
Inception: System-Wide Security Testing of Real-World Embedded Systems
Software

Nassim Corteggiani
Maxim Integrated and EURECOM

Giovanni Camurati
EURECOM

Aurélien Francillon
EURECOM

Abstract

Connected embedded systems are becoming widely de-
ployed, and their security is a serious concern. Current
techniques for security testing of embedded software rely
either on source code or on binaries. Detecting vulnera-
bilities by testing binary code is harder, because source
code semantics are lost. Unfortunately, in embedded sys-
tems, high-level source code (C/C++) is often mixed with
hand-written assembly, which cannot be directly handled
by current source-based tools.
In this paper we introduce Inception, a framework to
perform security testing of complete real-world embed-
ded firmware. Inception introduces novel techniques for
symbolic execution in embedded systems. In particular,
Inception Translator generates and merges LLVM bitcode
from high-level source code, hand-written assembly, bi-
nary libraries, and part of the processor hardware behav-
ior. This design reduces differences with real execution
as well as the manual effort. The source code semantics
are preserved, improving the effectiveness of security
checks. Inception Symbolic Virtual Machine, based on
KLEE, performs symbolic execution, using several strate-
gies to handle different levels of memory abstractions,
interaction with peripherals, and interrupts. Finally, the
Inception Debugger is a high-performance JTAG debug-
ger which performs redirection of memory accesses to
the real hardware.
We first validate our implementation using 53000 tests
comparing Inception’s execution to concrete execution
on an Arm Cortex-M3 chip. We then show Inception’s
advantages on a benchmark made of 1624 synthetic vul-
nerable programs, four real-world open source and in-
dustrial applications, and 19 demos. We discovered
eight crashes and two previously unknown vulnerabil-
ities, demonstrating the effectiveness of Inception as a
tool to assist embedded device firmware testing.

1 Introduction

Embedded systems combine software and hardware and
are dedicated to a particular purpose. They generally
do not have the traditional user interfaces of desktop
computers. Instead, they interact with the environment
through several peripherals, which are hardware compo-
nents that handle sensors, actuators, and communication
protocols. The constant decrease in the cost of micro-
controllers, combined with the pervasiveness of network
connectivity, has led to a rapid deployment of networked
embedded systems being used in many aspects of mod-
ern life and industry. These trends have greatly increased
embedded systems’ exposure to attacks. The conse-
quences of a vulnerability in embedded software can be
devastating. For example, the boot Read Only Mem-
ory (ROM) vulnerability used to jailbreak some iPhones
cannot be patched in software, because the bootloader is
hard-coded in the ROM [12]. Therefore, it is very im-
portant to thoroughly test such low-level embedded soft-
ware. Unfortunately, the lack of tools, the intricacy of the
interactions between embedded software and hardware,
and short deadlines make this difficult.

Binary or source-based testing. The conditions un-
der which testing is performed can vary a lot depending
on the context. The tester may have access to the source
code, or just the binary code, and may use the device dur-
ing testing or rely on simulators. Binary-only testing is
frequently performed by third parties (pen-testing, vul-
nerability discovery, audit), whereas source code-based
testing is more commonly done by the software develop-
ers or when the project is open-source. Access to source
code provides many advantages; such as knowing the
high-level semantics (e.g., the type of variables) of the
program. This simplifies testing significantly.

An advantage of binary-only testing is that it can be
performed independently of source code availability, and
is, therefore, more generic. Indeed, even when source
code is available, it can be compiled and the analysis

FI
E

S
U

R
R

O
G

A
T

E
S

A
va

ta
r

In
ce

pt
io

n

[10] [17] [34]
Using source code 3 7 7 3

Inline assembly 7 3 3 3

Binary code 7 3 3 Some
Symbolic execution 3 7 3 3

Can use real peripherals 7 3 3 3

Early bug detection 3 n/a 7 3

Fast forwarding n/a 3 7 3

Fast concrete execution 3 n/a 7 3

Testing unmodified code 7 3 3 3

Low false positives 7 n/a 3 3

Highly automated 7 n/a 7 3

Open-source 3 7 3 3

Table 1: Comparison of Inception with the related work.

can be performed on binary software. Unfortunately, this
is inefficient, because during compilation, most code se-
mantics are lost and this renders identification of mem-
ory safety violations and corruptions difficult. In fact, it
has been shown that this effect is more severe with em-
bedded software than with regular desktop software, due
to the frequent lack of hardening of embedded software
and hardware support for memory access controls such
as memory management units [23]. Also program hard-
ening (e.g., with Sanitizers [30]) is often impossible due
to code space constraints and the lack of support for em-
bedded targets.

Hand-written assembly. Unfortunately, the presence
of hand-written assembly and third-party binary libraries
is widespread in embedded applications. This severely
limits the applicability of traditional source-based test-
ing frameworks. There are two main reasons for the
use of assembly language in embedded software devel-
opment. First, although memory becomes cheaper and
compiler efficiency improves, it is still often necessary
to manually optimize the code (e.g., to fit in the cache, to
avoid timing side-channels) and microcontrollers’ mem-
ory size is still very constrained. Assembly is also nec-
essary to directly interact with some low-level processor
features (e.g., system-control or co-processor registers,
supervisor calls).

Figure 1 highlights this problem on a set of sample
programs from our test-suite (described in Section 4).
Every sample contains at least one function with in-
line assembly. We further distinguish four categories
of instructions, based on how they affect the system.
From left to right: logical (e.g., arithmetic, logic), mem-
ory (load, store, barrier), hardware (supervisor call, co-

 5

 10

 100

 1000

Fu
nc

tio
ns

Fu
nc

tio
ns

 w
ith

 In
lin

e
Asm

Lo
gi

ca
l I
ns

t.

M
em

or
y

In
st

.

Con
tro

l F
lo
w In

st
.

HW
 C

on
tro

l I
ns

t.

STM32(demos)
FreeRTOS(STM32)

Mbed OS
ChibiOS

Figure 1: Presence of assembly instructions in real-
world embedded software.

processor registers access), control-flow (branch and
conditional).

Logical and memory instructions are easy to translate
to higher-level code. However, hardware impacting in-
structions strongly interact with the processor and affect
the execution and the control flow. Common source-
based frameworks cannot easily handle these low-level
instructions. However, they are essential to handle tasks
such as context-switching between threads. As a conse-
quence, replacing those instructions with high-level code
is difficult. We found that such instructions are present
in all of the samples. Other places where assembler in-
structions or binary code is present is in Board Support
Packages (BSP) provided by chip manufacturers or in li-
brary code directly present in ROM memory.1

Previous work. Table 1 summarizes the limitations of
firmware security analysis tools. Avatar [34] and SUR-
ROGATES [17] focus on forwarding memory accesses to
the real device, but only support binary code. Avatar
relies on S2E [8] and, therefore, supports symbolic ex-
ecution of binary code. On the other hand, FIE [10]
tests embedded software using the source code, essen-
tially adapting the KLEE virtual machine to support spe-
cific features of the MSP430 architecture. However, FIE
does not try to simulate hardware interaction: writes to
a peripheral are ignored and reads return unconstrained
symbolic values. Moreover, FIE does not support assem-
bly code which is very often present in such software and
is, therefore, either entirely skipped or manually replaced
by equivalent C code, if possible. This requires addi-
tional manual work, makes the state explosion worse,
and leads to a less accurate emulation.

Inception’s approach. Inception’s goal is to improve

1For example, the NXP MC1322x contains drivers and a Zigbee
software stack in a mask ROM [24].

testing embedded software when source code is avail-
able, e.g., during development phases. We focus on the
ability to perform security testing on complete systems
made of real-world embedded software that contain a
mix of high-level source code, hand-written assembly
code, and, possibly, binary code (e.g., libraries). Un-
like previous work, in Inception we preserve most of the
high-level semantics from source code. We, therefore,
can test software against real hardware peripherals with
high performance and correct synchronization. Finally,
to be broadly used, such integration tests need to be per-
formed with a limited amount of manual work.

Contributions. In summary, in this paper we present
the following contributions:

• A new methodology to automatically merge low-
level LLVM bitcode, poor in semantic information
and relying on the features of a target architec-
ture, with high-level LLVM bitcode, rich in semantic
information useful to detect vulnerabilities during
symbolic execution

• A modified symbolic virtual machine, able to run
the resulting bitcode code and to handle peripher-
als’ memory and interrupts using different analysis
strategies

• A fast debugger to connect the peripherals on the
real device with the virtual machine, preserving
event synchronization

• A thorough validation of the system to guarantee
meaningful and reproducible results, and an eval-
uation of the approach on both synthetic and real-
world cases

• A tool based on affordable off-the-shelf hardware
components and source code that will be fully pub-
lished as open-source

Paper organization. The remainder of the paper is or-
ganized as follows. Section 2 provides an overview of
the approach and introduces the Inception tool. Sec-
tion 3 presents the main implementation challenges and
our validation methodology. Section 4 evaluates Incep-
tion on synthetic and real-world cases. Section 5 dis-
cusses limitations and future work. Section 6 reviews
related work and, finally, Section 7 concludes the paper.

