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Abstract

Eavesdropping on electronic communication is usually

prevented by using cryptography-based mechanisms. How-

ever, these mechanisms do not prevent one from obtaining

private information through side channels, such as the elec-

tromagnetic emissions of monitors or the sound produced by

keyboards. While extracting the same information by watch-

ing somebody typing on a keyboardmight seem to be an easy

task, it becomes extremely challenging if it has to be auto-

mated. However, an automated tool is needed in the case of

long-lasting surveillance procedures or long user activity,

as a human being is able to reconstruct only a few charac-

ters per minute. This paper presents a novel approach to au-

tomatically recovering the text being typed on a keyboard,

based solely on a video of the user typing. As part of the

approach, we developed a number of novel techniques for

motion tracking, sentence reconstruction, and error correc-

tion. The approach has been implemented in a tool, called

ClearShot, which has been tested in a number of realistic

settings where it was able to reconstruct a substantial part

of the typed information.

1 Introduction

MARTIN BISHOP: What’s he doing?

CARL ARBEGAST: He’s logging on the computer.

MARTIN BISHOP (watching through a video camera):

Oh, this is good.

He’s going to type in his password

and we’re going to get a clear shot.

From the movie “Sneakers,” 1992, Universal Pictures.

Spying on people has always been an effectiveway of ob-

taining information since the beginning of history. With the

advent of technology, new ways of spying on somebody’s

communications have been devised, and, consequently, new

counter-measures have been developed as well.

One of the most effective ways to protect electronic com-

munication is the use of cryptography-based mechanisms.

However, encrypting the communication does not help in

protecting one’s physical environment, that is, the room the

person is sitting in and sometimes the devices attached to

one’s computer. For this reason, in the past there has been

a corpus of research devoted to exploring how to pry into

someone’s communication by exploiting the side effects of

communication and the devices attached to someone’s com-

puter. For example, TEMPEST (or Emission Security) is

the term used to refer to the analysis of different types of

emissions (electromagnetic and acoustic) that can be used

to reconstruct the contents of communications [33, 44].

Even though TEMPEST research has been traditionally

focused on analyzing the emissions of cables and monitors,

recently research has been focused on a number of different

“side sources” of information, such as the light reflected by

the walls of a room [22], the timing of pressing keys [39],

and even the sound emitted by the keyboard [2].

So far, there has not been any extensive study on using

the output of video cameras that record someone typing on

a keyboard to automatically derive the information being

typed. In the ’92 movie “Sneakers,” a group of hackers-

for-hire uses a telescopic video camera to record an unsus-

pecting victim while he is logging into his computer [37].

In a following scene, the hackers review the video and enter

a lengthy debate about which keys were actually pressed.

This scene made us wonder about the feasibility of a tool

that would perform this tedious, error-prone task automati-

cally.

An additional motivating factor in pursuing this research

was the ubiquitous availability of web cams. In the early

’90s, web cams were not as popular as they are now, and

therefore the hackers in “Sneakers” had to resort to a pow-

erful telescopic camera in order to observe the typing activ-

ity. However, nowadays it would be possible to obtain good

quality video simply by exploiting the web cam attached to

the victim’s computer [13, 36]. Therefore, we developed an

analysis tool that operates on the stream of images produced

by an off-the-shelf web cam that records the typing activity
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of a user.

Note that, differently from the situation represented in

“Sneakers,” we are not interested in the recovery of a single

password (which could probably be easily recovered by a

human being). Instead, our goal is to recover all the infor-

mation entered by the user through the keyboard (e.g., email

messages, instant messages, documents, and code). This

type of activity would be error-prone and resource-intensive

if performed by a human being analyzing manually each of

the frames produced by the camera. Our experiments show

that, for a human, reconstructing a few sentences requires

lengthy hours of slow-motion analysis of the video.

Automatically recognizing the keys being pressed by a

user is a hard problem that requires sophisticated motion

analysis. Previous work in the computer vision field has pro-

duced algorithms that can perform well only when the user

types on the keyboard using non-realistic movements (e.g.,

one finger at a time [9, 47]). In addition, several “enhanced”

typing interfaces (e.g., projected keyboards) use an array of

non-visual sensors to identify the keys being pressed. Our

approach is different because it aims at reconstructing the

typed information in a realistic setting and using exclusively

the video information captured by an off-the-shelf web cam.

