
Symbolic execution with SYMCC:
Don’t interpret, compile!

Sebastian Poeplau
EURECOM

Aurélien Francillon
EURECOM

Abstract
A major impediment to practical symbolic execution is speed,
especially when compared to near-native speed solutions like
fuzz testing. We propose a compilation-based approach to
symbolic execution that performs better than state-of-the-art
implementations by orders of magnitude. We present SYMCC,
an LLVM-based C and C++ compiler that builds concolic
execution right into the binary. It can be used by software
developers as a drop-in replacement for clang and clang++,
and we show how to add support for other languages with
little effort. In comparison with KLEE, SYMCC is faster by
up to three orders of magnitude and an average factor of 12. It
also outperforms QSYM, a system that recently showed great
performance improvements over other implementations, by
up to two orders of magnitude and an average factor of 10.
Using it on real-world software, we found that our approach
consistently achieves higher coverage, and we discovered two
vulnerabilities in the heavily tested OpenJPEG project, which
have been confirmed by the project maintainers and assigned
CVE identifiers.

1 Introduction

Symbolic execution was conceived more than 40 years ago to
aid in software testing [22]. While it was rather impractical
initially, great advances in the field of computer-aided reason-
ing, in particular SAT and SMT solving, led to the first more
or less practical implementations in the early 2000s [5, 6].
Since then, symbolic execution has been the subject of much
research from both the software security and the verification
communities [9, 37, 39, 45], and the technique has established
its place in vulnerability search and program testing. In the
2016 DARPA Cyber Grand Challenge, a competition in auto-
mated vulnerability finding, exploiting and fixing, symbolic
execution was an integral part in the approaches of all three
winning teams [7, 30, 37].

Despite the increase in popularity, performance has re-
mained a core challenge for symbolic execution. Slow pro-
cessing means less code executed and tested per time, and

therefore fewer bugs detected per invested resources. Several
challenges are commonly identified, one of which is slow
code execution: Yun et al. have recently provided extensive
evidence that the execution component is a major bottleneck
in modern implementations of symbolic execution [45]. We
propose an alternative execution method and show that it leads
to considerably faster symbolic execution and ultimately to
better program coverage and more bugs discovered.

Let us first examine how state-of-the-art symbolic execu-
tion is implemented. With some notable exceptions (to be
discussed in detail later), most implementations translate the
program under test to an intermediate representation (e.g.,
LLVM bitcode), which is then executed symbolically. Con-
ceptually, the system loops through the instructions of the tar-
get program one by one, performs the requested computations
and also keeps track of the semantics in terms of any symbolic
input. This is essentially an interpreter! More specifically, it
is an interpreter for the respective intermediate representation
that traces computations symbolically in addition to the usual
execution.

Interpretation is, in general, less efficient than compilation
because it performs work at each execution that a compiler
has to do only a single time [20, 44]. Our core idea is thus
to apply "compilation instead of interpretation" to symbolic
execution in order to achieve better performance. But what
does compilation mean in the context of symbolic execution?
In programming languages, it is the process of replacing in-
structions of the source language with sequences of machine
code that perform equivalent actions. So, in order to apply
the same idea to symbolic execution, we embed the symbolic
processing into the target program. The end result is a binary
that executes without the need for an external interpreter; it
performs the same actions as the target program but addi-
tionally keeps track of symbolic expressions. This technique
enables it to perform any symbolic reasoning that is conven-
tionally applied by the interpreter, while retaining the speed
of a compiled program.

Interestingly, a similar approach was used in early imple-
mentations of symbolic execution: DART [16], CUTE [35]

and EXE [6] instrument the program under test at the level
of C source code. In comparison with our approach, however,
they suffer from two essential problems:

1. Source-code instrumentation ties them into a single pro-
gramming language. Our approach, in contrast, works on
the compiler’s intermediate representation and is there-
fore independent of the source language.

2. The requirement to handle a full programming language
makes the implementation very complex [16]; the ap-
proach may be viable for C but is likely to fail for larger
languages like C++. Our compiler-based technique only
has to handle the compiler’s intermediate representation,
which is a significantly smaller language.

The differences are discussed in more detail in Section 7.
We present an implementation of our idea, called SYMCC,

on top of the LLVM framework. It takes the unmodified
LLVM bitcode of a program under test and compiles symbolic
execution capabilities right into the binary. At each branch
point in the program, the “symbolized” binary will generate
an input that deviates from the current execution path. In
other words, SYMCC produces binaries that perform concolic
execution, a flavor of symbolic execution that does not follow
multiple execution paths at the same time but instead relies
on an external entity (such as a fuzzer) to prioritize test cases
and orchestrate execution (see Section 2 for details).

In the most common case, SYMCC replaces the normal
compiler and compiles the C or C++ source code of the
program under test into an instrumented binary.1 As such,
SYMCC is designed to analyze programs for which the source
code (or at least LLVM bitcode) is available, for example dur-
ing development as part of the secure development life cycle.
It can, however, handle binary-only libraries and inline as-
sembly gracefully. We discuss this aspect in more detail in
Section 6.3. Appendix A demonstrates a typical user interac-
tion with SYMCC.

In this paper, we first elaborate on our idea of compilation-
based symbolic execution (Section 3). We then present
SYMCC in detail (Section 4) and compare its performance
with state-of-the-art implementations (Section 5), showing
that it is orders of magnitude faster in benchmarks and that this
speed advantage translates to better bug-finding capabilities
in real-world software. Finally, we discuss the applicability
of our novel technique and possible directions for future work
(Section 6), and place the work in the context of prior research
(Section 7).

In summary, we make the following contributions:

1. We propose compilation-based symbolic execution, a
technique that provides significantly higher performance
than current approaches while maintaining low complex-
ity.

1Support for additional source languages can be added with little effort;
see Section 4.6.

2. We present SYMCC, our open-source implementation
on top of the LLVM framework.

3. We evaluate SYMCC against state-of-the-art symbolic
execution engines and show that it provides benefits
in the analysis of real-world software, leading to the
discovery of two critical vulnerabilities in OpenJPEG.

SYMCC is publicly available at http://www.s3.
eurecom.fr/tools/symbolic_execution/symcc.html,
where we also provide the raw results of our experiments and
the tested programs.

2 Background

Before we describe compilation-based symbolic execution
in detail, this section summarizes some relevant background
information.

2.1 Symbolic execution
At its core, every implementation of symbolic execution is
constructed from a set of basic building blocks (see Figure 1):

Execution The program under test is executed, and the sys-
tem produces symbolic expressions representing the computa-
tions. These expressions are the essential asset for reasoning
about the program. For our purposes, we distinguish between
IR-based and IR-less execution, which are discussed in the
subsequent two sections.

Symbolic backend The sole purpose of describing compu-
tations symbolically is to reason about them, e.g., to generate
new program inputs that trigger a certain security vulnerabil-
ity. The symbolic backend comprises the components that are
involved in the reasoning process. Typically, implementations
use an SMT solver, possibly enhanced by pre-processing tech-
niques. For example, KLEE [5] employs elaborate caching
mechanisms to minimize the number of solver queries, and
QSYM [45] removes all irrelevant information from queries
to reduce the load on the solver.

Forking and scheduling Some implementations of sym-
bolic execution execute the target program only a single time,
possibly along the path dictated by a given program input,
and generate new program inputs based on that single execu-
tion. The new inputs are usually fed back into the system or
passed to a concurrently running fuzzer. This approach, often
referred to as concolic execution, is followed by SAGE [17],
Driller [39] and QSYM [45], among others. On the other
hand, several other implementations contain additional facili-
ties to manage multiple executions of the program under test
along different paths. Typically, they “fork” the execution at

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

Test	cases

Constraints	

Symbolic	backend

Solver	

Program	under	test	

	Symbolic	execution	framework

Execution	environment

Figure 1: The building blocks of symbolic execution. The en-
tire system may be encapsulated in a component that handles
forking and scheduling.

Test	cases

Compilation

Direct	IR	generation

IR	lifter	

Symbolic	execution	framework

Constraints	

Solver

IR	interpreter

Figure 2: IR-based symbolic execution interprets IR and in-
teracts with the symbolic backend at the same time.

branch points in the program (in order to avoid having to re-
execute from the start with a new input); a scheduler usually
orchestrates the different execution states and prioritizes them
according to some search strategy. For example, KLEE [5],
Mayhem [7] and angr [37] follow this approach.

The problem of path explosion, a term referring to system
overload caused by too many possible paths of execution, is
much more prevalent in this latter group of symbolic execu-
tion systems: A forking system needs to manage a consider-
able amount of information per execution state, whereas con-
colic executors simply generate a new program input, write
it to disk, and “forget about it”. Mayhem [7] implements a
hybrid approach by forking while enough memory is avail-
able and persisting states to disk otherwise. For SYMCC, we
decided to follow the concolic approach because we think
that it allows for higher execution speeds and a simpler im-
plementation.