2 Overview of Inception

2.1 Approach and components
The main goal of Inception is to leverage the semantic
information of high-level source code to detect vulnera-
bilities during symbolic execution, while also supporting

low-level assembly code and frequent interactions with
the hardware peripherals. Common symbolic execution
environments usually run an architecture-independent
representation of the code, which can be derived from
the sources without losing semantic information. Alter-
natively, architecture-dependent binary code can be lifted
to an intermediate representation that can be at least par-
tially executed into a symbolic virtual machine, but that
has lost the source code semantic information. These
two cases differ greatly (e.g., in their memory model)
and cannot easily coexist.

Inception solves the problem of coexistence by cre-
ating a consistent unified representation. In particular,
Inception is composed of three parts. First, the Incep-
tion Translator, which generates unified LLVM-IR using
a lift-and-merge process to integrate the assembly and bi-
nary parts of the program into the intermediate represen-
tation coming from the high-level sources. This process
also takes into account the low-level hardware mecha-
nisms of the ARMv7-M architecture. Second, the In-
ception Symbolic Virtual Machine, which is able to ex-
ecute this mixed-level LLVM-IR, and to handle interrupts
and memory-mapped peripherals with different strate-
gies, to adapt to different use cases. It can also gener-
ate interrupts on demand and model reads from periph-
erals’ memory as unconstrained symbolic values. This
VM is based on KLEE, a well-known open-source sym-
bolic execution virtual machine which runs LLVM-IR bit-
code. Third, the Inception Debugger, which is a custom
fast debugger, built around a USB3 bus adapter and an
FPGA. It provides high-speed access to the peripherals
and could be easily extended for multiple targets.

In the following we give an overview of our lift-and-
merge approach, of how KLEE performs security checks,
and on how we extended it to support interrupts and pe-
ripheral devices.

2.2 Lift-and-merge process

Figure 2 shows the main stages of our bitcode merging
approach and how source code with inline assembly 1
is transformed into a consistent bitcode 3 that can be
executed by Inception VM. The example code contains
the excerpt of a function written in assembly that requests
a system call with r0 holding a data byte.2

The rest of the code is composed of a main function,
which calls the first assembly function, and the message
to be sent. Using the appropriate LLVM front end (CLang
for C/C++), source code 1 is translated into LLVM-IR

bitcode. The resulting bitcode 2 shows that only C/C++

2Figure 10 in the appendix shows the complete example, including
the system call handler (in assembler) which sends the data byte over a
UART by writing into the data register of the UART peripheral.

High Semantic
Level

(Compiled C/C++)

Glue IR

Mixed
Semantic

Level
Bytecode

output.bc

main.bcCLang
Compiler

main.elf Inception
Translator

Emit IR

Compile

2

3

Low Semantic Level
(Lifted Asm)

High Semantic
Level

Low Semantic
Level

main.c

1

...
 call void asm sideeffect "svc #0", ""()
 call void asm sideeffect "bx lr", ""()
...
 call void @uart_send(i8 zeroext %1)
 ret void
... 2

void uart_send(unsigned char letter) {
__asm volatile("svc #0");
__asm volatile("bx lr");
}
int main(){
 uart_send(message[i++]);
 return 0;
} 1

...
entry:
 %1 = zext i8 %0 to i32
 store i32 %1, i32* @R0
 br label %"uart_send+0"
...
"uart_send+0":
 call void (...)* @inception_sv_call()
 %LR1 = load i32* @LR
 ret void
...
 call void @uart_send(i8 zeroext %1)
 ret void

3

Figure 2: Overview of Inception Translator: merging high-level and low-level semantic code to produce mixed se-
mantic bitcode. Excerpt of the translation of a program which includes mixed source and assembly.

source code has been really translated into LLVM-IR. In-
deed, the original purpose of LLVM-IR bitcode is to en-
able advanced optimizations before code lowering to the
target architecture, whereas assembly is already at a low
semantic level that cannot be represented or optimized
by the LLVM compiler.

To solve this problem, we introduce a novel lift-
and-merge approach, which we implement in Inception-
Translator. This translator takes as input the ELF bi-
nary and the LLVM-IR bitcode generated by CLang. It
generates a consistent LLVM-IR bitcode where assembly
instructions have been abstracted to an LLVM-IR form.
This step is done by a static lifter, which replaces each
assembly instruction by a sequence of LLVM-IR instruc-
tions. We call the resulting bitcode a Mixed Semantic
Level bitcode (mixed-IR), shown in 3 , which contains:

High Semantic Level IR (high-IR) obtained from
C/C++ source code. This is mainly the same code emit-
ted by CLang, which has been augmented with external
global variables that are defined in assembly source files.
We reallocate these global variables in the IR.

Low Semantic Level IR (low-IR) deriving from as-
sembly source code. This part is automatically generated
by our static lifter. It contains the translation of assembly
instructions and some architecture-dependent elements
that are necessary for execution. First, the CPU and
co-processors’ registers are modeled as global variables.
Second, specific functions model the seamless hardware
mechanisms that are normally handled by the CPU. For
example, when entering into an Interrupt Service Rou-
tine (ISR), the processor transparently updates the Stack
Pointer and it stacks a subset of CPU registers. When
the ISR returns, the context is automatically restored, so

that the code which was suspended by the interrupt can
resume.

The Glue IR that acts as a glue to enable switching be-
tween the high-level semantics and the low-level seman-
tics domains. This IR bitcode is generated by a specific
Application Binary Interface (ABI) adapter, able to pro-
mote or demote the abstraction level. Indeed, commu-
nication and switching between layers mainly happens
at the interface between functions, that is, when a high-
level function calls a low-level one or the opposite.

2.3 Inception Symbolic Virtual Machine
The bitcode resulting from the lift-and-merge process is
almost executable, but it still requires some extra support
in the virtual machine. The main challenge is that high-
IR accesses only typed variables and does not model
memory addresses or pointers. On the other hand, the
IR generated from assembly instructions has lost all in-
formation about types and variables, and only accesses
pointers and non-typed data. Another challenge is han-
dling memory-mapped memory, which is used but not al-
located by the code, and interrupts and context switches,
which are not modeled in KLEE.

To address these problems, we have extended KLEE
with a Memory Manager and an Interrupt Manager.
During (symbolic) execution the original Memory Moni-
tor of KLEE performs advanced security checks on mem-
ory accesses. When a violation is detected, the constraint
solver generates a test case that can be replayed.

The Memory Manager leverages the ELF binary and
the mixed-IR to build a unified memory layout where
both semantic domains can access memory. Specific data
regions are allocated in order to run low-IR code, such as

Figure 3: Inception Symbolic Virtual Machine, overview of the testing environment.

pointers contained in the code section, and some mem-
ory sections (stack, heap, BSS). Each memory address
is configurable to mimic the normal firmware’s environ-
ment. For example, a memory-mapped location could be
redirected to the real peripheral, to prune the symbolic
exploration and to use realistic values. Alternatively, it
could be allocated on the virtual machine and marked
as symbolic to model inputs from untrusted peripherals.
Inception also supports Direct Memory Access (DMA)
peripherals, provided that each DMA buffer is flagged
as redirected to the real device memory. Similarly to
the other redirected locations, DMA buffers cannot hold
symbolic values.

The Interrupt Manager gives KLEE the ability to
handle interrupt events, by interrupting the execution and
calling the corresponding interrupt handlers. Interrupt’s
addresses are resolved using the interrupt vector table.
Interrupt events are either collected on the real hardware,
or generated by the user when desired (by calling a spe-
cial handler function). In the first case, the virtual ma-
chine and the real device are properly synchronized to
avoid any inconsistency. We further extended KLEE to
execute handlers that switch the context between threads
in multithreaded applications.

Memory Monitor and security checks. All security
analyses mainly rely on the Memory Monitor of KLEE,
which is able to perform security check for each ac-
cess, based on the semantic information associated to it.
The monitor observes the semantic information of the re-
quests (requested type) and the semantic information of
the accessed data (accessed type). When enough infor-
mation is available, the monitor is able to detect memory
access violations, e.g., out-of-bounds accesses, use-after-
free, or use-after-return. Requests coming from high-IR,
and accessing memory elements defined in high-IR, have
enough information to detect most violations. On the
contrary, requests that come from low-IR tend to have
less information and a lower detection rate. However,
thanks to the information coming from the high-IR, it is
still possible to detect more problems than with binaries
only.

3 Implementation and validation

3.1 Lift-and-merge process

In order to be able to glue assembly and binaries with
source code into a unified LLVM-IR representation
(mixed-IR), we apply two distinct processes.