One can see the analysis described hereinafter as a so-

phisticated form of shoulder-surfing (maybe to bypass mon-

itor privacy filters that would block direct analysis of the

monitor display [1]), enabled by the availability of web

cams. Note however, that the same analysis could be ap-

plied to the video output produced by a surveillance camera

or a remote camera that records the victim through a win-

dow (as shown in “Sneakers”).

The contributions of this paper are the following:

• We developed a novel eavesdropping technique that is

able to reliably reconstruct the keyboard’s keys pressed

by a user by analyzing solely the video stream of the

typing activity.

• We developed a number of novel techniques to cor-

rect errors in the reconstruction process, drastically im-

proving the reconstruction rate.

• We developed a tool, called ClearShot, that operates on

low resolution video and is able to reconstruct a sub-

stantial part of the typed information.

• To the best of our knowledge, we are the first to study

the problem of recognizing keyboard activity from

video in a security setting. We experimented with a

number of techniques, showing the advantages and dis-

advantages of each approach.

The rest of the paper is structured as follows. Section 2

describes in details our assumptions, the threat model, and

our approach to solving the problem of key pressing recog-

nition. Then, Section 3 presents our experimental evaluation

of the tool. Section 4 presents related work. Finally, Sec-

tion 5 briefly concludes.

2 Approach

The goal of our work is to automatically reconstruct the

text typed by a user starting from the video recording of the

typing session. In the following, we refer to the person be-

ing recorded as “the user” or “the victim,” interchangeably.

In addition, we refer to the person recording the victim and

analyzing the video as “the attacker.”

We assume that the attacker is able to point a video cam-

era at the keyboard of the victim. For example, the attacker

might install a surveillance device in the room of the vic-

tim, might take control of an existing camera by exploiting

a vulnerability in the camera’s control software, or might

simply point a mobile phone with an integrated camera at

the laptop’s keyboard when the victim is working in a pub-

lic space, e.g., a café or an airport terminal. The rationale for

monitoring the keyboard instead of pointing the spying de-

vice directly at the victim’s screen is that there might not be

a clear line of sight (e.g., the camera can only be planted on

the ceiling above a worker’s desk in a cubicle, or the screen

may be covered with a privacy filter).

These scenarios considerably limit the assumptions we

can make with respect to the environment in which the at-

tack is performed. In particular, we can assume that only

the video camera and its position are under our control. This

means that the physical characteristics of the victim’s hands,

his/her typing speed and style, the lighting conditions, and

the background features, such as color and texture, cannot

be directly changed by us. In our experiments, we tested our

tool with multiple users in a typical office environment.

Our analysis is comprised of two main phases (see Fig-

ure 1). The first phase analyzes the video recorded by the

camera using computer vision techniques. For each frame

of the video, the computer vision analysis computes the set

of keys that were likely pressed, the set of keys that were

certainly not pressed, and the position of space characters.

Because the results of this phase of the analysis are noisy, a

second phase, called the text analysis, is required. The goal

of this phase is to remove errors using both language and

context-sensitive techniques. The result of this phase is the

reconstructed text, where each word is represented by a list

of possible candidates, ranked by likelihood. In the follow-

ing sections 2.1 and 2.2, we describe the details of the two

phases of the analysis.

2.1 Computer Vision Analysis

Problem definition. The problem of the computer vision

analysis is determining the sequence of pressed keys, given

the video recording of the typing session.

At first sight, this problem appears similar to those tack-

led by gesture recognition research. The goal of gesture

recognition is to identify specific human gestures and use

them to convey information or to control devices [26]. Ges-

ture recognition has been the focus of considerable research



Figure 1. Overview of the analysis steps performed by ClearShot.

in the past years, and it has been successfully applied to

automating a number of tasks, such as handwriting recog-

nition [43], sign language interpretation [40], device con-

trol [14], and video surveillance [19]. However, the tech-

niques employed in gesture recognition are not immediately

applicable to our case, for a number of reasons.

First of all, for practical reasons, gestures are generally

limited to a relatively small catalog of recognized move-

ments. For example, the catalog may consist of static move-

ments, such as making a fist and holding it in a certain posi-

tion, or dynamicmovements, such as pinching or waving. In

most cases, the allowed movements are fairly constrained.