The three building blocks—execution, symbolic backend,
and forking/scheduling— are conceptually orthogonal to each
other (with some technical dependencies between execution
and forking), even if implementations sometimes lack a clear
distinction. Our work focuses exclusively on improving the
execution component, while we reuse the work of Yun et
al. [45] for the symbolic backend.

We now examine the two prevalent flavors of the execution
component in present implementations of symbolic execution.

Constraints	Solver	 Hooking

Test	cases

Analysis	engine

Symbolic	execution	framework	

Figure 3: IR-less symbolic execution attaches to the machine
code executing on the CPU and instruments it at run time.

2.2 IR-based symbolic execution
A common way of implementing symbolic execution is by
means of an intermediate representation (IR). Compared to
the native instruction sets of popular CPU architectures, IRs
typically describe program behavior at a high level and with
fewer instructions. It is therefore much easier to implement a
symbolic interpreter for IRs than for machine code directly,
so this is the approach that many state-of-the-art systems take.

IR-based symbolic execution first needs to transform the
program under analysis into IR. KLEE [5], for example, works
on LLVM bitcode and uses the clang compiler to generate
it from source code; S2E [9] also interprets LLVM bitcode
but generates it dynamically from QEMU’s internal program
representation, translating each basic block as it is encoun-
tered during execution; angr [37] transforms machine code
to VEX, the IR of the Valgrind framework [29]. In general,
IR generation can require a significant amount of work [10],
especially when it starts from machine code [21]. Once the
IR of the target program is available, a symbolic interpreter
can run it and produce symbolic expressions corresponding to
each computation. The expressions are typically passed to the
symbolic backend for further processing as discussed above;
Figure 2 illustrates the process.

2.3 IR-less symbolic execution
While translating target programs to an intermediate represen-
tation simplifies the implementation of symbolic execution,
interpreting IR is much slower than native execution of the
corresponding binary, especially in the absence of symbolic
data (i.e., when no symbolic reasoning is necessary). This
observation has led to the development of Triton [34] and
QSYM [45], which follow a different approach: instead of
translating the program under test to IR and then interpreting
it, they execute the unmodified machine code and instrument
it at run time. Concretely, Triton and QSYM both control the
target program’s execution with Intel Pin [28], a framework
for binary instrumentation. Pin provides facilities for inserting
custom code when certain machine-code instructions are exe-
cuted. The symbolic executors use this mechanism to inject
code that handles computations symbolically in addition to
the concrete computations performed by the CPU. For exam-
ple, when the CPU is about to add the values contained in

two registers, Pin calls out to the symbolic executor, which
obtains the symbolic expressions corresponding to the regis-
ters’ values, produces the expression that describes the sum,
and associates it with the register that receives the result of
the computation. See Figure 3 for an overview.

The main advantage and original goal of the IR-less ap-
proach is speed. Run-time instrumentation still introduces
overhead, but tracing native execution while inserting bits
of code is much faster than interpreting IR. Another, more
subtle advantage is robustness: If an IR-based system does
not know how to handle a certain instruction or a call to some
library function it is not able to continue because the inter-
preter cannot execute the requested computation; in IR-less
symbolic execution, however, the CPU can always execute
the target program concretely. The injected analysis code will
just fail to produce an appropriate symbolic expression. One
might say that performance degrades more gracefully than in
IR-based systems.

However, building symbolic execution directly on machine
code has considerable downsides. Most notably, the imple-
mentation needs to handle a much larger instruction set: while
the IRs that are commonly used for symbolic execution com-
prise a few dozen different instructions, CPU instruction sets
can easily reach hundreds to thousands of them. The symbolic
executor has to know how to express the semantics of each of
those instructions symbolically, which results in a much more
complex implementation. Another problem is architecture
dependence: naturally, instrumentation of machine code is a
machine-dependent endeavor. IRs, on the other hand, are usu-
ally architecture agnostic. IR-based systems therefore work
on any architecture where there is a translator from the respec-
tive machine code to IR. This is especially relevant for the
domain of embedded devices, where a great variety of CPU
architectures is in common use. SYMCC uses IR and thus re-
tains the flexibility and implementation simplicity associated
with IR-based approaches, yet our compilation-based tech-
nique allows it to reach (and surpass) the high performance
of IR-less systems, as we show in Section 5.

2.4 Reducing overhead

In either type of symbolic execution, IR-based and IR-less,
building symbolic expressions and passing them to the sym-
bolic backend is necessary only when computations involve
symbolic data. Otherwise, the result is completely indepen-
dent of user input and is thus irrelevant for whatever reasoning
is performed in the backend. A common optimization strat-
egy is therefore to restrict symbolic handling to computations
on symbolic data and resort to a faster execution mechanism
otherwise, a strategy that we call concreteness checks. In IR-
based implementations, symbolic interpretation of IR may
even alternate with native execution of machine code on the
real or a fast emulated CPU; angr [37], for example, follows
this approach. Implementations vary in the scope of their

concreteness checks—while QSYM [45] decides whether
to invoke the symbolic backend on a per-instruction basis,
angr [37] places hooks on relevant operations such as mem-
ory and register accesses. Falling back to a fast execution
scheme as often as possible is an important optimization,
which we also implement in SYMCC (see Section 3.4).

3 Compilation-based symbolic execution

We now describe our compilation-based approach, which dif-
fers from both conventional IR-based and IR-less symbolic
execution but combines many of their advantages. The high-
level goal of our approach is to accelerate the execution part of
symbolic execution (as outlined in Section 2.1) by compiling
symbolic handling of computations into the target program.
The rest of this section is devoted to making this statement
more precise; in the next section, we describe the actual im-
plementation.

3.1 Overview

An interpreter processes a target program instruction by in-
struction, dispatching on each opcode and performing the
required actions. A compiler, in contrast, passes over the tar-
get ahead of time and replaces each high-level instruction
with a sequence of equivalent machine-code instructions. At
execution time, the CPU can therefore run the program di-
rectly. This means that an interpreter performs work during
every execution that a compiler needs to do only once.

In the context of symbolic execution, current approaches
either interpret (in the case of IR-based implementations) or
run directly on the CPU but with an attached observer (in IR-
less implementations), performing intermittent computations
that are not part of the target program. Informally speaking,
IR-based approaches are easy to implement and maintain
but rather slow, while IR-less techniques reach a high perfor-
mance but are complex to implement. The core claim of this
paper is that we can combine the advantages of both worlds,
i.e., build a system that is easy to implement yet fast. To do so,
we compile the logic of the symbolic interpreter (or observer)
into the target program. Contrary to early implementations
of symbolic execution [6, 16, 35], we do not perform this em-
bedding at the source-code level but instead work with the
compiler’s intermediate representation, which allows us to
remain independent of the source language that the program
under test is written in, as well as independent of the target
architecture (cf. Section 7).

define i32 @is_double(i32, i32) {
%3 = shl nsw i32 %1, 1
%4 = icmp eq i32 %3, %0
%5 = zext i1 %4 to i32
ret i32 %5

}

Listing 1: An example function in LLVM bitcode. It takes
two integers and checks whether the first is exactly twice the
second.

To get an intuition for the process, consider the example
function in Listing 1. It takes two integers and returns 1 if the
first integer equals the double of the second, and 0 otherwise.
How would we expect compiler-based symbolic execution to
transform the program in order to capture this computation
symbolically? Listing 2 shows a possible result. The inserted
code calls out to the run-time support library, loaded in the
same process, which creates symbolic expressions and eventu-
ally passes them to the symbolic backend in order to generate
new program inputs (not shown in the example). Note that the
transformation inserting those calls happens at compile time;
at run time, the program “knows” how to inform the symbolic
backend about its computations without requiring any exter-
nal help and thus without incurring a significant slowdown.
Figure 4 summarizes the approach; note how it contrasts with
the conventional techniques depicted in Figures 2 and 3. We
will now go over the details of the technique.

define i32 @is_double(i32, i32) {
; symbolic computation
%3 = call i8* @_sym_get_parameter_expression(i8 0)
%4 = call i8* @_sym_get_parameter_expression(i8 1)
%5 = call i8* @_sym_build_integer(i64 1)
%6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)
%7 = call i8* @_sym_build_equal(i8* %6, i8* %3)
%8 = call i8* @_sym_build_bool_to_bits(i8* %7)

; concrete computation (as before)
%9 = shl nsw i32 %1, 1
%10 = icmp eq i32 %9, %0
%11 = zext i1 %10 to i32

call void @_sym_set_return_expression(i8* %8)
ret i32 %11

}

Listing 2: Simplified instrumentation of Listing 1. The called
functions are part of the support library. The actual instru-
mentation is slightly more complex because it accounts for
the possibility of non-symbolic function parameters, in which
case the symbolic computation can be skipped.

3.2 Support library
Since we compile symbolic execution capabilities into the tar-
get program, all components of a typical symbolic execution
engine need to be available. We therefore bundle the sym-
bolic backend into a library that is used by the target program.
The library exposes entry points into the symbolic backend

Compilation	to	IR

Bitcode	
instrumentation
pass

Code
generation

Binary	execution			

Test	cases

Figure 4: Our compilation-based approach compiles symbolic
execution capabilities directly into the target program.

to be called from the instrumented target, e.g., functions to
build symbolic expressions and to inform the backend about
conditional jumps.