The lifting process takes machine code (compiled as-
sembly or binaries) and produces an equivalent interme-
diate representation (low-IR). This representation uses
only low-level features of the LLVM-IR language and
it mimics the original architecture (ARMv7-M), which
contains some hardware semantics of the Cortex-M3 pro-
cessor, such as the behavior of instructions with side ef-
fects. It is, therefore, (almost) self-contained, and a large
part of it can be executed on any virtual machine able to
interpret LLVM-IR. As explained in the following parts,
we introduce some features to KLEE to make this code
fully executable, in particular when dealing with con-
text switches. Our lifter is based on three main com-
ponents. First, a static recursive disassembler that finds
all the instructions to translate and stores them into an
internal graph representation. Second, a simple decom-
piler that reconstructs the control flow, including for in-
direct branches and complex hardware mechanisms (e.g.,
returns from interrupts and context switches). Finally,
the lifter statically transforms a given machine instruc-
tion into a semantically equivalent sequence of LLVM-
IR instructions. One important advantage of the static
approach is that it enables further processing with the
sources to produce mixed-IR. Moreover, it has a lower
run-time overhead compared to dynamic lifters that lift
instructions during execution. Implementing all these
components in a correct and reliable way requires signif-
icant engineering work3, for which we omit most of the
uninteresting details. In the next section we will describe
some interesting aspects of the lifter.

3We first used Fracture [18], a framework for lifting binaries to
LLVM-IR. However, we eventually only reused a minor part of Fracture
code. Indeed, Fracture’s approach does not scale to all instructions,
especially those interacting with hardware, and does not address the
merging problem. Fracture was also designed for static analysis which
did not need complete translation and is currently not maintained.

The merging process takes the (almost) self-
contained low-IR and the high-IR compiled from C/C++,
to glue them together (with some glue-IR). This is the
most challenging part, as they have different levels of se-
mantic information and different views of memory. The
first step is, therefore, to create a unified memory layout
between the two IR-levels in the KLEE virtual machine.
In addition to this, peripheral device addresses are made
accessible in KLEE. The second step consists of identi-
fying the best interface between the two representations
and the mechanisms to exchange data at this boundary.
We chose to use the Application Binary Interface (ABI)
that regulates the communication between functions in a
uniform way.4 Our merger is able to generate glue-IR
code that lets high-IR functions communicate with low-
IR functions and vice-versa.

3.2 Unified Memory Layout

We now explain how we leverage both the lift-and-merge
process and KLEE to create a unified memory layout.
This memory layout is central for the low-IR and high-IR
to coexist and communicate.

Processor registers are represented by global vari-
ables for different reasons. First, the LLVM-IR is a Sin-
gle Static Assignment (SSA) language, in which each in-
struction stores its result in a uniquely assigned register.
Secondly, LLVM supports an unlimited number of regis-
ters, which are assigned only once and are not globally
accessible. Therefore, LLVM registers cannot be used
to represent CPU registers, which are limited, assigned
many times, and globally accessible by instructions.

The heap. Inception supports two dynamic memory
allocation mechanisms. The first one is the native allo-
cation function from the application (which can be writ-
ten in assembly or C language). In this case, allocated
variables lose semantic information and are encased in
the heap memory region. This method is interesting for
testing native allocation systems. However, it decreases
the precision of corruption detection, because the heap
memory is a container for indistinguishable contiguous
variables, making it difficult to detect even simple out-
of-bounds accesses. The second approach consists of re-
placing the native allocation functions by KLEE’s own
allocator. KLEE allocator was specifically designed to
detect memory safety violations. In particular, KLEE iso-
lates each allocated variable with a fixed-memory region
(the red zone). Even though this mechanism does not de-
tect all violations, any access to this zone will be detected

4Another option would be to set the interface at the native instruc-
tion level. An advantage would be to preserve most of the code trans-
lated from the high-IR in a function that includes only one inline assem-
bler directive. However, the interfacing would depend on the compiler
version and would be less robust.

as a memory corruption. Another advantage of KLEE al-
location is that it can detect memory management errors
such as invalid free of local or global variables.

The normal KLEE stack is used when high-IR code
is running. Each function has its own function frame ob-
ject, which contains metadata about the execution. This
includes information about the caller, the SSA registers
values (which hold temporary local variables), and the
local variables (which are allocated using the normal
KLEE mechanism). A separate stack is used by the low-
IR code. This stack is modeled as a global array of inte-
gers, allocated by the memory manager at the same ad-
dress and size than the .stack section of the symbol table.
Variables in this stack are not typed. However, the ABI
adapter mechanism presented in the next section allows
different IR levels to access variables on both stacks.

The Data region contains mixed semantic-level vari-
ables. Indeed, when the high-IR allocates data, the re-
sulting memory object is typed and allocated at the same
address as indicated by the symbol table, to keep the
compatibility with assembly code. On the other hand,
data can be defined by the assembly code and accessed
by high-IR. In this case, we use the semantic information
present in the external declaration of the high-IR to allo-
cate a typed object. The third possible case is data allo-
cated by assembly code, but never accessed by high-level
code. In this case no semantic information is present,
and allocation depends on the information from the ELF
symbol table.

3.3 Application Binary Interface adapter

Low-IR functions follow the standard Arm Application
Binary Interface (ABI) [2], whereas high-IR functions
follow the LLVM convention. Therefore, whenever the
Static Binary Translator finds a call or return that crosses
the IR levels, it invokes the ABI adapter to generate some
glue-IR that adapts parameters and return values.

When a high-IR function calls a low-IR function, the
high-IR arguments (typed objects) must be lowered to
the architecture-dependent memory (stack/CPU regis-
ters). In the opposite case, stack and CPU registers must
be promoted to high-IR arguments. Similar considera-
tions apply to return values. This process is similar to
serializing and deserializing the LLVM typed objects, to
store them as words in the LLVM variables that represent
the CPU registers and the stack, where they are used by
low-IR. Note that during serialization the types are lost,
but deserialization is still possible thanks to the high-
level information present in the source code. For exam-
ple, consider an assembly function that passes a struct
by value to a C function. Knowing the size and address
of the destination, the adapter generates the glue-IR that
copies CPU registers and stack words from the low-IR

to the high-IR destination. Another example is an as-
sembly function that returns a pointer. In low-IR, the
pointer is stored as a simple integer word in the r0 reg-
ister. Since the adapter knows that the expected return
type is a pointer, it can write the glue-IR that performs
the cast to it. All main C types are supported. There are
four possible connections between low-IR and high-IR
(code examples available in the appendix):

1. High-IR to low-IR parameters passing. A glue-
IR prologue takes the input arguments from the
KLEE stack (where the high-IR caller stored them)
and brings them to the CPU registers and/or low-IR
stack (where the low-IR callee expects them).

2. Low-IR to high-IR return value. A glue-IR epi-
logue takes the return value (stored in r0 by the
low-IR callee) and promotes it to a typed object in
KLEE stack (used by the high-IR caller).

3. Low-IR to high-IR parameter passing. Before
calling the high-IR function, some glue-IR takes the
input arguments from the CPU registers or the low-
IR stack (where the low-IR caller stored them) and
promotes them to typed objects on the KLEE stack
(used by the high-IR callee).

4. High-IR to low-IR return value. Just after the
high-IR callee returns, some glue-IR moves its re-
turn value from the KLEE stack to r0.

3.4 Noteworthy control-flow cases
We focus on the explanation of noteworthy control-flow
instructions and hardware mechanisms to show their im-
pact for the security checks. We omit the details for the
other instructions.5

Control-flow instructions. The main challenge when
dealing with control flow consists in finding a good map-
ping between high-level control flow operators present in
LLVM-IR (e.g., call, if/else) and low-level ARMv7-
M instructions, which are at a lower abstraction layer
(they directly modify the program counter, and some-
times rely on implicit hardware features).

We translate to an LLVM call instruction any Arm in-
struction that saves the program counter before changing
its value (i.e., direct and indirect branch-and-link instruc-
tions) to an LLVM call instruction. In order to support in-
direct calls, we leverage an optimization technique called
indirect call promotion [1, 20, 7, 31]. This technique
consists in transforming each indirect call into direct con-
ditional branches and direct calls. Indirect call promo-
tion has been introduced to improve the performance of

5The lifting of these instructions is similar to re-implementing a
Cortex-M3 in LLVM-IR based on the ARMv7-M reference manual.

branch prediction [1]. Conditional branches compare the
target address of the indirect call with the entry point of
each possible function in the program. If the condition is
true, this function is called directly. This is equivalent to
enforcing a weak control flow integrity policy, and akin
to what KLEE already does for C/C++ function pointers.
It would be possible to enforce stricter control flow in-
tegrity checks by retrieving the control flow graph with a
static analysis or a compiler pass.

We translate all instructions that restore the previous
program counter, for example bx lr and pop pc, to re-
turn instructions. These returns still work as intended
even if the return address is corrupted. However, we do
not rely on side effects (return to a corrupted address)
to detect corruption. We rather detect the corruptions by
relying on the memory checks, e.g., to detect buffer over-
flows.

We implement all other direct (conditional) branches
and it-blocks6 with simple direct branches available
in LLVM-IR.

