

Build commands injected from the bootstrapped Dockerfile
would be logged along with commands from the target Dock-
erfile. This poses a challenge in achieving invisibility as logs
leave a visible trace. Although the daemon produces the logs,
they are outputted by the client. Overcoming this challenge
thus required the custom client to parse received logs, and to
deduce which build commands to mask. For this purpose, we
created a procedure for parsing the infected target Dockerfile
before passing it to the daemon. The procedure counts the
number of commands to be executed, then subtracts the
number of commands passed by the bootstrapped Dockerfile.
Before outputting the final logs, each log line containing the
Step prefix was manipulated to show a subtracted amount.
Re-using the example above and assuming that the line con-
taining <command2> is part of the bootstrapped Dockerfile,
the procedure produced the following output:

Step (1/2) <output of command1>
Step (2/2) <output of command3>

This enhanced the invisibility of self-replication and lowered
the probability of discovery.

e) Custom attacks: Attacks must be tailored for the
target environment before attaching them as payloads to the
source code in (A) of Figure 2. This requires pre-existing
knowledge of the target environment to infect target software
successfully. This may pose a challenge to an attacker without
prior knowledge of the said environment, as an infection may
fail and potentially reveal itself. An attacker may consider
targeting a long-running container by inserting a backdoor.
This would allow the attacker to enter the target environment
and explore it further before creating a targeted attack. How-
ever, this would still challenge the attacker to know which
container to target with a backdoor, requiring prior knowledge
of the environment. Nevertheless, implementing a C&C system
would allow the attacker to update the malicious content
incrementally.

E. Limitations

Our proof of concept has a few limitations that might be
resolved with enough engineering effort. We detect a CI image
by checking the image name. However, the image name can
be changed by developers. Detecting CI images based on build
context would be more resilient. When re-injecting, the Docker
client is compiled. This takes time, which increases the risk
of being detected even if the logs are hidden. The patch for
the Docker client targets a specific version of the client. While
the code we rely on for the patch should be quite stable, we
do not handle Docker client updates.

The proof of concept does not have any update mechanism
in place. Thus, any change in the target environment may po-
tentially reveal the malware or self-replication. Nevertheless,
as outlined in Section III-E, command and control can be
implemented through different means, such as steganography.

No fallback mechanism exists in case of errors caused by
the proof of concept. This may prevent the build of CI images
or target software, which is detectable by users. A potential
mitigation strategy would be to notify a command and control
server and request updates. Another strategy would be to revert
any attempt at infection to escape detection.

V. DISCUSSION

Our approach requires to have a self-hosted architecture
to provide a long-term compromise. However, self-hosted
architecture can be avoided. A different CI system can be used
to build CI images or manually built on developers’ laptops.
Furthermore, CI containers can use images built by other ac-
tors (e.g., community images). We implement the malware in
the Docker client code stored in CI build image. Rkhunter [44]
is an open-source tool that scans for rootkits by comparing
SHA-1 hashes of local files with an online database of well-
known software. In the context of this work, deploying such
a tool for checking binary file integrity in CI images might
help to detect such compromise. Similarly, Prisma Cloud [45]
provides Docker image scanning capabilities to detect vulner-
able software and common misconfiguration. They rely on

a database of hashes of malicious software. Custom rules
can be developed to detect CI image manipulation. Docker
Content Trust [46] (DCT) provides a signature mechanism to
authenticate the author of the image and ensure that the image
has not been tampered with. However, as images are built and
signed by CI, DCT does not help to detect image manipulation
by the CI. Indeed, DCT was designed to detect attacks that
alter images in the Docker registry. We tested our attack on
a GitLab with a self-hosted runner. However, our approach
works on major CI providers as far as the self-hosted condition
is verified. GitHub Actions, Jenkins, and Travis allow the use
of custom images for building containers and do not prevent
the use of CI images in the CI itself, leading to self-hosted
architecture. Therefore, they are vulnerable too.

VI. CONCLUSION

We proposed an effective method for long-term compromise
of continuous integration systems. Initial infection can be done
remotely by leveraging vulnerabilities such as dependency
confusion. After the initial infection, no traces are present
in the source code repository, greatly reducing the risk of
being detected. In addition, C&C can be done through covert
channels using public package registries, which allows the
attack payload to be updated with a very low risk of detection.
Therefore, our approach raises new questions about responding
to security incidents involving continuous integration systems:
how do we know the system has not been compromised
without leaving any trace in the source code?