3.3 Symbolic handlers

The core of our compile-time transformation is the inser-
tion of calls to handle symbolic computations. The compiler
walks over the entire program and inserts calls to the symbolic
backend for each computation. For example, where the target
program checks the contents of two variables for equality,
the compiler inserts code to obtain symbolic expressions for
both operands, to build the resulting “equals” expression and
to associate it with the variable receiving the result (see ex-
pression %7 in Listing 2). The code is generated at compile
time and embedded into the binary. This process replaces a
lot of the symbolic handling that conventional symbolic ex-
ecution engines have to perform at run time. Our compiler
instruments the target program exactly once—afterwards, the
resulting binary can run on different inputs without the need
to repeat the instrumentation process, which is particularly ef-
fective when combined with a fuzzer. Moreover, the inserted
handling becomes an integral part of the target program, so
it is subject to the usual CPU optimizations like caching and
branch prediction.

3.4 Concreteness checks

It is important to realize that each inserted call to the run-time
support library introduces overhead: it ultimately invokes
the symbolic backend and may put load on the SMT solver.
However, involving the symbolic backend is only necessary
when a computation receives symbolic inputs. There is no
need to inform the backend of fully concrete computations—
we would only incur unnecessary overhead (as discussed in
Section 2.4). There are two stages in our compilation-based
approach where data can be identified as concrete:

Compile time Compile-time constants, such as offsets into
data structures, magic constants, or default return values
can never become symbolic at run time.

Run time In many cases, however, the compiler cannot know
whether data will be concrete or symbolic at run time,
e.g., when it is read from memory: a memory cell may
contain either symbolic or concrete data, and its con-
creteness can change during the course of execution. In
those cases, we can only check at run time and prevent
invocation of the symbolic backend dynamically if all
inputs of a computation are concrete.

Consequently, in the code we generate, we omit calls to the
symbolic backend if data is known to be constant at compile
time. Moreover, in the remaining cases, we insert run-time
checks to limit backend calls to situations where at least one
input of a computation is symbolic (and thus the result may
be, too).

4 Implementation of SymCC

We now describe SYMCC, our implementation of compiler-
based symbolic execution. We built SYMCC on top of the
LLVM compiler framework [25]. Compile-time instrumen-
tation is achieved by means of a custom compiler pass, writ-
ten from scratch. It walks the LLVM bitcode produced by
the compiler frontend and inserts the code for symbolic han-
dling (as discussed in Section 3.3). The inserted code calls
the functions exported by the symbolic backend: we provide
a thin wrapper around the Z3 SMT solver [11], as well as
optional integration with the more sophisticated backend of
QSYM [45]. The compiler pass consists of roughly 1,000
lines of C++ code; the run-time support library, also written
in C++, comprises another 1,000 lines (excluding Z3 and the
optional QSYM code). The relatively small code base shows
that the approach is conceptually simple, thus decreasing the
probability of implementation bugs.

The remainder of this section describes relevant implemen-
tation details before we evaluate SYMCC in the next section.
For additional documentation of low-level internals we refer
interested readers to the complementary material included
in the source repository at http://www.s3.eurecom.fr/
tools/symbolic_execution/symcc.html.

4.1 Compile-time instrumentation
The instrumentation inserted by our compiler extension leaves
the basic behavior of the target program unmodified; it merely
enhances it with symbolic reasoning. In other words, the in-
strumented program still executes along the same path and
produces the same effects as the original program, but addi-
tionally uses the symbolic backend to generate new program
inputs that increase code coverage or possibly trigger bugs in
the target program.

Since our compiler extension is implemented as an LLVM
pass, it runs in the “middle-end” of LLVM-based compilers—
after the frontend has translated the source language into

LLVM bitcode but before the backend transforms the bitcode
into machine code. SYMCC thus needs to support the instruc-
tions and intrinsic functions of the LLVM bitcode language.
We implement the same semantics as IR-based symbolic in-
terpreters of LLVM bitcode, such as KLEE [5] and S2E [9].
In contrast to the interpreters, however, we do not perform
the symbolic computations corresponding to the bitcode in-
structions at instrumentation time but instead generate code
ahead of time that performs them during execution.2 This
means that the instrumentation step happens only once, fol-
lowed by an arbitrary number of executions. Furthermore,
the code that we inject is subject to compiler optimizations
and eventually runs as part of the target program, without
the need to switch back and forth between the target and an
interpreter or attached observer. It is for this reason that we
implemented the instrumentation logic from scratch instead
of reusing code from KLEE or others: those systems perform
run-time instrumentation whereas our implementation needs
to instrument the target at compile time.

There is a trade-off in positioning SYMCC’s pass relative to
the various optimization steps. Early in the optimizer, the bit-
code is still very similar to what the front-end emitted, which
is typically inefficient but relatively simple and restricted to
a subset of the LLVM bitcode instruction set. In contrast, at
later stages of the optimizer pipeline, dead code has been op-
timized away and expensive expressions (e.g., multiplication)
have been replaced with cheaper ones (e.g., bit shifts); such
optimized code allows for less and cheaper instrumentation
but requires handling a larger portion of the instruction set. In
the current implementation, our pass runs in the middle of the
optimization pipeline, after basic optimizations like dead-code
elimination and strength reduction but before the vectorizer
(i.e., the stage that replaces loops with SIMD instructions on
supported architectures). Running our code even later could
improve the performance of compiled programs but would
complicate our implementation by requiring us to implement
symbolic handling of vector operations; we opted for imple-
mentation simplicity. It would be interesting to experiment
more with the various options of positioning SYMCC in the
optimization pipeline; we defer such improvements to future
work.

In a recent study, we found that symbolic execution is
fastest when it executes at the level of machine code, but
that SMT queries are easiest when generated based on the
higher-level semantics of an intermediate representation [32].
This is exactly the setup of SYMCC: we reason about compu-
tations at the level of LLVM bitcode, but the injected code is
compiled down to efficient machine code.

It is sometimes argued that binary-based vulnerability
2This also distinguishes our approach from what the formal verification

community calls symbolic compilation [42]. Symbolic compilers translate
the entire program to a symbolic representation in order to reason about all
execution paths at once, while we—like all symbolic execution systems—
defer reasoning to run time, where it is necessarily restricted to a subset of
all possible execution paths.

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html

search is more effective than source-based techniques be-
cause it examines the instructions that the processor executes
instead of a higher-level representation; it can discover bugs
that are introduced during compilation. A full evaluation of
this claim is outside the scope of this paper. However, we
remark that SYMCC could address concerns about compiler-
introduced bugs by performing its instrumentation at the very
end of the optimization pipeline, just before code generation.
At this point, all compiler optimizations that may introduce
vulnerabilities have been performed, so SYMCC would in-
strument an almost final version of the program—only the
code-generation step needs to be trusted. We have not seen
the need for such a change in practice, so we leave it to future
work.

The reader may wonder whether SYMCC is compatible
with compiler-based sanitizers, such as address sanitizer [36]
or memory sanitizer [38]. In principle, there is no problem
in combining them. Recent work by Österlund et al. shows
that sanitizer instrumentation can help to guide fuzzers [31].
We think that there is potential in the analogous application
of the idea to symbolic execution—sanitizer checks could
inform symbolic execution systems where generating new
inputs is most promising. However, our current implementa-
tion, like most concolic execution systems, separates test case
generation from input evaluation: sanitizers check whether
the current input leads to unwanted behavior, while SYMCC
generates new inputs from the current one. We leave the ex-
ploration of sanitizer-guided symbolic execution in the spirit
of Österlund et al. to future work.

4.2 Shadow memory

In general, we store the symbolic expressions associated with
data in a shadow region in memory. Our run-time support li-
brary keeps track of memory allocations in the target program
and maps them to shadow regions containing the correspond-
ing symbolic expressions that are allocated on a per-page
basis. There is, however, one special case: the expressions
corresponding to function-local variables are stored in local
variables themselves. This means that they receive the same
treatment as regular data during code generation; in particular,
the compiler’s register allocator may decide to place them in
machine registers for fast access.

It would be possible to replace our allocation-tracking
scheme with an approach where shadow memory is at a fixed
offset from the memory it corresponds to. This is the tech-
nique used by popular LLVM sanitizers [36, 38]. It would
allow constant-time lookup of symbolic expressions, where
currently the lookup time is logarithmic in the number of
memory pages containing symbolic data. However, since this
number is usually very small (in our experience, below 10),
we opted for the simpler implementation of on-demand allo-
cation.

4.3 Symbolic backend

We provide two different symbolic backends: Our own back-
end is a thin wrapper around Z3. It is bundled as a shared ob-
ject and linked into the instrumented target program. The com-
piler pass inserts calls to the backend, which then constructs
the required Z3 expressions and queries the SMT solver in
order to generate new program inputs.