Interrupts and multithreading. The control flow of
the program is also modified by interrupts, which asyn-
chronously block the normal execution and call-defined
handler functions. Interrupts are used very frequently in
embedded programs to synchronize the peripherals with
the embedded software in an event-driven fashion, or to
implement multithreading.

Inception VM can receive interrupts from the real de-
vice (when real peripherals are used and generate in-
terrupts) or generated by the user using helper func-
tions (e.g., to stress specific functions in a determinis-
tic way). We extended KLEE so that the main execution
loop checks for the presence of interrupts to serve. In
this case, KLEE executes an LLVM-IR helper function that
accesses the interrupt vector table in the firmware mem-
ory to resolve the address of the interrupt handler to call,
based on its identifier (ID). This dynamic resolution is
necessary only if the firmware overwrites the vector ta-
ble. If the vector is fixed, a slight speedup in execution
can be obtained by storing the vector in a configuration
file, loaded by KLEE at startup.

Before giving control to an interrupt handler, and
when returning from it, a Cortex-M3 processor performs
several seamless operations (e.g., stacking and unstack-
ing the context, managing two stack modes). In Incep-
tion, a special glue-IR helper function generated by our
lift-and-merge process performs these steps.

To implement multithreading, operating systems such
as FreeRTOS use the interrupt and stack management
features offered by the Cortex-M3. In summary, the op-
erating system, which has its own stack, manages a sep-
arate stack for each thread. Context switching is pos-

6In ARMv7-M an “it-block” is a group of up to four instructions
executed only if condition of a preceding it instruction is true.

Device
StubVirtual machine

A

B

Stack
Context A

IRQ[ID]
Handler

IRQ[ID]

Handler(ID)
1.Switch Stack
2.Return

Unstack
Context B

Inception helper code

IRQ[ID]

Firmware (Threads A,
B and handler)

Wait ACK[ID]
(Can be interrupted by
higher priority IRQ)

Figure 4: Context switch due to an IRQ.

sible because when a thread is interrupted, its context
is saved to its stack, and the context of the resuming
thread, including the program counter, is pulled from an-
other stack. The switch is done in part by the proces-
sor and in part by the operating system. Inception fully
supports this process, since all the required features are
self-contained in the mixed-IR. Inception VM extends
KLEE’s call stack management, to be able to handle one
call stack for each thread. Briefly, whenever a new thread
is spawned, a new call stack structure is generated and
assigned to it.

Synchronization with the real device. To collect in-
terrupts on the real device, we insert a stub on the de-
vice that registers one handler for each possible inter-
rupt. When an interrupt is fired, the handler is called
and notifies KLEE thanks to the forwarding system. The
main challenge of this architecture is to keep the virtual
machine and the device synchronized, without inconsis-
tencies and race conditions, even in presence of multi-
ple priorities. This needs to be done carefully and uses
several mechanisms. In particular, the interrupt handler
on the device should not return until the corresponding
KLEE handler terminates. This is necessary, for exam-
ple, to mask interrupts with the same or lower priority
until the handler ends, as it happens in the real device,
and to avoid the flooding of new interrupts.

A complete example. Figure 4 shows an example of
context switch triggered by an interrupt generated on the
device. On the right we see how the identifier of the in-
terrupt is used both to notify KLEE at the beginning and
to acknowledge the stub at the end. The acknowledge-
ment is per-identifier, so that the stub can be interrupted
by higher priority interrupts. On the left, we can observe
the switch between threads enabled by the seamless con-
text stacking and unstacking.

In summary, Inception Debugger fully handles inter-
rupt synchronization with the host virtual machine, while
previous work had only limited interrupt support [34].

3.5 Forwarding mechanism with Inception
Debugger

In the previous parts we described how we integrated
peripheral devices and interrupts in the virtual machine.
We now focus on the lower layers of the communication
mechanism between the host and the real device.

In order to read and write the device memory, we di-
rectly connect to the system bus through the AHB-AP,
which can be accessed with the JTAG protocol.7 The
AHB-AP port is available in Arm Cortex-based devices
and allows a direct access to the peripherals. Inspired by
SURROGATES [17], we designed a custom device based
on a Xilinx ZedBoard FPGA [11], to efficiently trans-
late high-level read/write commands into low-level JTAG
signals.8 The FPGA is connected through a custom par-
allel port to a Cypress FX3 device [29] which provides
an USB3.0 interface. Unlike USB2 where devices are
slaves, USB3 is a point-to-point protocol and, therefore,
has a very low latency. With this setup we handle the
burden of the low-level and inefficient JTAG protocol in
hardware close to the device, while we transmit high-
level commands over a low-latency high-bandwidth bus
to/from the host. Our debugger is able to communicate
with the stub running on the device and handle interrupts
using a dedicated asynchronous line and shared memory
locations.

In summary, we provide a clean slate design for an
efficient, cheap , and open-source solution, which can be
used to experiment and replicate research that requires
customizable debuggers (e.g., [25]).

3.6 Validation

We carefully validated Inception to obtain a reliable tool.
Regression Tests. We created a framework for auto-

mated regression testing of the code. Around 53200 tests
are performed at several levels of abstraction, from unit
tests up to tests involving all components. Results are
compared to a Golden model (i.e., a known and trusted
reference). For example, we compared single instruc-
tions against the real Cortex-M3 processor, assembly
functions against the C code from which they originate or
alternative implementations, and complete applications

7An alternative would be a port using the faster SWD protocol, but
this technology is less widespread than JTAG.

8SURROGATES [17] was never open sourced but the authors shared
their implementation. However, due to lack of hardware availabil-
ity and other problems we eventually re-designed the debugger from
scratch.

against their behavior on the native hardware. We stress
symbolic execution on known control flow cases, and
bug detection on known vulnerabilities.

Arm Cortex-M3 lifter. The correctness of the lifter
is particularly important to obtain correct execution. Our
framework generates all possible supported instructions,
starting from a description of the instruction set. Then,
for each type, it creates several tests with random initial-
ization of registers and stack. Finally, in executes them
both on the device and in Inception, and it compares the
final state of registers and stack. Table 4 in the appendix
summarizes all the tests we preformed.

4 Evaluation and comparison

After validation, we evaluated Inception over a set of in-
teresting samples, which we explain in this section. We
first focus on the effects of semantic information on vul-
nerability detection and on the speed performance of the
tool. Then, we show analyses on more complex exam-
ples including, for example, assembly code for multi-
threading and statically linked libraries. Finally, we ex-
plain how Inception found corruptions in three industrial
applications under development, including a boot loader.
Evaluating and comparing tools for embedded software
analysis is hard because of the lack of an established
benchmark suite. This is rendered harder due to the large
number of different hardware platforms. While some of
the examples we use below are proprietary, we also built
a large set of validation and evaluation examples, some-
times based on existing open-source code. Those exam-
ples will be made available together with Inception and
may provide a basis for such a benchmark.

4.1 Vulnerability detection
Detection rate at different semantic levels. We evalu-
ate how vulnerability detection is affected by the seman-
tic level of high-IR and low-IR and their interaction. In
particular, we explore if KLEE can detect memory cor-
ruptions on a vulnerable path, depending on how vari-
ables are allocated and accessed by different types of
IR. Our analysis samples are based on the Klocwork Test
Suite for C/C++9, which includes out-of-bound, over-
flow, and wrong dynamic memory management errors.
We initially compile them to high-IR (and binary). We
then selectively force the decompilation from binary to
low-IR of some functions, obtaining 40 different inter-
action cases. Table 2 summarizes the different combi-
nations of allocation and access of memory objects at
different semantic levels, and the consequent detection
result, which we comment in the following.

9 https://samate.nist.gov/SRD/view.php?tsID=106

First, detection works only for those memory objects
allocated in high-IR for which we have semantic infor-
mation. However, the memory accesses can come from
both high-IR and low-IR or be related to the return value
of low-IR functions. For example, a C function allocates
a buffer that is then improperly used by an assembly
function. If the called function overflows the buffer, it
will access an unallocated memory space of the high-IR
domain where memory objects have a defined size, type
and which are separated from each other by a red zone.
The semantic information of high-IR memory objects
greatly improves the detection of vulnerabilities even if
it occurs in low-IR code. However, if the buffer is allo-
cated by a low-IR code (assembly or binary code), the
lack of semantic information about the variable prevents
the detection of the overflow. The same mechanism is
applied to local (static) allocation and global allocation.

Second, when using KLEE dynamic allocation func-
tions, all vulnerabilities can be detected in both high-IR
and low-IR, whereas if we use some implementation in
the code of the application, the detection rate drops to al-
most zero for both high-IR and low-IR. However, in this
case we can test the code itself of the allocation func-
tions, either in high-IR or low-IR depending on the case.

In summary, in 40 synthetic tests, 70% of the inserted
vulnerabilities were found and no false vulnerabilities
were reported.