Second, some gesture recognition systems assume a spe-

cific configuration of the physical environment, in terms,

for example, of the intensity of lights, background texture,

and color contrast. We assume that all these parameters

are not under our control. Third, some systems take ad-

vantage of special input devices, such as tablets [43], data

gloves [12, 27, 42], and body suits [30, 45]. Clearly, our

approach cannot rely on the use of these devices. Finally,

some of the existing techniques require an initial training

phase before they can be used effectively. While it is pos-

sible to devise scenarios where a learning-based approach

could be used to solve our problem (for example, a victim

could be lured into typing a known text, which becomes part

of a training dataset), we prefer to adopt a completely unsu-

pervised solution.

We divide the computer vision analysis into two sub

tasks: hands tracking analysis and key pressing analysis.

The former returns information about the position of the

user’s hands, while the latter focuses on the keyboard and

determines whether or not a key was pressed at a certain

point in time. To implement these tasks, we used the Open

Computer Vision library [18].

2.1.1 Hands Tracking Analysis

We experimented with several techniques to identify and

track the movement of the user’s hands on the keyboard.

Hereinafter, we first describe a technique based on the ex-

traction of specific features from the video frames consid-

ered in isolation, and then we present two techniques based

on the analysis of the dynamic properties of the video.

Skin Model Analysis. It has been noted that it is often

possible to precisely identify the hands in a video stream

by leveraging their chromatic characteristics. For example,

Starner and Petland observed that human hands have ap-

proximately the same hue and saturation, and vary primar-

ily in their brightness [40]. Similarly, in our experiments we

built an a priorimodel of skin color and we used this model

to differentiate the hands from the background. Once the

hands have been identified, it is easy to track their move-

ment.

This method has the drawback of identifying the shape

of the whole hand, while in our analysis we are mostly in-

terested in the fingertips’ positions. For this reason, we de-

cided not to use this analysis technique and we focused on

other approaches that characterize hand movement more ef-

fectively.

Optical Flow Analysis. Optical flow computation is a

technique used to estimate the spatial position and move-

ment of objects from patterns of image intensity [5]. This

technique analyzes a series of images that have a small time

step between them and calculates a vector field across each

image plane. The vector field describes the distribution of

apparent velocities of sets of points (e.g., brightness pat-

terns) in the image.

We hypothesized that hand movement associated with

typing would manifest as characteristic patterns in the op-

tical flow. For example, to press a key, one finger starts

moving, acquires speed, slows down and eventually stops

when it hits the key, then it retracts from the key, inverting

its velocity. Therefore, we computed the optical flow (using

the Horn-Schunck algorithm [17]) and looked for matches

with a number of typing patterns in the flow.

Unfortunately, our hypothesis was not confirmed. We

identified several reasons for this. First, optical flow algo-

rithms are sensitive to noise and changes in the brightness of

input images, especially when applied to real image data (as



opposed to synthetic inputs) [5]. This introduces errors in

the estimation of movement intensity and direction. Sec-

ond, typing patterns are more complex than the ones we

originally devised: when pressing a key, the entire hand is

in motion and, often, several fingers are moving preparing

to press subsequent keys. This makes it difficult to isolate

typing patterns in a robust way.

Contour Analysis. Image segmentation is the process of

partitioning an image into regions [35]. We use simple im-

age segmentation techniques to detect and track the hands.

Typically, during a typing session, the only objects mov-

ing in the area above and surrounding the keyboard are the

user’s hands: the keyboard is usually kept stable and no

other objects are moved around the typing area. There-

fore, we determine the contours of the parts of the hands

that are moving by differentiating each framewith respect to

the previous one. We approximate these regions with their

bounding box, which we can then use as indicators of move-

ment. As expected, moving regions are concentrated around

the fingertips and the border of the hands.

2.1.2 Key Pressing Analysis

The techniques described so far focus on the hands of the

user. Hereinafter, we describe two techniques that, instead,

focus on the keyboard. The first leverages lighting features

to determine changes in the status of a key (i.e., from non-

pressed to pressed), and the second performs occlusion de-

tection to determine if a key may be pressed or not.

Light-based Analysis. In mechanical keyboards, each

key consists of a head, which is connected to the keyboard

body by an intermediate plastic part. Keys are typically sep-

arated by empty spaces a few millimeters wide. Light dif-

fuses differently on the top portion of a key than on its lateral

part: in particular, the face of the key appears lighter under

normal lighting conditions. The pressing of a key changes

the light diffusion in the area surrounding the key.