However, since the backend is mostly independent from
the execution component and only communicates with it via
a simple interface, we can replace it without affecting the
execution component, our main contribution. We demonstrate
this flexibility by integrating the QSYM backend, which can
optionally be used instead of our simple Z3 wrapper: We
compile a shared library from the portion of QSYM that han-
dles symbolic expressions, link it to our target program and
translate calls from the instrumented program into calls to the
QSYM code. The interface of our wrapper around the QSYM
code consists of a set of functions for expression creation (e.g.,
SymExpr _sym_build_add(SymExpr a, SymExpr b)), as
well as helper functions to communicate call context and path
constraints; adding a path constraint triggers the generation
of new inputs via Z3. Effectively, this means that we can
combine all the sophisticated expression handling from the
QSYM backend, including dependency tracking between ex-
pressions and back-off strategies for hot code paths [45], with
our own fast execution component.

4.4 Concreteness checks

In Section 3.4, we highlighted the importance of concreteness
checks: for good performance, we need to restrict symbolic
reasoning (i.e., the involvement of the symbolic backend) to
cases where it is necessary. In other words, when all operands
of a computation are concrete, we should avoid any call to
the symbolic backend. In our implementation, symbolic ex-
pressions are represented as pointers at run time, and the
expressions for concrete values are null pointers. Therefore,
checking the concreteness of a given expression during execu-
tion is a simple null-pointer check. Before each computation
in the bitcode, we insert a conditional jump that skips sym-
bolic handling altogether if all operands are concrete; if at
least one operand is symbolic, we create the symbolic ex-
pressions for the other operands as needed and call out to
the symbolic backend. Obviously, when the compiler can in-
fer that a value is a compile-time constant and thus never
symbolic at run time, we just omit the generation of code for
symbolic handling.

By accelerating concrete computations during symbolic
execution, we alleviate a common shortcoming of conven-
tional implementations. Typically, only a few computations
in a target program are symbolic, whereas the vast majority
of operations involve only concrete values. When symbolic
execution introduces a lot of overhead even for concrete com-

putations (as is the case with current implementations despite
their concreteness checks), the overall program execution is
slowed down considerably. Our approach, in contrast, allows
us to perform concrete computations at almost the same speed
as in uninstrumented programs, significantly speeding up the
analysis. Section 5 shows measurements to support this claim.

4.5 Interacting with the environment
Most programs interact with their environment, e.g., by work-
ing with files, or communicating with the user or other pro-
cesses. Any implementation of symbolic execution needs
to either define a boundary between the analyzed program
and the (concrete) realm of the operating system, or execute
even the operating system symbolically (which is possible
in S2E [9]). QSYM [45], for example, sets the boundary at
the system call interface—any data crossing this boundary is
made concrete.

In principle, our approach does not dictate where to stop
symbolic handling, as long as all code can be compiled with
our custom compiler.3 However, for reasons of practicality
SYMCC does not assume that all code is available. Instead,
instrumented code can call into any uninstrumented code
at run time; the results will simply be treated as concrete
values. This enables us to degrade gracefully in the presence
of binary-only libraries or inline assembly, and it gives users
a very intuitive way to deliberately exclude portions of the
target from analysis—they just need to compile those parts
with a regular compiler. Additionally, we implement a special
strategy for the C standard library: we define wrappers around
some important functions (e.g., memset and memcpy) that
implement symbolic handling where necessary, so users of
SYMCC do not need to compile a symbolic version of libc. It
would be possible to compile the standard library (or relevant
portions of it) with our compiler and thus move the boundary
to the system call interface, similarly to KLEE and QSYM;
while this is an interesting technical challenge, it is orthogonal
to the approach we present in this paper.

4.6 Supporting additional source languages
Since SYMCC uses the compiler to instrument target pro-
grams, it is in principle applicable to programs written in any
compiled programming language. Our implementation builds
on top of the LLVM framework, which makes it particularly
easy to add support for programming languages with LLVM-
based compilers, such as C++ [40], Rust [41] and Go [15]. We
have implemented C++ support in SYMCC, and we use it as
an example for describing the generalized process of adding
support for a new source language. The procedure consists of
two steps, which we discuss in more detail below: loading our
LLVM pass into the compiler and compiling the language’s
run-time library.

3Our current implementation is restricted to user-space software.

4.6.1 Loading the pass

Any LLVM-based compiler eventually generates bitcode
and passes it to the LLVM backend for optimization and
code generation. In order to integrate SYMCC, we need
to instruct the compiler to load our compiler pass into the
LLVM backend. In the case of clang++, the LLVM project’s
C++ compiler, loading additional passes is possible via the
options -Xclang -load -Xclang /path/to/pass. There-
fore, a simple wrapper script around the compiler is all that is
needed. Note that the ability to load SYMCC’s compiler pass
is the only requirement for a basic analysis; however, without
instrumentation of the run-time library (detailed below), the
analysis loses track of symbolic expressions whenever data
passes through a function provided by the library.

4.6.2 Compiling the run-time library

Most programming languages provide a run-time library; it
often abstracts away the interaction with the operating system,
which typically requires calling C functions, and offers high-
level functionality. The result of compiling it with SYMCC
is an instrumented version of the library that allows SYMCC
to trace computations through library functions. In particular,
it allows the analysis to mark user input read via the source
language’s idiomatic mechanism as symbolic, an essential
requirement for concolic execution. C++ programs, for exam-
ple, typically use std::cin to read input; this object, defined
by the C++ standard library, may rely on the C function getc
internally, but we need an instrumented version of std::cin
in order to trace the symbolic expressions returned by getc
through the run-time library and into user code.

For C++ support in SYMCC, we chose libc++ [26], the
LLVM project’s implementation of the C++ standard library.
It has the advantages that it is easy to build and that it does
not conflict with libstdc++, the GNU implementation of the
library installed on most Linux distributions. Compiling it
with SYMCC is a matter of setting the CC and CXX environ-
ment variables to point to SYMCC before invoking the regular
build scripts.

With those two steps—loading the compiler pass and com-
piling the run-time library—we can provide full support for
a new source language.4 As a result, SYMCC ships with a
script that can be used as a drop-in replacement for clang++
in the compilation of C++ code.

5 Evaluation

In this section we evaluate SYMCC. We first analyze our
system’s performance on synthetic benchmarks (Section 5.1),

4Occasionally, front-ends for new languages may emit bitcode instruc-
tions that SYMCC cannot yet handle. In the case of C++, we had to add
support for a few instructions that arise in the context of exception handling
(invoke, landingpad, resume, and insertvalue).

allowing for precisely controlled experiments. Then we evalu-
ate our prototype on real-world software (Section 5.2), demon-
strating that the advantages we find in the benchmarks trans-
late to benefits in finding bugs in the real world. The raw data
for all figures is available at http://www.s3.eurecom.fr/
tools/symbolic_execution/symcc.html.

5.1 Benchmarks

For our benchmarks we use the setup that we proposed in
earlier work [32]: at its core, it uses a set of test programs
that was published in the course of the DARPA Cyber Grand
Challenge (CGC), along with inputs that trigger interesting
behavior in each application (called proofs of vulnerability or
PoVs). The same set of programs has been used by Yun et al.
in the evaluation of QSYM [45], so we know that QSYM is
capable of analyzing them, which enables a fair comparison.
We applied the necessary patches for KLEE in order to enable
it to analyze the benchmark programs as well.5 Note that we
excluded five programs because they require inter-process
communication between multiple components, making them
hard to fit into our controlled execution environment, and one
more, NRFIN_00007, because it contains a bug that makes it
behave differently when compiled with different compilers
(see Appendix B).

A major advantage of the CGC programs over other pos-
sible test sets is that they eliminate unfairness which may
otherwise arise from the different instrumentation boundaries
in the systems under comparison (see Section 4.5): In contrast
with KLEE and QSYM, SYMCC does not currently execute
the C standard library symbolically. It would therefore gain
an unfair speed advantage in any comparison involving libc.
The CGC programs, however, use a custom “standard library”
which we compile symbolically with SYMCC, thus eliminat-
ing the bias.6

We ran the benchmark experiments on a computer with an
Intel Core i7-8550U CPU and 32 GB of RAM, using a timeout
of 30 minutes per individual execution. We use SYMCC with
the QSYM backend, which allows us to combine our novel
execution mechanism with the advanced symbolic backend
by Yun et al.

5.1.1 Comparison with other state-of-the-art systems

We begin our evaluation by comparing SYMCC with existing
symbolic execution engines on the benchmark suite described
above, performing three different experiments:

5http://www.s3.eurecom.fr/tools/symbolic_execution/ir_
study.html

6The Linux port of the custom library still relies on libc in its implemen-
tation, but it only uses library functions that are thin wrappers around system
calls without added logic, such as read, write and mmap. KLEE and QSYM
concretize at the system-call interface, so the instrumentation boundary is
effectively the same as for SYMCC.

1. We compare pure execution time, i.e., running the target
programs inside the symbolic execution tools but without
any symbolic data.