Comparison with binary-only approaches. When
testing embedded binary code, it is hard to catch mem-
ory corruptions because of the lack of semantic informa-
tion, code hardening, and operating system protections.
For example, [23] highlights the problem when fuzzing
a STM32 board, and it uses several heuristics to catch
corruptions. To compare this approach with Inception,
we analyze the same firmware (EXPAT XML parser with
artificial vulnerabilities). Each vulnerabilty (stack/heap-
based buffer overflow, null pointer dereference, and dou-
ble free) has its own independent trigger condition. We
start with the source code compiled to high-IR, but we
also generate cases with low-IR by forcing the decompi-
lation of vulnerable functions. To use Inception, we mark
the input as symbolic and run the samples with a timeout
of 90 s. Results are visible in Figure 5. Our approach
successfully uses all the semantic information available,
keeping a good detection rate even in presence of some
low-IR code. We could integrate the heuristics from [23]
to improve results even further. One of the vulnerabili-
ties could be detected, but it is not triggered because of
state explosion (47k states) and the constraint solver (us-
ing 67.5% of the time), which are problems inherent to
symbolic execution and common to KLEE.

https://samate.nist.gov/SRD/view.php?tsID=106

Table 2: Overview of memory checks between LLVM code at different IR semantic level.
Allocation

C with KLEE C Native ASM
Allocator Allocator or Binary

Accessed from
C ASM C ASM C ASM

Dynamic Check Types 3 3 7 7 7 7
Allocation Red Zone 3 3 7 7 7 7

Heap Consistency Checks 3 3 7 7 7 7

Stack Check Types - - 3 3 7 7
Allocation Red Zone - - 3 3 7 7

.Data or .BSS Check Types - - 3 3 7 7
Allocation Red Zone - - 3 3 7 7

Not Allocated Memory KLEE Detection - - 3 3 3 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1 0 1 2 3 4 5

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

d
e
te

ct
e
d

 v
u

ln
e
ra

b
ili

ti
e
s

Number of vulnerable assembly functions
Detected Undetected

Figure 5: Evolution of corruption detection vs. number
of assembly functions in the EXPAT XML parser (4 vul-
nerabilities [23], symbolic inputs, and a timeout of 90 s).

4.2 Timing overhead

Overhead of the executor. We evaluate the execution
speed of the virtual machine using the DHRYSTONE10

v2.1 benchmark, compiled without any optimization in
LLVM-IR. Inception has 38% of slowdown overhead
compared to KLEE, but if we disable the multithreading
support the overhead becomes insignificant. Inception is
17 times slower than the real hardware11. This is mostly
due to execution in the KLEE virtual machine.

Overhead of low-IR (advantage of high-IR). One of
the advantages of our source-based approach is that we

10DHRYSTONE is a synthetic computing benchmark program, avail-
able at http://www.netlib.org/benchmark/dhry-c.

11Value reported by the manufacturer for a STM32 with Cortex-M3.

maximize the use of high-IR, which is more compact and
faster than low-IR. To provide a rough example, we force
3 functions out of 12 in DHRYSTONE V2.1 to be trans-
lated from binary, which is a realistic proportion. This
adds 343 more IR lines to the initial 1636, reducing the
speed by around 43%. Low-IR does not seem to affect
the time spent in the constraint solver. For example, we
run bubble sort and insertion sort, with a sym-
bolic array of 10 integers and a timeout of 90 s. Both the
high-IR and the low-IR versions spend about 90% of the
time in the constraint solver.

Overhead of forwarding. Inception Debugger has a
read/write performance comparable to the fastest sim-
ilar debugger (SURROGATES [17]). Using JTAG at
4 MHz, reads are 20% slower and writes are 37% faster
in Inception (Table 6). It seems that in our imple-
mentation the bottleneck comes from the USB software
stack, rather than from JTAG, which can easily run
faster, or from the USB protocol, which has itself a very
low latency. Indeed, the GNU/Linux userspace library
(libusb-0.1-4) performs system calls and DMA re-
quests for each I/O operation, introducing a significant
latency. Using bulk transfers of 340 reads is five times
faster, since the latency for a USB operation appears
only once. Unfortunately, code execution requires single
memory accesses, but bulk tranfers could be used when
dealing with DMA forwarding to reduce latency, SUR-
ROGATES uses a custom driver that exposes FPGA regis-
ters through MMIO over PCI-Express. Though the exact
same approach is not possible, using a custom driver may
improve Inception performance.

Benchmark of some real applications. We evaluate
the overall performance (software stack and forwarding)
of three popular protocols: ICMP, HTTP, and UART. For
the first two we use the Web12 example for the LPC1850

12It is part of the lpc1800-demos pack available at https://

diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip

http://www.netlib.org/benchmark/dhry-c
https://diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip
https://diolan.com/media/wysiwyg/downloads/lpc1800-demos.zip

Type Total Detected Rate
Division by Zero 88 88 100%
Null Pointer Dereference 131 131 100%
Use After Free 62 62 100%
Free Memory Not on Heap 1.131 1.131 100%
Heap-Based Buffer Overflow 38 38 100%
Integer Overflow 112 0 0%
Total 1.562 1.450 92%

Table 3: Corruption detection of real-world security
flaws based on FreeRTOS and the Juliet 1.3 test suites.

board. We use the Ethernet interface of the real device,
forwarding memory accesses and interrupts. In particu-
lar, we identity the DMA buffers and configure Inception
to keep them on the memory of the real device. For the
UART, we use the driver of the STM32 board, again us-
ing the real peripheral. For all protocols we use simple
clients (ping, wget, and minicom) on a laptop, and we
repeat measurements for 100 runs. Results are shown in
Figure 7. There are two reasons why ICMP and HTTP
are slower than UART. First, they have a more complex
software stack. Second, they require forwarding of many
interrupts and of large DMA buffers.

4.3 Analysis on real-world code
We evaluate the capabilities of the Inception system on
two publicly available real-world programs. These two
samples cover the different scenarios in which Inception
can be applied.

FreeRTOS is a market-leading real-time operating
system supporting 33 different architectures.13 It pro-
vides a microkernel with a small memory footprint and
thread support. For this, it uses small assembly routines
that strongly interact with the features of the target pro-
cessor and it is, therefore, a good test case for Inception.
We show that Inception can execute low-level functions
that deal with multithreading before reaching vulnerable
areas. We experiment with the injection of vulnerabil-
ities in one thread, symbolic execution with producers
and consumers, and corruption of the context of a thread.

We take the injected vulnerabilities from the NSA
Juliet Test Suite 1.3 for C/C++, which collects known
security flaws for Windows/Linux programs.14 We se-
lected tests related to divide by zero, null pointer deref-
erence, free memory not on heap, use after free, integer
overflow, heap-based buffer overflow. We skip tests that
cannot run on our target STM32L152RE (e.g., those that
require a file system or a network interface) and those
that the LLVM 3.6 bitcode linker cannot handle (poor

13https://www.freertos.org/
14https://samate.nist.gov/SRD/around.php#juliet_

documents

support of the C++ name mangling feature) for a total of
10384 and 1214 deletions, respectively. Furthermore, we
update namespace names to comply with CLang 3.6. We
obtain 1562 tests which we embed in FreeRTOS threads.

To trigger the vulnerabilities, Inception has to first ex-
ecute low-level code containing assembly, and in some
cases also to flag as symbolic the output of a software or
hardware random generator. The interrupts required for
context switches and timers can be either collected on the
real device or simulated (with the appropriate generation
functions). We chose the second option to be able to run
many tests quickly. We set a timeout of 300 s and we ob-
served that we can reach these regions without manual
effort or modification to the multithreaded code (Table
3). The detection rate is 100% for divisions by zero, null
pointer dereference, use after free, free of non-heap allo-
cated memory, and heap buffer overflow vulnerabilities.
Integer overflows are not detected at all in KLEE (version
1.3). However, we note that in general it may be possible
to detect a consequence of the overflow later.