ACKNOWLEDGEMENTS

This work has benefited from a government grant managed
by the National Research Agency under France 2030 with
reference “ANR-22-PECY-0007”.

REFERENCES

[1] Wikipedia, “Self-hosting (compilers),” accessed on 06-02-2023. [On-
line]. Available: https://en.wikipedia.org/wiki/Self-hosting (compilers)

[2] K. Thompson, “Reflections on trusting trust,” Commun. ACM, vol. 27,
no. 8, p. 761–763, aug 1984.

[3] R. Toal, “Quine Programs,” accessed on 07-02-2023. [Online].
Available: https://cs.lmu.edu/∼ray/notes/quineprograms/

[4] V. Gratzer and D. Naccache, “Alien vs. quine, the vanishing circuit
and other tales from the industry’s crypt,” in Advances in Cryptology
- EUROCRYPT 2006, S. Vaudenay, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 48–58.

[5] J. R. Scott Bauer, Pascal Cuoq, “Deniable backdoors using compiler
bugs,” International Journal of Proof-of-Concept or Get The Fuck
Out (PoC∥GTFO), vol. 0x08, 2015. [Online]. Available: https:
//www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf

[6] F-Secure, “Virus:w32/induc.a,” accessed on 10-02-2023. [Online].
Available: https://www.f-secure.com/v-descs/virus w32 induc a.shtml

[7] C. Xiao, “Novel malware xcodeghost modifies xcode, infects apple
ios apps and hits app store,” accessed on 10-02-2023. [On-
line]. Available: https://unit42.paloaltonetworks.com/novel-malware-
xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/

[8] I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves,
A. Kapravelos, and A. Machiry, “Characterizing the security of
github CI workflows,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
2747–2763. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/koishybayev

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://cs.lmu.edu/~ray/notes/quineprograms/
https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf
https://www.f-secure.com/v-descs/virus_w32_induc_a.shtml
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://www.usenix.org/conference/usenixsecurity22/presentation/koishybayev
https://www.usenix.org/conference/usenixsecurity22/presentation/koishybayev

[9] R. T. Labs, “Your jenkins belongs to us now: Abusing continuous
integration systems,” CrowdStrike, Tech. Rep., 2018, accessed on 30-
03-2023. [Online]. Available: https://www.crowdstrike.com/blog/your-
jenkins-belongs-to-us-now-abusing-continuous-integration-systems/

[10] N. Quist, “The anatomy of an attack against a cloud supply pipeline,”
Palo Alto Networks, Tech. Rep., 2021, accessed on 30-03-2023.
[Online]. Available: https://www.paloaltonetworks.com/blog/2021/10/
anatomy-ci-cd-pipeline-attack/

[11] S. L. Thomas and A. Francillon, “Backdoors: Definition, deniability and
detection,” in Research in Attacks, Intrusions, and Defenses, M. Bailey,
T. Holz, M. Stamatogiannakis, and S. Ioannidis, Eds. Springer
International Publishing, 2018.

[12] OWASP, “Owasp top 10 ci/cd security risks,” accessed on 09-02-
2023. [Online]. Available: https://owasp.org/www-project-top-10-ci-cd-
security-risks/

[13] Q. Wu and K. Lu, “On the feasibility of stealthily introducing vulnera-
bilities in open-source software via hypocrite commits,” 2021.

[14] A. Birsan, “Dependency confusion: How i hacked into apple, microsoft
and dozens of other companies,” Medium, Tech. Rep., 2021, accessed
on 06-02-2023. [Online]. Available: https://medium.com/@alex.birsan/
dependency-confusion-4a5d60fec610

[15] P. Ltd, “Open software supply chain attack reference (osc&r),” accessed
on 07-02-2023. [Online]. Available: https://pbom.dev

[16] L. Williams, “Trusting trust: Humans in the software supply chain loop,”
IEEE Security & Privacy, vol. 20, no. 05, pp. 7–10, sep 2022.