2. We analyze execution time with symbolic inputs.

3. We compare the coverage of test cases generated during
concolic execution.

The targets of our comparison are KLEE [5] and
QSYM [45]. We decided for KLEE because, like SYMCC,
it works on LLVM bitcode generated from source code; an
important difference, however, is that KLEE interprets the bit-
code while SYMCC compiles the bitcode together with code
for symbolic processing. Comparing with KLEE therefore
allows us to assess the value of compilation in the context
of symbolic execution. The decision for QSYM is largely
motivated by its fast execution component. Its authors demon-
strated considerable benefits over other implementations, and
our own work provides additional evidence for the notion that
QSYM’s execution component achieves high performance in
comparison with several state-of-the-art systems [32]. More-
over, our reuse of QSYM’s symbolic backend in SYMCC
allows for a fair comparison of the two systems’ execution
components (i.e., their frontends). QSYM’s approach to sym-
bolic execution requires a relatively complex implementation
because the system must handle the entire x86 instruction
set—we demonstrate that SYMCC achieves comparable or
better performance with a much simpler implementation (and
the additional benefit of architecture independence, at the cost
of requiring source code or at least LLVM bitcode).

In order to save on the already significant use of compu-
tational resources required for our evaluation, we explicitly
excluded two other well-known symbolic execution systems:
S2E [9] and Driller [39]. S2E, being based on KLEE, is very
similar to KLEE in the aspects that matter for our evaluation,
and preliminary experiments did not yield interesting insights.
Driller is based on angr [37], whose symbolic execution com-
ponent is implemented in Python. While this gives it distinct
advantages for scripting and interactive use, it also makes
execution relatively slow [32, 45]. We therefore did not con-
sider it an interesting target for a performance evaluation of
symbolic execution.

Pure execution time We executed KLEE, QSYM and
SYMCC on the CGC programs, providing the PoVs as input.
For the measurement of pure execution time, we did not mark
any data as symbolic, therefore observing purely concrete
execution inside the symbolic execution engines. In many
real-world scenarios, only a fraction of the data in the tested
program is symbolic, so efficient handling of non-symbolic
(i.e., concrete) computations is a requirement for fast symbolic
execution [45]. Figure 5 shows the results: SYMCC executes
most programs in under one second (and is therefore almost as

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html
http://www.s3.eurecom.fr/tools/symbolic_execution/ir_study.html

0.1

1

10

100

Native SymCC QSYM KLEE

Ti
m

e
(s

)

Figure 5: Time spent on pure execution of the benchmark
programs, i.e., without symbolic data. Note the logarithmic
scale of the time axis. “Native” is the regular execution time of
the uninstrumented programs. On average, SYMCC is faster
than QSYM by 28× and faster than KLEE by 30× (KLEE
can execute only 56 out of 116 programs).

fast as native execution of uninstrumented programs), while
QSYM and KLEE need seconds up to minutes.

Execution time with symbolic inputs Next, we performed
concolic execution on the CGC programs, again using the
PoVs as input. This time, we marked the input data as sym-
bolic, so that symbolic execution would generate new test
cases along the path dictated by each PoV. For a fair compari-
son, we configured KLEE to perform concolic execution like
QSYM and SYMCC. This setup avoids bias from KLEE’s
forking and scheduling components [32]. It is worth noting,
however, that KLEE still performs some additional work com-
pared to QSYM and SYMCC: since it does not rely on ex-
ternal sanitizers to detect bugs, it implements similar checks
itself, thus putting more load on the SMT solver. Also, it fea-
tures a more comprehensive symbolic memory model. Since
these are intrinsic aspects of KLEE’s design, we cannot easily
disable them in our comparison.

In essence, all three symbolic execution systems executed
the target program with the PoV input, at each conditional
attempting to generate inputs that would drive execution
down the alternative path. The results are shown in Figure 6:
SYMCC is considerably faster than QSYM and KLEE even
in the presence of symbolic data.

Coverage Finally, we measured the coverage of the test
cases generated in the previous experiment using the method-
ology of Yun et al. [45]: for each symbolic execution system,
we recorded the combined coverage of all test cases per target
program in an AFL coverage map [46].7 On each given target
program, the result was a set of covered program points for
each system, which we will call S for SYMCC and R for the
system we compare to (i.e., KLEE or QSYM). We then as-
signed a score d in the range [−1.0,1.0] as per Yun et al. [45]:

7Traditional coverage measurement, e.g., with gcov, does not work reli-
ably on the CGC programs because of the bugs that have been inserted.

0.1

1

10

100

1000

10000

SymCC QSYM KLEE

Ti
m

e
(s

)

Figure 6: Time spent on concolic execution of the bench-
mark programs, i.e., with symbolic inputs (logarithmic scale).
SYMCC is faster than QSYM by an average factor of 10×
and faster than KLEE by 12× (KLEE can execute only 56
out of 116 programs).

−1

0

1

Figure 7: Coverage score comparing SYMCC and KLEE per
tested program (visualization inspired by Yun et al. [45]):
blue colors mean that SYMCC found more paths, red colors
indicate that KLEE found more, and white symbolizes equal
coverage. SYMCC performs better on 46 programs and worse
on 10 (comparison restricted to the programs that KLEE can
execute, i.e., 56 out of 116).

d(S,R) =

{ |S−R|−|R−S|
|(S∪R)−(S∩R)| if S 6= R

0 otherwise

Intuitively, a score of 1 would mean that SYMCC covered
all program paths that the other system covered and some in
addition, whereas a score of -1 would indicate that the other
system reached all the paths covered by SYMCC plus some
more. We remark that this score, while giving a good intuition
of relative code coverage, suffers from one unfortunate draw-
back: It does not put the coverage difference in relation with
the overall coverage. In other words, if two systems discover
exactly the same paths except for a single one, which is only
discovered by one of the systems, then the score is extreme
(i.e., 1 or -1), no matter how many paths have been found
by both systems. In our evaluation, the coverage difference
between SYMCC and the systems we compare to is typically
small in comparison to the overall coverage, but the score
cannot accurately reflect this aspect. However, for reasons of
comparability we adopt the definition proposed by Yun et al.
unchanged; it still serves the purpose of demonstrating that
SYMCC achieves similar coverage to other systems in less
time.

We visualize the coverage score per test program in Fig-
ures 7 and 8. The former shows that SYMCC generally
achieves a higher coverage level than KLEE; we mainly

−1

0

1

Figure 8: Comparison of coverage scores between SYMCC
and QSYM. SYMCC found more paths on 47 programs and
less on 40; they discovered the same paths on 29 programs.
Similar coverage is expected because SYMCC uses the same
symbolic backend as QSYM.

attribute differences to the significantly different symbolic
backends. The latter demonstrates that SYMCC’s coverage is
comparable to QSYM’s, i.e., the compilation-based execution
component provides information of comparable quality to the
symbolic backend. We suspect the reason that coverage of
some programs differs at all—despite the identical symbolic
backends in QSYM and SYMCC—is twofold:

1. SYMCC derives its symbolic expressions from higher-
level code than QSYM (i.e., LLVM bitcode instead of
x86 machine code). This sometimes results in queries
that are easier for the SMT solver, leading to higher
coverage.

2. On the other hand, the lower-level code that QSYM ana-
lyzes can lead to test cases that increase coverage of the
program under test at the machine-code level.

We conclude that compilation-based symbolic execution is
significantly faster than IR-based and even IR-less symbolic
execution in our benchmarks while achieving similar code
coverage and maintaining a simple implementation.

5.1.2 Initialization overhead

In the course of our evaluation we noticed that QSYM and
KLEE have a relatively large constant-time overhead in each
analysis. For example, on our test machine, QSYM always
runs for several seconds, independently of the program under
test or the concreteness of the input. The overhead is presum-
ably caused by costly instrumentation work performed by the
symbolic executor at the start of the analysis (something that
SYMCC avoids by moving instrumentation to the compila-
tion phase). Therefore, we may assume that the execution
times TSYMCC and Tother are not related by a simple constant
speedup factor but can more accurately be represented via
initialization times ISYMCC and Iother, analysis times ASYMCC
and Aother, and a speedup factor S that only applies to the

analysis time:

TSYMCC = ISYMCC +ASYMCC (1)
Tother = Iother +Aother = Iother +S ·ASYMCC (2)

Consequently, we can compute the speedup factor as follows:

S =
Tother− Iother

TSYMCC− ISYMCC
(3)

In order to obtain accurate predictions for the analysis
time of long-running programs, we therefore need to take the
initialization time into account when computing the speed-
up factor. As a simple approximation for the worst case
from SYMCC’s point of view, we assumed that the short-
est observed execution consists of initialization only, i.e.,
suppose ASYMCC and Aother are zero in the analysis of the
fastest-running program. In other words, for each system we
subtracted the time of the fastest analysis observed in Sec-
tion 5.1.1 from all measurements. Then we recomputed the
speedup in the affine model presented above. For concolic
execution with KLEE, we obtained an average factor of 2.4
at a constant-time overhead of 9.20 s, while for QSYM we
computed a factor of 2.7 at a constant-time overhead of 9.15 s.
SYMCC’s constant-time overhead is 0.13 s; this confirms the
benefit of instrumenting the target at compile time.