We use this property to detect the pressing of a key. By

using an algorithm developed by Suzuki and Abe [41], we

first detect the contours of the keys on the keyboard. Then,

we differentiate the contours on adjacent frames, and, if

their difference is above a fixed threshold, we assume that

the corresponding key is likely to have been pressed.

Occlusion-based Analysis. The pressing of a key can oc-

cur in two ways. First, a finger moves in the area of the

key and presses it. Assuming that fingers normally rest in

“home” position (the middle row of the keyboard), this is

typical of keys on the first two rows of the keyboard, i.e.,

numbers and the letters from Q to P in a QWERTY key-

board. Alternatively, a finger is already over the key and

simply presses it. This is typical of keys on the home row,

i.e., the row with letters from A to L. In both cases, for a

key to be pressed it is necessary that it is at least partially

covered by a finger.

We leverage this observation to identify all keys that are

certainly not pressed in a certain frame. We use the same

key contour detection technique described before to identify

the set of keys whose contours are completely visible in a

certain time frame. These correspond to keys that are not

occluded, and, therefore, that are certainly not pressed.

2.1.3 Analysis Output and Limitations

In our approach, we combine several techniques to take ad-

vantage of their relative strengths and minimize their short-

comings. By applyingmultiple techniques, we can also gen-

erate different outputs that aid the subsequent phase of the

analysis. In particular, we decided to track the user hands

using the contour detection technique. This provides us with

the information of where movement is happening (e.g., de-

termined by key pressing). We also use the light-based key

pressing detection technique to obtain the list of keys that

appear to be pressed. We then combine these two pieces

of information, i.e., we retain only those areas of the key-

board where simultaneously hands are moving and keys are

pressed (see Figure 2(a)). This analysis provides, for each

frame of the video, a list of keys that are likely pressed. Sec-

ond, we use the occlusion-based technique to obtain a list of

keys that are certainly not pressed (see Figure 2(b)). Finally,

we apply the light-based key pressing detection technique

on the area of the space bar to detect the pressing of the

space bar, and, therefore, the ending of a word.

Note that all the techniques we use face many of the chal-

lenges that are typical of computer vision. For example, the

contour detection algorithm provides only an approximation

of the real hand contours. In certain cases, this does not al-

low us to distinguish whether a pressing involves a key or

one of its adjacent keys. In addition, while we leverage

occlusion properties in some parts of our analysis, occlu-

sion hinders the detection of key pressings: for example, the

light-based pressing detection technique does not perform

well when a user’s hand projects a shadow that makes the

lighting uniform in a region of the keyboard. Finally, clas-

sifying the movement of hands on the keyboard is a some-

what fuzzy process: the fact that a finger moves over, or

even touches a key, does not necessarily imply that that key

has been pressed.

For these reasons, the results produced by this phase of

the analysis are noisy. More precisely, the analysis may de-

termine that a key was pressed when in fact it was not (false

pressing), or fail to detect a key pressing (missed pressing).

This motivates the need for the subsequent stage of process-

ing: error correction based on analysis of the text.

2.2 Text Analysis

Problem definition. The goal of the text analysis phase is

to suggest a sequence of meaningful words starting from the



(a) Hand tracking analysis. Rectangles identify regions in movement. Black rectangles are used for

movements in the hands regions, grey rectangles for keys, white rectangles for regions where both hand

and key movement happens. These rectangles identify likely key pressings.

(b) Key pressing analysis. Using occlusion-based techniques, the analysis determines keys that are not

pressed, which are represented by the dark polygons.

Figure 2. Computer vision analysis.

set of candidate letters provided by the video analysis.

This task has many similarities with the traditional prob-

lem of spelling correction, initially formulated by De-

merau [11] in 1964. The problem can be expressed as

follows: given a language L and an unknown word s,
find a word w ∈ L that maximizes P (w|s). This prob-

ability can be rewritten applying the Bayes’ theorem in

P (s|w)P (w)/P (s). The constant denominator can be ig-

nored, thus reducing the problem of spelling correction to

the problem of finding the word that provides the best com-

bined probability between the following two factors:

• P (s|w), known as the error model. It expresses the

probability that a user erroneously typed the string s
instead of the correct word w. For example, if the

user wanted to type the word table, it is reasonably

more probable that he/she erroneously wrote the string

tabel than the string xavel.