[17] Arstechnica, “Sabotage: Code added to popular npm package wiped
files in russia and belarus,” accessed on 09-02-2023. [Online]. Available:
https://arstechnica.com/information-technology/2022/03/sabotage-code-
added-to-popular-npm-package-wiped-files-in-russia-and-belarus/

[18] N. Popov, “Update on git.php.net incident,” PHP, Tech. Rep.,
2021, accessed on 09-02-2023. [Online]. Available: https://news-
web.php.net/php.internals/113981

[19] T. Welton, “Exploiting continuous integration (ci) and automated
build systems,” accessed on 09-02-2023. [Online]. Available:
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%
20presentations/DEF%20CON%2025%20-%20spaceB0x-Exploiting-
Continuous-Integration-UPDATED.pdf

[20] RyotaK, “Remote code execution in homebrew by compromising the
official cask repository,” RyotaK’s blog, Tech. Rep., 2021, accessed on
09-02-2023. [Online]. Available: https://blog.ryotak.net/post/homebrew-
security-incident-en/

[21] O. Gil, “Bypassing required reviews using github actions,”
Cider, Tech. Rep., 2021, accessed on 09-02-2023. [On-
line]. Available: https://www.cidersecurity.io/blog/research/bypassing-
required-reviews-using-github-actions/

[22] A. Martin, S. Raponi, T. Combe, and R. Pietro, “Docker ecosystem –
vulnerability analysis,” Computer Communications, vol. 122, 03 2018.

[23] T. Bui, “Analysis of docker security,” CoRR, vol. abs/1501.02967,
2015. [Online]. Available: http://arxiv.org/abs/1501.02967

[24] T. Combe, A. Martin, and R. Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, pp. 54–62, 09
2016.

[25] D. A. Wheeler, “Fully countering trusting trust through diverse double-
compiling,” CoRR, vol. abs/1004.5534, 2010. [Online]. Available:
http://arxiv.org/abs/1004.5534

[26] B. Builds, “Bootstrappable Builds,” accessed on 10-02-2023. [Online].
Available: https://www.bootstrappable.org

[27] R. Builds, “Reproducible Builds,” accessed on 10-02-2023. [Online].
Available: https://reproducible-builds.org

[28] Y. Skrimstad, “Improving trust in software through diverse double-
compiling and reproducible builds,” 2018.

[29] M. Ohm, A. Sykosch, and M. Meier, “Towards detection of software
supply chain attacks by forensic artifacts,” in Proceedings of the 15th
International Conference on Availability, Reliability and Security, ser.
ARES ’20. New York, NY, USA: Association for Computing Machin-
ery, 2020.

[30] SLSA, “Supply chain Levels for Software Artifacts,” accessed on
10-02-2023. [Online]. Available: https://slsa.dev

[31] J. Petazzoni, “Using docker-in-docker for your ci or testing environment?
think twice.” Petazzoni’s blog, Tech. Rep., 2020, accessed on 07-02-
2023. [Online]. Available: http://jpetazzo.github.io/2015/09/03/do-not-
use-docker-in-docker-for-ci/

[32] D. Leahy and C. Thorpe, “Zero trust container architecture (ztca): A
framework for applying zero trust principals to docker containers,”

International Conference on Cyber Warfare and Security, vol. 17, pp.
111–120, 03 2022.

[33] Google, “kaniko - build images in kubernetes,” accessed on 06-02-2023.
[Online]. Available: https://github.com/GoogleContainerTools/kaniko

[34] Tenable, “Ensure only trusted users are allowed to control docker
daemon,” Accessed on 06-02-2023. [Online]. Available: https:
//www.tenable.com/audits/items/CIS Docker Community Edition L1
Linux Host OS v1.1.0.audit:6b5f6af12d7a9a4ce9130106434e64d7

[35] B. Sadogursky, “Going beyond exclude patterns: Safe repositories
with priority resolution,” accessed on 06-02-2023. [Online].
Available: https://jfrog.com/blog/going-beyond-exclude-patterns-safe-
repositories-with-priority-resolution/

[36] L. Tal, “snync,” accessed on 06-02-2023. [Online]. Available:
https://github.com/snyk-labs/snync

[37] AWS, “Iam roles for amazon ec2,” accessed on 06-02-2023.
[Online]. Available: https://docs.aws.amazon.com/en en/AWSEC2/
latest/UserGuide/iam-roles-for-amazon-ec2.html

[38] S. Hodne, “Security advisory: Encrypted environment variables,”
accessed on 06-02-2023. [Online]. Available: https://blog.travis-
ci.com/2016-07-07-security-advisory-encrypted-variables

[39] T. van Leijenhorst, K.-W. Chin, and D. Lowe, “On the viability and
performance of dns tunneling,” 2008.