Note that this model is only relevant for long-running pro-
grams, which are rarely fuzzed.8 Otherwise, execution time
is dominated by the startup overhead of QSYM and KLEE.
Nevertheless, the model shows that SYMCC’s performance
advantage is not simply due to a faster initialization—even
when we account for constant-time overhead at initialization
and overestimate it in favor of QSYM and KLEE, SYMCC is
considerably faster than both.

5.1.3 Compilation time and binary size

SYMCC modifies the target program extensively during com-
pilation, which results in increased compilation time and
larger binaries (because of inserted instrumentation). In or-
der to quantify this overhead, we first compiled all 116 CGC
programs both SYMCC and regular clang, and measured the
total build time in either case. Compilation required 602 s with
SYMCC, compared to 380 s with clang; this corresponds to
an increase of 58 %. Note that this is a one-time overhead:
once a target program is built, it can be run an arbitrary num-
ber of times.

Next, we compared the size of each instrumented exe-
cutable produced by SYMCC with the corresponding unmod-
ified executable emitted by clang. On average, our instru-
mented binaries are larger by a factor of 3.4. While we have
not optimized SYMCC for binary size, we believe that there

8The documentation of AFL, for example, recommends that target pro-
grams should be fast enough to achieve “ideally over 500 execs/sec most of
the time” [46].

3

4

5

6

7

8

9

10

11

0h 5h 10h 15h 20h 25h
0

2

4

6

8

10

12

0h 5h 10h 15h 20h 25h
0
2
4
6
8

10
12
14
16
18

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

ity
(%

)

OpenJPEG

SymCC
QSYM

libarchive

SymCC
QSYM

tcpdump

SymCC
QSYM

Figure 9: Density of the AFL coverage map over time. The shaded areas are the 95 % confidence corridors. The respective
differences between QSYM and SYMCC are statistically significant with p < 0.0002. Note that the coverage improvement
correlates with the speedup displayed in Figure 10.

is potential to reduce this factor if needed. The largest contri-
bution to code size comes from run-time concreteness checks;
if binary size became a major concern, one could disable con-
creteness checks to trade execution time for space. In our tests
we have not experienced the necessity.

5.1.4 Impact of concreteness checks

In Section 3.4, we claimed that considerable improvements
can be gained by checking data for concreteness at run time
and skipping symbolic computation if all operands are con-
crete.

To illustrate this claim, let us examine just the initializa-
tion phase of the CGC program CROMU_00001. During the
startup, the CGC “standard library” populates a region in
memory with pseudo-random data obtained by repeated AES
computations on a seed value; this happens before any user
input is read. In the uninstrumented version of the program,
the initialization code executes within roughly 8 ms. This is
the baseline that we should aim for. However, when we run
a version of SYMCC with concreteness checks disabled on
CROMU_00001, execution takes more than five minutes using
our own simple backend, and with the faster QSYM backend
SYMCC still requires 27 s. The reason is that the instrumented
program calls into the symbolic backend at every operation,
which creates symbolic expressions, regardless of the fact that
all operands are fully concrete. The QSYM backend performs
better than our simple backend because it can fold constants
in symbolic expressions and has a back-off mechanism that
shields the solver against overload [45]. However, recall that
we are executing on concrete data only—it should not be
necessary to invoke the backend at all!

In fact, concreteness checks can drastically speed up the
analysis by entirely freeing the symbolic backend from the
need to keep track of concrete computations. With concrete-
ness checks enabled (as described in Section 4.4), the sym-
bolic backend is only invoked when necessary, i.e., when at
least one input to a computation is symbolic. For the initializa-
tion of CROMU_00001, enabling concreteness checks results

in a reduction of the execution time to 0.14 s with the QSYM
backend (down from 27 s). The remaining difference with the
uninstrumented version is largely due to the overhead of back-
end initialization and memory operations for book-keeping.

We assessed the effect across the CGC data set with PoV
inputs and found that the results confirm our intuition: con-
creteness checks are beneficial in almost all situations. The
only 3 cases where they increased the execution time instead
of decreasing it were very long-running programs that per-
form heavy work on symbolic data.

5.2 Real-world software

We have shown that SYMCC outperforms state-of-the-art
systems in artificial benchmark scenarios. Now we demon-
strate that these findings apply as well to the analysis of real-
world software. In particular, we show that SYMCC achieves
comparable or better overall performance despite its simple
implementation and architecture-independent approach.

We used QSYM and SYMCC in combination with the
fuzzer AFL [46] to test popular open-source projects (using
AFL version 2.56b); KLEE is not applicable because of un-
supported instructions in the target programs. For each target
program, we ran an AFL master instance, a secondary AFL
instance, and one instance of either QSYM or SYMCC. The
symbolic execution engines performed concolic execution on
the test cases generated by the AFL instances, and the result-
ing new test cases were fed back to the fuzzers. Note that this
is a relatively naive integration between symbolic execution
and fuzzer; however, since the focus of this work is on the
performance of symbolic execution, we leave the exploration
of more sophisticated coordination techniques to future work.

Fuzzing is an inherently randomized process that intro-
duces a lot of variables outside our control. Following the
recommendations by Klees et al. [23], we therefore let the
analysis continue for 24 hours, we repeated each experiment
30 times, and we evaluated the statistical significance of the
results using the Mann-Whitney U test. Our targets are Open-
JPEG, which we tested in an old version with known vul-

0

10

20

30

40

50

60

OpenJPEG libarchive tcpdump

Ti
m

e
(s

)

SymCC
QSYM

Figure 10: Time per symbolic execution (median and quar-
tiles, excluding executions that exhausted time or memory
resources). The difference between QSYM and SYMCC is
statistically significant with p < 0.0001. Note the correlation
between higher speed here and increased coverage in Figure 9.

nerabilities, and the latest master versions of libarchive and
tcpdump. In total, we spent 3 experiments × 2 analysis sys-
tems × 30 iterations

experiment·analysis system × 3 CPU cores
iteration × 24 hours =

12960 CPU core hours ≈ 17.8 CPU core months. The hard-
ware used for these experiments was an Intel Xeon Platinum
8260 CPU with 2 GB of RAM available to each process (AFL,
QSYM or SYMCC).

While running the fuzzer and symbolic execution as speci-
fied above, we measured the code coverage as seen by AFL9

(Figure 9) and the time spent on each symbolic execution of
the target program (Table 1 and Figure 10). We found that
SYMCC not only executes faster than QSYM (which is con-
sistent with the benchmarks of Section 5.1) but also reaches
significantly higher coverage on all three test programs. In-
terestingly, the gain in coverage appears to be correlated with
the speed improvement, which confirms our intuition that ac-
celerating symbolic execution leads to better program testing.

Since we used an old version of OpenJPEG known to con-
tain vulnerabilities, we were able to perform one more mea-
surement in this case: the number of crashes found by AFL.
Unfortunately, crash triage is known to be challenging, and
we are not aware of a generally accepted approach to deter-
mine uniqueness. We therefore just remark that there is no
significant difference between the number of AFL “unique
crashes” found with QSYM and SYMCC on this version of
OpenJPEG.

In the course of our experiments with OpenJPEG, SYMCC
found two vulnerabilities that affected the latest master ver-
sion at the time of writing as well as previous released ver-
sions. Both vulnerabilities were writing heap buffer overflows
and therefore likely exploitable. They had not been detected
before, even though OpenJPEG is routinely fuzzed with state-
of-the-art fuzzers and considerable computing resources by
Google’s OSS-Fuzz project. We reported the vulnerabilities
to the project maintainers, who confirmed and fixed both. The

9AFL’s coverage map is known to be prone to collisions and therefore
does not reflect actual code coverage [14]. However, AFL bases its decisions
on the coverage map, so the map is what counts when evaluating the benefit
of a symbolic execution system for the fuzzer.

vulnerabilities were subsequently assigned CVE identifiers
2020-6851 and 2020-8112 and given high impact scores by
NIST (7.5 and 8.8, respectively). In both cases, the problems
arose from missing or incorrect bounds checks—symbolic
execution was able to identify the potential issue and solve
the corresponding constraints in order to generate crashing
inputs. In the same experiments, QSYM did not find new
vulnerabilities.

In conclusion, our experiments show that SYMCC is not
only faster than state-of-the-art systems on benchmark tests—
we demonstrated that the increased speed of symbolic ex-
ecution also translates to better performance when testing
real-world software.

6 Discussion and future work

In this section, we discuss the results of our evaluation and
show some directions for future work.

6.1 Benefits of compilation
We have seen in that our compilation-based approach provides
a much faster execution component for symbolic execution
than existing IR interpreters and IR-less systems. At the same
time, we retain the flexibility that comes with building sym-
bolic execution on top of an intermediate representation (i.e.,
our implementation is not tied to a particular machine architec-
ture) and the robustness of IR-less systems (i.e., computations
that we cannot analyze are still performed correctly by the
CPU). We believe that compilation-based symbolic execution,
where applicable, has the potential of accelerating symbolic
execution to a level that is comparable with fuzzing, making it
significantly more useful for bug discovery and rendering the
combination of symbolic execution and fuzzing even more
attractive.