• P (w), known as the source or languagemodel. It mod-

els the probability that the word w appears in text writ-

ten in a certain language. In other words, it is used to

express the fact that, for example, it is more probable

that a user typed hammer than hamper, even though

they are both correctly spelled.

The first example of a error model was proposed by De-

merau and Levenshtein [28] and was based on a measure

of the distance between two strings, also known as edit dis-

tance. The edit distance consists of the minimum number

of single character insertions, substitutions, deletions, and

transpositions that are required to derive one word from the

other. For example, hello has edit distance 1 from helo

(one insert operation) and 2 from elol (one insert and one

transpose operations).

This first error model has been subsequently refined and

improved, for example by associating probabilities with in-

dividual edit operations, applying different operations de-

pending on the surrounding letters, and extending the edit

operations to sequences of multiple characters [8, 10, 32].



For a more comprehensive review of spelling correction

techniques, please refer to Jurafsky and Martin’s book [20]

or Kukich’s survey [25].

An alternative approach to building the error model con-

sists of computing the distance on the phonetic representa-

tion of the words instead of comparing their written form.

For example, both Aspell [3] and Vim’s on-the-fly spell

checker [34] adopt this technique to correct mistakes that

result from the fact that sometimes users know how a cer-

tain word sounds but they do not know how it is spelled.

Even though these approaches focus on detecting errors

based on spelling ignorance, they can sometimes succeed

in correcting very noisy input, such as dtecttioorn to

detection, despite the high distance between the two

strings.

Finally, the field of context-sensitive spelling correc-

tion [15, 31] focuses on the task of analyzing the surround-

ing context of a word in order to fix errors that result in valid

words, such as the use of than instead of then, or the use

of peace instead of piece.

The combination of these approaches can be very effec-

tive in detecting and automatically correcting both typo-

graphical errors, homophone confusion, and spelling mis-

takes. However, all these general-purpose techniques per-

form very poorly when applied to our text reconstruction

problem, because they all rely on a set of assumptions that

do not hold in our scenario. In particular, in our case, most

of the errors come from inaccuracies in the video analy-

sis phase, and not from user’s typing mistakes. Our main

source of errors is the movement of the user’s hands on top

of the keyboard and therefore errors tend to be more random

and more difficult to predict. Moreover, while statistically

most of the misspelled words contain only one mistake [11],

in our text reconstruction we observed a consistently high

level of noise, resulting in strings that are sometimes very

far from the correct word.

For example, consider the sequence of letters

viaoeryih extracted by the computer vision analy-

sis from a video when the user typed the word victory.

The presence of the vocals a and e in the middle of

the word confuses sound-based approaches and the edit

distance of 5 is too high to be recovered by any traditional

technique.

Even though the computer vision analysis returns noisy

results, we have two additional information sources that we

can leverage in our text analysis: the association of charac-

ters with frames in the video and the set of keys that we can

safely assume that have not been pressed.

In the following sections, we provide the details of our

text analysis. More precisely in Section 2.2.1 we describe

how we develop the error model and the language model

that are necessary to determine (and maximize) P (w|s).
Then, in Section 2.2.2 we show how the word context can

be leveraged to identify the set of most likely candidates for

each word in a sentence.

2.2.1 Language Analysis

The goal of the language analysis is to determine the prob-

ability of a certain word, given the set of keys typed by a

user, as identified by the computer vision analysis.

Error model. The first step of our language analysis con-

sists of defining an error model that takes into account all

the information that we collected during the analysis of the

video. In particular, we have two different inputs from the

previous phase: a vector that contains, for each frame, the

list of keys that the video analysis identified as likely can-

didates to have been pressed by the user (hereinafter called

the key list) and a vector that associates to each frame a list

of keys that our analysis identified to be untouched (referred

as the exclusion list).

We first analyze the key list and we identify the keys that

appear in consecutive frames, which we call a key grouping.

By analyzing these groupings, we identify character mod-

els, which represent place-holders for the characters in the

word we are reconstructing. More precisely, the character

models are created according to the following rules:

• If a key grouping does not overlap with any other key

groupings, a new character model is created that con-

tains only that key. For example, if for ten consecutive

frames the only key in the key list is D, then a character

model that contains D is created.