We also wrote a simple multithreading library that
uses the same hardware features as FreeRTOS. On top
of it, we created a simple example with three threads,
where two consumers use the data put in a circular buffer
by a producer. This simulates, for example, an applica-
tion that processes sensor data. Depending on a symbolic
value, threads execute in different order with different
data. Inception can easily find a condition that triggers
an overflow in the circular buffer. We also simulate the
presence of a vulnerable code that corrupts the context of
a thread, in particular its program counter on the stack. In
this case, when the corrupted thread resumes, Inception
detects that the program counter is invalid (not part of a
thread that was correctly started before). Note that there
may be false positives (if such behavior was intentional)
or negatives (if the corrupted address is still valid).

libopencm3 is an open-source library that provides
drivers for many Cortex-M devices.15 We test some ex-
amples in which the library is a statically linked binary. It
is very similar for Inception Translator to lift and merge
a function in a statically linked library or from a func-
tion that contains inline assembly. For example, we write
a sample that uses the CRC peripheral to compute the
Code Redundancy Check (CRC) on a buffer. The CRC
peripheral computes one word at a time, so the driver
iterates over the buffer locations. Besides this, the appli-
cation calls other libopencm3 functions to initialize the
STM32 device and to configure and blink LEDs. Though
the driver and the other functions are translated from the
binary, the buffer is part of the application code written
in C; therefore, we have semantic information on its type
and size. Similarly, Inception knows the memory lay-

15https://github.com/libopencm3/libopencm3

https://www.freertos.org/
https://samate.nist.gov/SRD/around.php#juliet_documents
https://samate.nist.gov/SRD/around.php#juliet_documents
https://github.com/libopencm3/libopencm3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Reads Writes BufferedReads

A
v
e
ra

g
e
 I
O

 p
e
r

se
co

n
d

Inception
Surrogates

Figure 6: Average time to complete 1×106 read or write
requests for SURROGATES and Inception (4 MHz JTAG).
(libusb-0.1-4, Ubuntu16.04 LTS, Intel Corporation 8 Se-
ries/C220 USB Controller)

 0.1

 1

 10

 100

 1000

 10000

Wget Ping UART Dhrystone

A
v
e
ra

g
e
 r

u
n

ti
m

e
 [

m
s]

Inception
Native

Figure 7: Performance comparison between native execu-
tion and Inception. (libusb-0.1-4, Ubuntu16.04 LTS, Intel
Corporation 8 Series/C220 USB Controller)

out and the location of the other variables. If the low-IR
driver is called with an incorrect length parameter, this
leads to an out-of-bound access which is detected by In-
ception. Similarly, if the buffer is dynamically allocated
and erroneously freed, Inception detects a use after free.
The semantic information used for detection would not
have been exploited by a binary-only tool.

4.4 Usage during product development
Commercial bootloader. Bootloaders are good targets
for Inception, since they contain low-level code and they
often parse untrusted inputs. Moreover, they are hard
to test when the real hardware is not available yet and
tests on prototypes may be not accurate. To show the
potential of Inception in these conditions, we analyzed a
bootloader under development, and we found a problem
that would have been difficult to detect on FPGA-based
prototypes.

Our target is a secure bootloader with several op-
tions, stored in a One Time Programmable (OTP) mem-
ory. When it executes, the bootloader holds in SRAM a
structure containing some information about the applica-
tion (e.g., start address, stack address). This structure is
pointed by p header in the pseudo-code that follows:

1 void start(){

2 switch(boot_modes) {

3 case NO_SECURE_BOOT:

4 context.p_header ->start_addr =

FLASH_MEM_BASE;

5 context.stack = SRAM_STACK;

6 jump_to_application ();

7 break;

8 case SECURE_BOOT:

9 do_secure_boot ();

10 break;

11 default:

12 error();

13 }

14 }

To prepare the analysis, we configured Inception with
the memory layout of peripherals. We also flagged the
OTP memory as symbolic, to explore all possible paths
deriving from different boot options. Despite the lack
of hardware, Inception did not require any change to the
source code. During symbolic execution, Inception de-
tected a corruption (write to an invalid address) at line 4,
and the solver gave us a test case to reach this condition.
We manually inspected the code and confirmed that the
p header pointer is not initialized.

In summary, the bootloader writes a value to an ad-
dress held in a non-initialized SRAM location. If the
invalid write does not trigger other errors, the bootloader
can still execute and successfully load the application at
start address, making this problem hard to detect. In
particular, it does not crash on the FPGA prototype, be-
cause p header is null (SRAM zeroed at reset), which
is mapped to writable memory. A write to 0 would in-
stead produce a memfault on the real device, as 0 would
be mapped to a read-only memory. Detecting the bug
later in the development process, like on silicon, would
be expensive.

From a security perspective, an attacker may at least
partially control the value of p header. For example,
we could imagine a scenario in which certain options

lead to writing this location, and a fast reboot preserves
it (SRAM is not initialized). Besides changing the desti-
nation before the write, an attacker could change it af-
ter, so that the bootloader would dereference a wrong
start address at which to load the application.

Chip SDK. We tested a Software Development Kit
(SDK) for a commercial chip, at a stage when a proto-
type of the hardware was not even available yet. There-
fore, we configured reads to peripherals to return uncon-
strained symbolic values. Inception found a test case in
which a bit-wise shift depended on an untrusted value
(overshift), which we confirmed by manual inspection.
In this case, the error leads to the wrong configuration of
a peripheral and unexpected behavior. More generally,
overshifts could lead to overflows or out-of-bound ac-
cesses. Early detection is useful to avoid expensive fixes
later.

Commercial payment terminal To show the poten-
tial of Inception when hardware is available, we tested a
payment terminal under development, using the FPGA
prototype to redirect most peripherals and their inter-
rupts. The application communicates with an exter-
nal smart card through a card reader, which we mark
symbolic since it is not trusted. This mix of concrete
and symbolic peripherals effectively explores the code,
avoiding state explosion. Inception found eight potential
vulnerabilities (out-of-bound accesses), that have been
reported to developers and still have to be confirmed.

5 Discussion

In the following we discuss the advantages and limita-
tions of Inception.

Application vs. (software/hardware) environment.
The key to using symbolic execution in realistic settings
is to limit the expensive symbolic exploration to a small
critical code region, treating the (software/hardware) en-
vironment separately. S2E investigates how different
strategies to cross this partition affect the analysis. In-
ception offers several options. Dynamic allocation can
be either part of the environment (host functions with
concrete or concretized inputs), or part of the code under
test (where symbolic values can propagate). The former
reduces the symbolic space at the price of completeness,
whereas the second one preserves completeness at the
price of higher complexity. A peripheral can be treated
as a stateless untrusted function that ignores inputs and
returns unconstrained symbolic values. This leads to the
exploration of all possible paths, also those that would
not be globally feasible with the real peripherals (mak-
ing false positives possible). Though useful for drivers
when the hardware is not yet available, this option does
not scale because of state explosion. Alternatively, In-
ception can use the real peripherals with concrete val-

ues, reducing the problem. Globally unfeasible paths are
reduced too, but they could still appear if the states of
peripheral and code become inconsistent (e.g., if sym-
bolic execution switches state during the access pattern
to a stateful peripheral). However, symbolic exploration
visits the higher-level logic of the application rather than
the drivers, making the problem less common. A more
thorough study is left as future work. A complete test-
ing of a firmware program would require considering
interrupts at any single instruction, which in practice is
not feasible. Previous work [26] reduces the frequency
of timer-based interrupts by executing them only when
the firmware goes in low-power interrupt-enabled mode.
However, this solution can miss issues that may occur
when interrupts are processed during the firmware execu-
tion. Inception enables users to generate interrupts on de-
mand that are useful to obtain deterministic sequences or
to stress the code, but it is neither complete nor guaran-
teed to try cases that are actually possible. Collecting the
interrupts from the real hardware covers realistic cases
without additional complexity, but suffers from possible
inconsistencies as explained for peripherals. We plan to
analyze enable/trigger patterns to detect which symbolic
states must serve an interrupt when it arrives.

Semantic gap. Inception increases the overall vulner-
ability detection rate for applications containing assem-
bly parts because it is able to preserve as much as possi-
ble of the semantic information. However, the detection
level for the bitcode generated from low-IR could be im-
proved, for example, reconstructing typed objects from
assembly, using DWARF debug information, and adding
extra detection heuristics (e.g., from [23]).

Support for binaries. Even though Inception tar-
gets the analysis of source code during development, bi-
nary code may appear as a precompiled library (e.g., we
have encountered this case with libopencm3). Since
the binary is statically linked with the application, In-
ception can collect enough information about function
prototypes, symbols, and their addresses to successfully
decompile and merge the library functions used by the
application. This case is handled not much differently
from that of functions containing inline assembly.

Support for C/C++. Inception supports all main C
types but inherits from KLEE the support for symbolic
floating-point values. Regarding C++, we support the
C subset. Name mangling is poorly supported by the
LLVM 3.6 linker, and the syntax of some namespaces is
not accepted by the Clang 3.6 front end, which is more
strict than GCC 4.8. The subset that works in Inception
is generally enough for embedded software and for our
samples.

Manual effort. Inception reduces the manual effort
required for analyzing embedded software, since it does
not require any change to the original code to support as-

sembly and peripherals. The main challenge for a user is
the general problem of tuning symbolic execution. On a
more practical side, Inception requires extending compi-
lation to CLang (e.g., in presence of GCC-specific fea-
tures) and to extract the memory layout of mapped mem-
ory from the datasheet. This can be at least partially auto-
mated with custom or existing tools. Moreover, compil-
ing with CLang is worthwhile to profit from its advanced
static checks.

6 Related Work

In this section we cover related work on embedded soft-
ware testing and binary lifting.