[40] Mozilla, “Sops: Secrets operations,” accessed on 06-02-2023. [Online].
Available: https://github.com/mozilla/sops

[41] Docker, Inc., “Docker CLI,” Accessed on 26-01-2022. [Online].
Available: https://github.com/docker/cli/releases/tag/v20.10.12

[42] Wikipedia, “Bootstrapping,” Accessed on 10-02-2023. [Online].
Available: https://en.wikipedia.org/wiki/Bootstrapping#Installers

[43] Docker, Inc., “Dockerfile Reference,” Accessed on 10-02-2023.
[Online]. Available: https://docs.docker.com/engine/reference/builder/

[44] R. H. project’s authors, “The rootkit hunter project,” accessed on
06-02-2023. [Online]. Available: https://rkhunter.sourceforge.net/

[45] P. A. Networks, “Prisma cloud,” accessed on 06-02-2023. [Online].
Available: https://www.paloaltonetworks.com/prisma/cloud

[46] Docker, “Content trust in docker,” accessed on 06-02-2023. [Online].
Available: https://docs.docker.com/engine/security/trust/

https://www.crowdstrike.com/blog/your-jenkins-belongs-to-us-now-abusing-continuous-integration-systems/
https://www.crowdstrike.com/blog/your-jenkins-belongs-to-us-now-abusing-continuous-integration-systems/
https://www.paloaltonetworks.com/blog/2021/10/anatomy-ci-cd-pipeline-attack/
https://www.paloaltonetworks.com/blog/2021/10/anatomy-ci-cd-pipeline-attack/
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://pbom.dev
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus/
https://arstechnica.com/information-technology/2022/03/sabotage-code-added-to-popular-npm-package-wiped-files-in-russia-and-belarus/
https://news-web.php.net/php.internals/113981
https://news-web.php.net/php.internals/113981
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20spaceB0x-Exploiting-Continuous-Integration-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20spaceB0x-Exploiting-Continuous-Integration-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20spaceB0x-Exploiting-Continuous-Integration-UPDATED.pdf
https://blog.ryotak.net/post/homebrew-security-incident-en/
https://blog.ryotak.net/post/homebrew-security-incident-en/
https://www.cidersecurity.io/blog/research/bypassing-required-reviews-using-github-actions/
https://www.cidersecurity.io/blog/research/bypassing-required-reviews-using-github-actions/
http://arxiv.org/abs/1501.02967
http://arxiv.org/abs/1004.5534
https://www.bootstrappable.org
https://reproducible-builds.org
https://slsa.dev
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://github.com/GoogleContainerTools/kaniko
https://www.tenable.com/audits/items/CIS_Docker_Community_Edition_L1_Linux_Host_OS_v1.1.0.audit:6b5f6af12d7a9a4ce9130106434e64d7
https://www.tenable.com/audits/items/CIS_Docker_Community_Edition_L1_Linux_Host_OS_v1.1.0.audit:6b5f6af12d7a9a4ce9130106434e64d7
https://www.tenable.com/audits/items/CIS_Docker_Community_Edition_L1_Linux_Host_OS_v1.1.0.audit:6b5f6af12d7a9a4ce9130106434e64d7
https://jfrog.com/blog/going-beyond-exclude-patterns-safe-repositories-with-priority-resolution/
https://jfrog.com/blog/going-beyond-exclude-patterns-safe-repositories-with-priority-resolution/
https://github.com/snyk-labs/snync
https://docs.aws.amazon.com/en_en/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/en_en/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://blog.travis-ci.com/2016-07-07-security-advisory-encrypted-variables
https://blog.travis-ci.com/2016-07-07-security-advisory-encrypted-variables
https://github.com/mozilla/sops
https://github.com/docker/cli/releases/tag/v20.10.12
https://en.wikipedia.org/wiki/Bootstrapping#Installers
https://docs.docker.com/engine/reference/builder/
https://rkhunter.sourceforge.net/
https://www.paloaltonetworks.com/prisma/cloud
https://docs.docker.com/engine/security/trust/

	I Introduction
	II Related work
	III Our approach
	III-A Self-hosted architecture
	III-B Reproduction mechanism
	III-C Initial infection
	III-D Payload
	III-E Command & Control

	IV Implementation
	IV-A Bootstrapping
	IV-B Initial infection
	IV-C Attacking target software
	IV-D Challenges
	IV-E Limitations

	V Discussion
	VI Conclusion
	References