• In case of a partial overlap between two key groupings,

we consider them to be consecutive, and we create two

character models, one for each grouping, in the order

in which the groupings appear. For example, if the user

quickly presses two different keys in a row, say A and

S, the key list analysis will produce a grouping of As

and a grouping of Ss. Therefore, two character mod-

els will be created: one that contains A, and one that

contains S.

• In case of a complete overlap between two or more dif-

ferent key groupings, we create a character model that

contains both keys, since we cannot be sure which one

was actually pressed by the user.

• If between two consecutive key groupings there is a

number of empty frames that is greater than a cer-

tain threshold, we create an empty character model

in that position. This models the fact that a pause in

the middle of a word may result from the fact that the

video analysis missed one or more pressings of the key-

board’s keys.

For example, consider Table 1, which presents the key

lists associated with each frame. The analysis identifies

four key groupings, namely the Cs spanning frames 2–7, the

Hs spanning frames 5–11, the Is spanning frames 9–10, and

the Ns spanning frames 26–27. According to the rules de-

scribed above, we create a first character model containing



Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 25 26 27 . . .

C C C C C C N N

Key List H H H H H H H

I I

Table 1. Example key lists generated by the video analysis.

the C key, a second character model containing both the H

and I keys, an empty character model reflecting the absence

of keys from frame 12 to frame 25, and finally a character

model with the N key.

Once the character models have been created, it is neces-

sary to assign to the keys in each model a score that reflects

how confident we are that that particular key was actually

pressed by the user and it is not noise introduced by the

computer vision analysis.

In our experiments, we observed that, most of the time,

actual key pressings result in key groupings that span many

consecutive frames. Differently, the keys that are the re-

sult of noise introduced by our analysis tend to have a more

spiky behavior, and generate key groupings that seldom

span many frames. Therefore, we assign to each key in a

character model a score that is proportional to the size of

the associated key grouping, that is, the number of consecu-

tive frames in which the key was present in the key list.

We then add to each character model two virtual keys:

ε and ∗. We use ε to model an “empty” key, i.e., the fact

that the user did not press any key. This is a way to express

the fact that it is possible that all the keys contained in a

character model are the consequence of noise introduced by

the computer vision analysis. The score assigned to ε is

inversely proportional to the sum of all the key scores inside

that character model. By doing this, we model the fact that if

a character model contains one or more “strong” keys (i.e.,

keys that lasted for many frames) it is unlikely that the user

did not press anything for such a long time. In addition, this

guarantees that the score of ε is less than the score of any

“real” key.

The ∗ key is instead a wildcard that can represent both a

single character and a combination of characters. This key is

introduced to model the fact that the user may have pressed

a key in the time frame associated with the character model,

but maybe not the one that we detected analyzing the video.

The score assigned to ∗ is proportional to the length of the

longest key grouping in the character model. The process

used to derive this score guarantees that it will be less than

the score of any “real” key.

Once the character models have been determined, we

connect each key in a character model with all the keys in

the following character model. This can be represented as

an acyclic graph, which we call the word model graph. In

this graph, each path, called a word template, contains one

and only one key for each character model. Figure 3 shows

a sample word model graph that was constructed when the

user typed the word change.

If we consider a word template as a string composed of

the sequence of characters associated with each key of the

path, we obtain a regular expression that can be used to

match words in the dictionary. In our example, choosing

the best candidate key in each character model, we obtain

the template ch*klge. We say that a word matches a tem-

plate if it matches the template’s regular expression. We

define the score of a template to be the sum of the scores of

each node in the template.

Given a graph G and a word w, we define the score of

w in G, denoted score(w, G), the highest score among the

templates in G that are matched by the word w. Note that

this definition is well-formed, because it satisfies two prop-

erties: uniqueness (i.e., there is at most one score value for a

word) and completeness (i.e., there is always at least a score

value for any word).