Testing embedded software in an emulator and for-
warding the interaction with the real hardware has
been previously performed with several different ap-
proaches [32, 34, 22, 17]. Unlike Inception, Avatar [34],
Prospect [32], and S2E [8] only support analysis on bi-
nary code. In [16] caching is used to reduce the memory-
forwarding bottleneck. SURROGATES [17] introduces an
efficient host to device debugger link. Unfortunately, the
hardware is not available anymore and the software has
never been publicly released. FIE [10] can perform sym-
bolic execution of (MSP430 16-bit) source code, but it
does not support assembly code and interaction with real
hardware, thus requiring us to modify the application. In-
ception heavily relies on KLEE which uses LLVM-IR [19]
bitcode generated with the CLang [33] compiler. Incep-
tion, S2E, and FIE all rely on KLEE, but only Inception’s
version of KLEE can handle mixed levels of abstraction
and semantics. Symbolic execution is used in [4, 15] to
analyze specific applications, such as BIOS or firmware
in USB devices.

Lifter and its validation. The way we validated In-
ception’s lifter is similar to the validation of the ARMv7-
M formal instruction set [13] or to the testing of CPU
emulators [21]. Using a machine-readable architecture
specification to generate the lifter [28], or to generate test
cases, would provide a higher level of assurance. How-
ever, none of the current formal descriptions for Arm
processors [27, 13] support the ARMv7-M architecture.
Lifters are often used for particular applications. For ex-
ample, PIE [9] relies on S2E to perform static analysis,
whereas FirmUSB [15] lifts binary code to perform sym-
bolic execution. Research in lifter design is quite active.
Fracture [18] tries to leverage the semantic information
already present in compilers in the other direction. This
approach is successful for generating bitcode for static
analysis, but we found it unsuitable for generating exe-
cutable LLVM bitcode and for integration with our merg-
ing step. Other approaches [31, 15, 3, 6, 14] are based
on static translation, while tools such as QEMU [5] use
dynamic translation, which we avoid, since integrating

them with our merging approach would be complex.

7 Conclusions

In this paper we highlighted the need for handling pro-
grams as a whole in embedded systems development and
testing. Like prior work, our experiments show that test-
ing based on the source code leads to a much better
bug-detection level than when working only on the bi-
nary code. These two constraints together imply that
embedded programs need to be considered with both
their high-level source code and their hand-written as-
sembler code. For this purpose we compile plain C
functions with LLVM toolchain into LLVM-IR and func-
tions which include assembler into native code, which
we then directly lift to LLVM-IR. Finally, we merge
this code and execute it in Inception VM (a modified
KLEE), which handles both abstraction levels and is able
to interact with the hardware using a fast debugger. We
performed extensive tests and found two new vulner-
abilities and eight crashes in embedded programs, in-
cluding bootloaders which were written to be included
on a Mask ROM. The entire project is open-sourced
to make our results easily reproducible and available at
https://github.com/Inception-framework/.

References
[1] AIGNER, G., AND HÖLZLE, U. Eliminating virtual function

calls in C++ programs. In European conference on object-
oriented programming (1996), Springer, pp. 142–166.

[2] ARM. APCS: ARM Procedure Call Standard for the ARM
Architecture, November 2015. http://infocenter.arm.

com/help/topic/com.arm.doc.ihi0042f/IHI0042F_

aapcs.pdf.

[3] ARTEM DINABURG, A. R. McSema: Static Translation of X86
Instructions to LLVM, 2014.

[4] BAZHANIUK, O., LOUCAIDES, J., ROSENBAUM, L., TUTTLE,
M. R., AND ZIMMER, V. Symbolic Execution for BIOS Secu-
rity. 9th USENIX Workshop on Offensive Technologies (WOOT
15) (2015).

[5] BELLARD, F. QEMU, a fast and portable dynamic translator. In
ATEC ’05: Proceedings of the annual conference on USENIX An-
nual Technical Conference (Berkeley, CA, USA, 2005), USENIX
Association, pp. 41–41.

[6] BOUGACH, A., AUBEY, G., COLLET, P., COUDRAY, T., SAL-
WAN, J., AND DE LA VIEUVI, A. Dagger: Decompiling Soft-
ware Through LLVM, 2013.

[7] BUYUKKURT, B., AND BAEV, I. Google groups LLVMdev RFC:
Indirect Call Promotion LLVM Pass. RFC, https://groups.
google.com/forum/#!topic/llvm-dev/_1kughXhjIY.

[8] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. The S2E
Platform. ACM Transactions on Computer Systems (2012).

[9] COJOCAR, L., ZADDACH, J., VERDULT, R., BOS, H., FRAN-
CILLON, A., AND BALZAROTTI, D. PIE: Parser identification in
embedded systems. In Proceedings of the 31st Annual Computer
Security Applications Conference (New York, NY, USA, 2015),
ACSAC 2015, ACM, pp. 251–260.

https://github.com/Inception-framework/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
https://groups.google.com/forum/#!topic/llvm-dev/_1kughXhjIY
https://groups.google.com/forum/#!topic/llvm-dev/_1kughXhjIY

[10] DAVIDSON, D., MOENCH, B., RISTENPART, T., AND JHA,
S. FIE on firmware: Finding vulnerabilities in embedded sys-
tems using symbolic execution. In USENIX Security Symposium
(2013), pp. 463–478.

[11] DIGILENT’S ZEDBOARD ZYNQ, F. Dev. board documentation.
Google Scholar.

[12] EGNERS, A., MARSCHOLLEK, B., AND MEYER, U. Hackers in
your pocket: A survey of smartphone security across platforms.
Technical report RWTH Aachen , ISSN 0935–3232, May 2012.

[13] FOX, A., AND MYREEN, M. O. A trustworthy monadic formal-
ization of the ARMv7 instruction set architecture. In Proceed-
ings of the First International Conference on Interactive Theo-
rem Proving (Berlin, Heidelberg, 2010), ITP’10, Springer-Verlag,
pp. 243–258.

[14] HASABNIS, N., AND SEKAR, R. Lifting assembly to inter-
mediate representation: A novel approach leveraging compilers.
SIGOPS Oper. Syst. Rev. 50, 2 (Mar. 2016), 311–324.

[15] HERNANDEZ, G., FOWZE, F., TIAN, D. J., YAVUZ, T., AND
BUTLER, K. R. FirmUSB: Vetting usb device firmware using
domain informed symbolic execution. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Se-
curity (New York, NY, USA, 2017), CCS ’17, ACM, pp. 2245–
2262.

[16] KAMMERSTETTER, M., BURIAN, D., AND KASTNER, W. Em-
bedded security testing with peripheral device caching and run-
time program state approximation. In 10th International Confer-
ence on Emerging Security Information, Systems and Technolo-
gies (SECUWARE) (2016).

[17] KOSCHER, K., KOHNO, T., AND MOLNAR, D. SURROGATES:
Enabling near-real-time dynamic analyses of embedded systems.
In WOOT (2015).

[18] LABORATORY, C. S. D. Fracture: architecture-independent de-
compiler to LLVM IR, 2013.

[19] LATTNER, C., AND ADVE, V. LLVM: A compilation frame-
work for lifelong program analysis & transformation. Interna-
tional Symposium on Code Generation and Optimization, CGO
(2004).

[20] LI, D. X., ASHOK, R., AND HUNDT, R. Lightweight feedback-
directed cross-module optimization. In Proceedings of the 8th
Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization (New York, NY, USA, 2010), CGO ’10,
ACM, pp. 53–61.

[21] MARTIGNONI, L., PALEARI, R., ROGLIA, G. F., AND BR-
USCHI, D. Testing CPU emulators. In Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis
(New York, NY, USA, 2009), ISSTA ’09, ACM, pp. 261–272.

[22] MUENCH, M., NISI, D., FRANCILLON, A., AND BALZAROTTI,
D. Avatar2: A Multi-target Orchestration Platform. In Workshop
on Binary Analysis Research (colocated with NDSS Symposium)
(February 2018), BAR 18.

[23] MUENCH, M., STIJOHANN, J., KARGL, F., FRANCILLON, A.,
AND BALZAROTTI, D. What you corrupt is not what you crash:
Challenges in fuzzing embedded devices. In NDSS 2018, Net-
work and Distributed Systems Security Symposium, 18-21 Febru-
ary 2018, San Diego, CA, USA (San Diego, UNITED STATES,
02 2018).

[24] NXP (FREESCALE SEMICONDUCTOR). MC1322x Ad-
vanced ZigBeeTM- Compliant Platform-in-Package (PiP) for
the 2.4 GHz IEEE R© 802.15.4 Standard, document number:
mc1322x ed. Rev. 1.3 10/2010, https://www.nxp.com/docs/
en/data-sheet/MC1322x.pdf.

[25] OBERMAIER, J., AND TATSCHNER, S. Shedding too much light
on a microcontroller’s firmware protection. In 11th USENIX
Workshop on Offensive Technologies (WOOT 17). USENIX As-
sociation (2017).

[26] PUSTOGAROV, I., RISTENPART, T., AND SHMATIKOV, V. Us-
ing program analysis to synthesize sensor spoofing attacks. In
Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (2017), ACM, pp. 757–770.

[27] REID, A. Trustworthy specifications of ARM R© v8-A and v8-M
system level architecture. In 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, October
3-6, 2016 (2016), pp. 161–168.