6.2 Portability and language support
Our current prototype supports programs written in C and
C++. However, since we build on the LLVM framework, we
could support any program that is translatable to LLVM bit-
code. In particular, this means that we can integrate SYMCC
into any LLVM-based compiler, such as the default compilers
for Rust [41] and Swift [1], and the alternative Go compiler
gollvm [15]. Similarly, we can generate binaries for any ma-
chine architecture that LLVM supports, without any changes
in our code. More generally, the technique of compilation-
based symbolic execution applies to any compiled program-
ming language.

6.3 Binary analysis
So far, we have only discussed compilation-based symbolic
execution in contexts where the source code of the program

OpenJPEG libarchive tcpdump
SYMCC QSYM SYMCC QSYM SYMCC QSYM

Average execution time per analysis (s) 1.9 14.9 1.6 19.1 0.3 27.1
Average solver time per analysis (s) 26.4 15.7 0.2 1.8 0.3 8.2
Average total time per analysis (s) 28.3 30.6 1.8 20.9 0.6 35.3

Average share of execution (%) 6.7 48.7 91.7 91.2 41.7 76.8
Average share of SMT solving (%) 93.3 51.3 8.3 8.8 58.3 23.2

Speedup factor vs QSYM 1.1 11.6 58.8

Table 1: Time split between execution and SMT solving. See Figure 10 for a visualization of the total analysis times. Note how
the speedup factor in the last row correlates with SYMCC’s improved coverage displayed in Figure 9.

under test is available. A common criticism of source-based
tools is that they fall short when the source for parts or all
of a program is not available. For example, developers may
be in control of their own source code but rely on a third-
party library that is available in binary form only. SYMCC
handles such situations by treating binary-only components
as black boxes returning concrete values. While this should be
sufficient for simple cases like binary-only libraries or inline
assembly, there are situations where symbolic execution of
binary-only components is necessary, i.e., where one wants
to keep track of the computations inside the black boxes. We
see two promising avenues for addressing such use cases:

6.3.1 Lifting

SYMCC currently uses compiler frontends to create LLVM
bitcode from source code, but there is no fundamental reason
for creating the bitcode from the source: S2E [9] popularized
the idea of generating a high-level IR from binaries for the pur-
pose of symbolic execution. It generates LLVM bitcode from
the internal program representation of QEMU [2] and runs it
in KLEE [5]. A similar approach is used by angr [37], which
dynamically generates VEX IR for a symbolic interpreter
from binaries. Several other such lifters have been designed
for purposes outside the realm of symbolic analysis [21].
While the IR obtained from binaries is more verbose [32],
SYMCC could be used in combination with a lifter to compile
symbolic handling into existing binaries. Trail of Bits has
recently applied a similar lifting technique to KLEE, essen-
tially converting it from a source-based tool to a symbolic
execution engine that can work on binaries [43].

6.3.2 Hybrid with QSYM

It may be possible to combine our compilation-based ap-
proach with QSYM’s capabilities of working on binaries; ba-
sically, one would benefit from SYMCC’s fast execution in the
parts of the program under test for which source code is avail-
able and fall back to QSYM’s slower observer-based approach
in binary-only parts. Considering that SYMCC can already
work with QSYM’s symbolic backend, symbolic expressions

could be passed back and forth between the two realms—the
main challenge then lies in handling the transitions between
source-based and binary-only program components.

We would like to remark, however, that even binary-based
symbolic execution is often evaluated on open-source soft-
ware, and many gray-box fuzzers like AFL [46] only reach
their full performance when the source code of the program
under test is available for instrumentation.

7 Related work

As a program analysis technique, symbolic execution exists
on a spectrum. On the one extreme of that spectrum, bounded
model checking inlines all functions, unrolls loops up to a
certain bound and translates the entire program into a set of
constraints [13, 33]. While this process is sometimes called
“symbolic compilation” [3], it is not to be confused with our
compilation-based symbolic execution: bounded verification
reasons about all executions at once, thus allowing for very
sophisticated queries but pushing most of the load to the
SMT solver. Our approach, in contrast, follows the tradition
of symbolic execution by reasoning about the program per
execution path [5, 9, 37]. On the other end of the spectrum,
fuzz testing executes target programs with very light or no
instrumentation, heuristically mutating inputs (and possibly
using feedback from the instrumentation) in the hope of find-
ing inputs that evoke a certain behavior, typically program
crashes [4, 8, 12, 27, 46].

While bounded verification provides powerful reasoning
capabilities, fuzzing is extremely fast in comparison. Con-
ventional symbolic execution lies between the two [5, 9, 37],
with state-merging approaches [24, 42] leaning more towards
bounded verification, and hybrids with fuzzing attempting
to produce fast but powerful practical systems [39, 45]. It is
this last category of systems that forms the basis for our ap-
proach: we aim at a combination of symbolic execution and
fuzzing similar to Driller [39] and QSYM [45]. By speeding
up symbolic execution, we aim to make its more sophisti-
cated reasoning available in situations where previously only
fuzzing was fast enough.

Current work in symbolic execution, as outlined above and
referenced throughout the paper, applies either interpreter- or
observer-based techniques. While early systems embedded
symbolic reasoning directly [6, 16, 35], they performed the
instrumentation at the level of C code, which severely restricts
the set of possible input programs and complicates the imple-
mentation significantly [16]. The approach of instrumenting
the program under test directly was abandoned in KLEE [5],
and subsequent work in symbolic execution mostly followed
its lead. We are not aware of any performance comparison
between the direct embedding implemented in early work and
the interpreter approach to symbolic execution implemented
by KLEE and later systems; we assume that the switch hap-
pened because interpreters are more flexible and easier to
implement correctly. With SYMCC, we demonstrate that di-
rectly embedding concolic execution into the target program
yields much higher performance than state-of-the-art systems;
at the same time, however, performing the embedding at the
level of the compiler’s intermediate representation allows us
to maintain the flexibility that is common in modern imple-
mentations.

The most closely related project outside the field of sym-
bolic execution is Rosette, a “solver-aided programming lan-
guage” [42]. It allows programmers to express symbolic con-
straints while writing a program, which it then executes in a
“Symbolic Virtual Machine”. In contrast to our approach, it
is not meant for the analysis of arbitrary programs but rather
aims to support the development of program-synthesis and
verification tools. It requires the developer to use a domain-
specific language and design the program for symbolic analy-
sis from the start. Moreover, it does not compile the program
to machine code but rather executes it in a host environment,
similarly to how KLEE orchestrates multiple execution states
in a single process.

SMT Kit [19] is a project that performs a similar embed-
ding into C++, and there is (incomplete) support for automat-
ically transforming source code to use the library [18]. The
idea, if fully executed, may have led to a system similar to
SYMCC, but the project seems to have been abandoned years
ago without a publication, and we have been unable to con-
tact the author. We anticipate that a robust source-to-source
translation would have been much more difficult to imple-
ment than our IR transformation due to the complexity of the
C++ language in comparison with LLVM bitcode. Moreover,
the system would have been inherently limited to a single
programming language, just like the early implementations
for C mentioned above, while SYMCC’s transformation at the
IR level allows it to support any source language for which
an LLVM-based compiler exists.

8 Conclusion

We have presented SYMCC, a symbolic execution system
that embeds symbolic processing capabilities in programs

under test via a compiler. The evaluation shows that the di-
rect embedding yields significant improvements in the exe-
cution speed of the target programs, outperforming current
approaches by a large margin. Faster execution accelerates
the analysis at large and increases the chances of bug dis-
covery, leading us to find two high-impact vulnerabilities in
a heavily tested library. By using a compiler to insert sym-
bolic handling into target programs, we combine the advan-
tages of IR-based and IR-less symbolic execution: SYMCC
is architecture-independent and can support various program-
ming languages with little implementation effort (like IR-
based approaches), but the analysis is very fast—considerably
faster even than current IR-less techniques.

Acknowledgments

We would like to thank Insu Yun, the first author of QSYM,
for helping us to replicate the experimental results reported in
the QSYM paper [45]. Moreover, we are grateful to Khaled
Yakdan for his feedback on earlier versions of this paper. Fi-
nally, we thank the anonymous paper and artifact reviewers
for taking the time to study our work and provide constructive
feedback. This work has been supported by the DAPCODS/I-
OTics ANR 2016 project (ANR-16-CE25-0015).

Availability

SYMCC is publicly available at http://www.s3.eurecom.
fr/tools/symbolic_execution/symcc.html. The page
also contains links to the source code of all programs that we
used in our evaluation, as well as the raw results of the ex-
periments. SYMCC’s code base is thoroughly documented in
order to serve as a basis for future research by the community.

References

[1] Apple Inc. Swift.org – compiler and standard
library. https://swift.org/compiler-stdlib/
#compiler-architecture.

[2] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, volume 41, page 46, 2005.