[28] REID, A. ARM releases machine readable architecture specifica-
tion. Blog Post, 2017. https://alastairreid.github.io/
ARM-v8a-xml-release/.

[29] SEMICONDUCTOR, C. Cyusb301x, cyusb201x ez-usb fx3 su-
perspeed usb controller datasheet [r/ol]. Cypress Semiconductor
(2016).

[30] SEREBRYANY, K. Sanitize, Fuzz, and Harden Your C ++ Code.
USENIX Security (2015).

[31] SHEN, B.-Y., CHEN, J.-Y., HSU, W.-C., AND YANG, W. Llbt:
an llvm-based static binary translator. In Proceedings of the 2012
international conference on Compilers, architectures and synthe-
sis for embedded systems (2012), ACM, pp. 51–60.

[32] SÜSSKRAUT, M., KNAUTH, T., WEIGERT, S., SCHIFFEL, U.,
MEINHOLD, M., AND FETZER, C. Prospect: A compiler frame-
work for speculative parallelization. In Proceedings of the 8th
Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization (New York, NY, USA, 2010), CGO ’10,
ACM, pp. 131–140.

[33] THE LLVM PROJECT. Clang: a C language family frontend for
LLVM.

[34] ZADDACH, J., BRUNO, L., FRANCILLON, A., AND
BALZAROTTI, D. Avatar: A Framework to Support Dynamic Se-
curity Analysis of Embedded Systems’ Firmwares. Proceedings
of the 2014 Network and Distributed System Security Symposium
(2014).

Appendix

STM32-L152RE Nucleo Board

Xilinx Zedboard FPGA

FX3 (connected to the host USB3 port)

Figure 8: Hardware components of the Inception system
using an STM32 demo board using an Arm Cortex-M3.

https://www.nxp.com/docs/en/data-sheet/MC1322x.pdf
https://www.nxp.com/docs/en/data-sheet/MC1322x.pdf
https://alastairreid.github.io/ARM-v8a-xml-release/
https://alastairreid.github.io/ARM-v8a-xml-release/

Figure 9: Overview of the forwarding process, from the managers in KLEE to the device bus, through our debugger.

A Examples of IR level adaptation

1. High-IR to low-IR parameters passing.

define i32 @foo(i32 %a, i32 %b) #0 {

entry: // PROLOGUE BB

store i32 %a, i32* @R0

store i32 %b, i32* @R1

br label %" i32x4_reti32 +0"

"i32x4_reti32 +0":

...

// EPILOGUE

%0 = load i32* @R0

ret i32 %0

}

2. Low-IR to high-IR parameter passing.

void @high_function (){

... // High IR code

%R0_2 = load i32* @R0

%R1_1 = load i32* @R1

%R2_1 = load i32* @R2

%R3_2 = load i32* @R3

%SP15 = load i32* @SP

%SP16 = inttoptr i32 %SP15 to i32*

%SP17 = load i32* %SP16

%0 = call i32 @low_function(

i32 %R0_2 ,

i32 %R1_1 ,

i32 %R2_1 ,

i32 %R3_2 ,

i32 %SP17)

store i32 %0, i32* @R0

... // High IR code

}

define i32 @foo(i32 %a, i32 %b,

i32 %c, i32 %d, i32 %e) #0 {

... // low -IR

}

Figure 10: Example program with mixed source and assembly. 1 the original C source code with inline assembly
code. 2 CLang generated LLVM bitcode. 3 mixed-IR: LLVM bitcode with produced by merging lifted bitcode with
CLang generated bitcode. We use the naked keyword to limit the size of the example.

Ty
pe

B
oa

rd
Sa

m
pl

e(
s)

N
um

be
r

G
en

er
at

io
n

G
ol

de
n

M
od

el
A

ut
om

at
ed

St
ab

le
Fu

nc
tio

na
lit

y
C

he
ck

Fo
rw

ar
di

ng
ha

rd
w

ar
e

N
on

e
Te

st
-b

en
ch

1
M

an
ua

l
Py

th
on

m
od

el
3

3

Fo
rw

ar
di

ng
dr

iv
er

A
ny

IO
be

nc
hm

ar
k

1
R

an
do

m
,m

an
ua

l
Pr

op
er

ty
3

3

Si
ng

le
in

st
ru

ct
io

ns
A

ny
Tr

an
sl

at
or

-v
er

if
50

k
R

an
do

m
N

at
iv

e
re

gs
/s

ta
ck

3
3

Se
qu

en
ce

s,
co

nt
ro

lfl
ow

A
ny

Tr
an

sl
at

or
-v

er
if

3k
R

an
do

m
N

at
iv

e
re

gs
/s

ta
ck

3
3

Fe
at

ur
e-

sp
ec

ifi
c

A
ny

In
ce

pt
io

n-
sa

m
pl

es
13

M
an

ua
l

Pr
op

er
ty

3
3

Si
m

pl
e

al
go

ri
th

m
s

A
ny

In
ce

pt
io

n-
sa

m
pl

es
9

M
an

ua
l

C
ve

rs
io

n
3

3

C
om

pl
ex

al
go

ri
th

m
s

ST
M

32
L

15
2R

E
A

rm
D

SP
lib

ra
ry

4
C

ol
le

ct
ed

H
ar

dw
ir

ed
re

su
lt

3
3

C
om

pl
ex

fe
at

ur
es

H
os

to
nl

y
m

in
i-

ar
m

-o
s

3
C

ol
le

ct
ed

,m
an

ua
l

B
eh

av
io

r
7

3

Im
po

rt
an

tK
L

E
E

re
gr

es
si

on
s

A
ny

E
xa

m
pl

es
10

2
C

ol
le

ct
ed

Pr
op

er
ty

3
3

D
hr

ys
to

ne
v2

.1
H

os
to

nl
y

Pe
rf

or
m

an
ce

be
nc

hm
ar

k
1

C
ol

le
ct

ed
Pr

op
er

ty
3

3

N
IS

T
K

lo
cw

or
k

ba
se

d
A

ny
V

ul
ne

ra
bl

e
ex

am
pl

es
40

C
ol

le
ct

ed
Pr

op
er

ty
3

3

ex
pa

tb
as

ed
A

ny
V

ul
ne

ra
bl

e
ex

am
pl

es
16

C
ol

le
ct

ed
Pr

op
er

ty
3

3

In
te

rr
up

ts
an

d
m

ul
tit

hr
ea

di
ng

ST
M

32
L

15
2R

E
V

ul
ne

ra
bl

e
ex

am
pl

es
5

M
an

ua
l

Pr
op

er
ty

3
3

Si
m

pl
e

de
m

os
L

PC
18

50
D

B
1

D
riv

er
s

fo
rL

E
D

s,
5

C
ol

le
ct

ed
N

at
iv

e
be

ha
vi

or
7

3
bu

tto
ns

,A
D

C
,

E
th

er
ne

t,
W

eb
se

rv
er

ST
M

32
L

15
2R

E
D

riv
er

s
fo

rL
E

D
s,

5
3

bu
tto

ns
,U

A
R

T
(S

T
an

d
lib

op
en

cm
3)

Te
m

pe
ra

tu
re

vi
a

U
A

R
T

(l
ib

op
en

cm
3)

1
3

(A
no

ny
m

iz
ed

)
D

riv
er

s
fo

rL
E

D
s

1
3

C
om

pl
ex

de
m

os
ST

M
32

L
15

2R
E

Fr
ee

R
TO

S
2

th
re

ad
s

1
C

ol
le

ct
ed

N
at

iv
e

be
ha

vi
or

7
3

C
hi

bi
O

S
1

7
M

be
dO

S
1

7
(A

no
ny

m
iz

ed
)

B
oo

tlo
ad

er
1

3
SD

K
1

3

Sm
ar

tC
ar

d
R

ea
de

r
1

3

M
be

dT
L

S
2.

6.
0

1
3

3

Fr
ee

R
TO

S
an

d
N

IS
T

Ju
lie

t
ST

M
32

L
15

2R
E

V
ul

ne
ra

bl
e

ex
am

pl
es

15
62

C
ol

le
ct

ed
3

Ta
bl

e
4:

Su
m

m
ar

y
of

va
lid

at
io

n
te

st
s

an
d

re
su

lts
.

	1 Introduction
	2 Overview of Inception
	2.1 Approach and components
	2.2 Lift-and-merge process
	2.3 Inception Symbolic Virtual Machine

	3 Implementation and validation
	3.1 Lift-and-merge process
	3.2 Unified Memory Layout
	3.3 Application Binary Interface adapter
	3.4 Noteworthy control-flow cases
	3.5 Forwarding mechanism with Inception Debugger
	3.6 Validation

	4 Evaluation and comparison
	4.1 Vulnerability detection
	4.2 Timing overhead
	4.3 Analysis on real-world code
	4.4 Usage during product development

	5 Discussion
	6 Related Work
	7 Conclusions
	A Examples of IR level adaptation