[3] Rastislav Bodík, Kartik Chandra, Phitchaya Mangpo
Phothilimthana, and Nathaniel Yazdani. Domain-
specific symbolic compilation. In 2nd Summit on
Advances in Programming Languages (SNAPL 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on

http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
http://www.s3.eurecom.fr/tools/symbolic_execution/symcc.html
https://swift.org/compiler-stdlib/#compiler-architecture
https://swift.org/compiler-stdlib/#compiler-architecture

Computer and Communications Security, pages 2329–
2344. ACM, 2017.

[5] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[6] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. EXE: automat-
ically generating inputs of death. ACM Transactions
on Information and System Security (TISSEC), 12(2):10,
2008.

[7] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing Mayhem on binary
code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394. IEEE, 2012.

[8] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2095–2108. ACM,
2018.

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A platform for in-vivo multi-path analysis
of software systems. In ACM SIGARCH Computer
Architecture News, volume 39, pages 265–278. ACM,
2011.

[10] Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: system-wide security testing of
real-world embedded systems software. In 27th USENIX
Security Symposium (USENIX Security 18), pages 309–
326, 2018.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[12] Joe W. Duran and Simeon Ntafos. A report on ran-
dom testing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages
179–183, Piscataway, NJ, USA, 1981. IEEE Press.

[13] E. Allen Emerson and Edmund M. Clarke. Character-
izing correctness properties of parallel programs using
fixpoints. In International Colloquium on Automata,
Languages, and Programming, pages 169–181. Springer,
1980.

[14] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. CollAFL:
Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy, pages 679–696. IEEE, 2018.

[15] Go git repositories. gollvm. https://go.
googlesource.com/gollvm/.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In ACM Sig-
plan Notices, volume 40, pages 213–223. ACM, 2005.

[17] Patrice Godefroid, Michael Y. Levin, and David Molnar.
Sage: whitebox fuzzing for security testing. Communi-
cations of the ACM, 55(3):40–44, 2012.

[18] Alex Horn. Clang CRV front-end. https://github.
com/ahorn/native-symbolic-execution-clang,
2014.

[19] Alex Horn. SMT Kit. https://github.com/ahorn/
smt-kit, 2014.

[20] C.-A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllen-
haal, and W.-W. Hwu. Compilers for improved java
performance. Computer, 30(6):67–75, June 1997.

[21] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl
Jung, DongYeop Oh, JongHyup Lee, and Sang Kil Cha.
Testing intermediate representations for binary analysis.
In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages
353–364. IEEE Press, 2017.

[22] James C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138, 2018.

[24] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur,
and George Candea. Efficient state merging in symbolic
execution. In Acm Sigplan Notices, volume 47, pages
193–204. ACM, 2012.

[25] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, page 75. IEEE Computer
Society, 2004.

[26] LLVM Project. "libc++" C++ standard library. https:
//libcxx.llvm.org/.

[27] LLVM Project. libFuzzer – a library for coverage-guided
fuzz testing. https://llvm.org/docs/LibFuzzer.
html.

[28] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building

https://go.googlesource.com/gollvm/
https://go.googlesource.com/gollvm/
https://github.com/ahorn/native-symbolic-execution-clang
https://github.com/ahorn/native-symbolic-execution-clang
https://github.com/ahorn/smt-kit
https://github.com/ahorn/smt-kit
https://libcxx.llvm.org/
https://libcxx.llvm.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

customized program analysis tools with dynamic instru-
mentation. In Acm sigplan notices, volume 40, pages
190–200. ACM, 2005.

[29] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI
2007), volume 42, pages 89–100. ACM, 2007.

[30] Anh Nguyen-Tuong, David Melski, Jack W. Davidson,
Michele Co, William Hawkins, Jason D. Hiser, Derek
Morris, Ducson Nguyen, and Eric Rizzi. Xandra: An
autonomous cyber battle system for the cyber grand
challenge. IEEE Security & Privacy, 16(2):42–51, 2018.

[31] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Parmesan: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[32] Sebastian Poeplau and Aurélien Francillon. Systematic
comparison of symbolic execution systems: intermedi-
ate representation and its generation. In Proceedings of
the 35th Annual Computer Security Applications Con-
ference, pages 163–176. ACM, 2019.

[33] Jean-Pierre Queille and Joseph Sifakis. Specification
and verification of concurrent systems in CESAR. In
International Symposium on Programming, pages 337–
351. Springer, 1982.

[34] Florent Saudel and Jonathan Salwan. Triton: A dynamic
symbolic execution framework. In Symposium sur la
sécurité des technologies de l’information et des commu-
nications, SSTIC, France, Rennes, June 3-5 2015, pages
31–54. SSTIC, 2015.

[35] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a
concolic unit testing engine for c. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 263–272.
ACM, 2005.

[36] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Presented as part of the
2012 USENIX Annual Technical Conference (USENIX
ATC 12), pages 309–318, 2012.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. SoK: (State of) The art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium
on Security and Privacy, pages 138–157. IEEE, 2016.

[38] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use
in C++. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, pages 46–55. IEEE Computer Society, 2015.

[39] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[40] The Clang Team. Clang C language family frontend for
LLVM. https://clang.llvm.org/, 2019.

[41] The Rust Programming Language Team. Guide to
rustc development. https://rust-lang.github.io/
rustc-guide/, 2019.

[42] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages.
In ACM SIGPLAN Notices, volume 49, pages 530–541.
ACM, 2014.

[43] Trail of Bits. Binary symbolic ex-
ecution with KLEE-Native. https:
//blog.trailofbits.com/2019/08/30/
binary-symbolic-execution-with-klee-native/,
2019.

[44] Clark Wiedmann. A performance comparison between
an apl interpreter and compiler. SIGAPL APL Quote
Quad, 13(3):211–217, March 1983.

[45] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–
761, 2018.

[46] Michał Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/.

A SYMCC usage example

Figure 4 shows an example interaction with SYMCC: We
first compile the program displayed in Listing 3, simulating
a log-in interface. Then we run the program with an initial
test input and demonstrate that concolic execution generates
a new test input that allows us to access the most interesting
portion of the program. While this is a very basic example,
we hope that it gives the reader an idea of how SYMCC can
be used.

https://clang.llvm.org/
https://rust-lang.github.io/rustc-guide/
https://rust-lang.github.io/rustc-guide/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
https://blog.trailofbits.com/2019/08/30/binary-symbolic-execution-with-klee-native/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

#include <iostream >

int main(int argc , char *argv[]) {
std::cout << "What’s your name?" << std::endl;
std::string name;
std::cin >> name;

if (name == "root")
std::cout << "What is your command?"

<< std::endl;
else

std::cout << "Hello , " << name << "!"
<< std::endl;

return 0;
}

Listing 3: A sample C++ program that emulates a log-in inter-
face. The most interesting portion of the program is reached
when the user inputs “root”.

$ sym++ -o login_symcc login.cpp
$ export SYMCC_OUTPUT_DIR=/tmp/symcc
$ echo "john" | ./login_symcc 2>/dev/null
What ’s your name?
Hello , john!
$ cat /tmp/symcc/000008- optimistic
root

Listing 4: A shell session that demonstrates how a user would
compile and run the program from Listing 3 with SYMCC.
Lines prefixed with a dollar sign indicate commands entered
by the user. Note how the analysis proposes “root” as a new
test input.

In larger software projects, it is typically sufficient to ex-
port CC=symcc and CXX=sym++ before invoking the respective
build system; it will pick up the compiler settings and build

an instrumented target program transparently.

B The curious case of NRFIN_00007

The CGC program NRFIN_00007 contains a bug that changes
the program’s observable behavior depending on the compiler
and compilation flags. We believe that it is unrelated to the
intended vulnerability in the program (i.e., a buffer overflow
triggered by certain user inputs). Listing 5 shows an excerpt of
the program’s main function. During initialization (and before
any user input is read), it checks the uninitialized variable ret
and exits prematurely if its value is non-zero. In practical
execution, this causes the program to exit early depending
on the stack layout chosen by the compiler. Since SYMCC,
KLEE and QSYM all use different means to compile the target
program, the bug would introduce errors into our evaluation;
we therefore excluded NRFIN_00007 from the test set.

int main(void) {
int ret;
size_t size;

malloc_init();

if (ret != 0)
_terminate(ret);

// ...
}

Listing 5: A bug in the code of NRFIN_00007. The variable
ret is used uninitialized; if its value is non-zero, the program
exits prematurely without ever reading user input.

	Introduction
	Background
	Symbolic execution
	IR-based symbolic execution
	IR-less symbolic execution
	Reducing overhead

	Compilation-based symbolic execution
	Overview
	Support library
	Symbolic handlers
	Concreteness checks

	Implementation of SymCC
	Compile-time instrumentation
	Shadow memory
	Symbolic backend
	Concreteness checks
	Interacting with the environment
	Supporting additional source languages
	Loading the pass
	Compiling the run-time library

	Evaluation
	Benchmarks
	Comparison with other state-of-the-art systems
	Initialization overhead
	Compilation time and binary size
	Impact of concreteness checks

	Real-world software

	Discussion and future work
	Benefits of compilation
	Portability and language support
	Binary analysis
	Lifting
	Hybrid with QSYM

	Related work
	Conclusion
	SymCC usage example
	The curious case of NRFIN_00007