Uniqueness is guaranteed by definition, since we only

use the maximum of all possible template scores. Com-

pleteness is guaranteed by construction of the graph: each

character model contains the wildcard key ∗. Therefore, any
wordmodel graph contains a template composed of all wild-

cards, which clearly matches any word in the dictionary. As

a consequence, ∀w, ∀G, score(w, G) > 0.
Having defined the score of a word, we can now define

the error model that we use in our analysis. Recall that the

error model of the spelling correction problem is the prob-

ability that we observe a word s when the user intended to

write the correct word w, that is P (s|w). In our problem,

the observation is represented by the graph G, which takes

the place of the string s, and therefore the error model is

P (G|w). We define this probability as:

P (G|w) =
score(w, G)

max
j∈L score(j, G)

Intuitively, this formula relates the probability that we

observe a graph G when the user typed the word w to the

score of w in G. Since the denominator is a constant, the

problem of finding the best candidate word that was typed

by the user given a certain graph corresponds to finding the

word that has the best score on the graph.

A straightforward way to calculate the best scoring word

would be to just calculate the score of all the words in a dic-

tionary. However, since we are only interested in the words

with the highest scores, a more efficient solution is to enu-

merate the graph’s templates starting with the one with the

greater score (that can be easily find with a greedy algorithm

that chooses the key with the highest score in each char-

acter model) and match the corresponding template against
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Figure 3. Word model graph obtained when the user types the word change. The dashed boxes

identify the character models. Nodes represent individual keys in a model. For each key, we report
the corresponding letter and score.

the dictionary words. We then move to the second highest

path, and so on until a sufficiently large number of candidate

words have been extracted.

In our example, the top two templates, i.e., ch*klge

and ch*kge, did not match any existing word in the dic-

tionary. The third one ch*nge returned two matches:

change and challenge. The second word is obviously

a side effect of having the ∗ node, which can match any

possible string (in this case, the string alle). The impact

of the wildcard keys on the final result can be reduced by

integrating into the graph the information provided by the

exclusion list. In particular, for each ∗ key in the graph, we

retrieve from the exclusion list the set of keyboard’s keys

that could not have been pressed by the user in the frames

associated with the ∗ key. This set is then used to restrict

the range of possible values that the wildcard can assume.

For example, for the third character model in our example,

consulting the exclusion list we see that the key L was con-

stantly not occluded on that time frame, and, therefore, it

can be removed from the set of possible characters that can

be substituted for the ∗ key. By integrating this additional

information, challenge is not anymore a valid candidate

word for the ch*nge template.

Language Model. In the previous section, we have de-

termined the probability that a word model graph has been

generated because a user was trying to type a specific word.

Next, we have to determine the probability that this word

has to appear inside the language, that is, the language

model.

The languagemodel can be determined in two ways. The

first approach consists of training a probability model based

on the content of a very large dataset containing a sequence

of valid sentences. This has the advantage that, if the at-

tacker knows the general subject of the text, he can choose

a dataset focused on that particular subject. For example,

if the attacker is spying on a computer programmer, a good

solution would be to use a specialized training set that con-

tains many language keywords. In this way, the language

model would consider more probable for the user to write

the word class than the word classic.

The second approach consists of extracting the frequency

of each word from a dataset. In particular, we use the n-

gram dataset provided by Google [7]. The dataset, dis-

tributed on six DVDs, contains the frequency of both single

words and combinations of words (up to 5-grams) that have

been extracted by Google by processing one trillion words

from public web pages. This second approach performs bet-

ter when the topic is not known or when the attacker needs

a very large vocabulary (the dataset contains over thirteen

millions of unique words, compared with a traditional dic-

tionary that usually contains less than one hundred thousand

entries). This dataset also has the advantages of already

containing a large number of commonly misspelled words,

making our analysis less sensitive to typographical errors

introduced by the user.



2.2.2 Context-sensitive Analysis

The language analysis described in the previous section con-

sidered each word in isolation and produced a set of differ-

ent alternatives for each word, which we call word candi-

dates, sorted by their score. Even though this is very valu-

able information, the attacker still has to manually review

each set trying to combine the different words to formmean-

ingful sentences.

To some extent, this task can be automated by composing

consecutive sets of word candidates in n-gram sequences.

A similar approach was proposed by Mays, Damerau, and

Mercer [31] in the area of context-sensitive spelling cor-

rection. The authors proposed to analyze a sentence using

3-grams in order to detect inappropriate uses of correctly-

typed words. However, our problem is more difficult, since

we do not even have a sentence but just a sequence of groups

of words that we believe are the best candidates to describe

the actual words typed by the user.

In our context-sensitive analysis, we take three sets of

consecutive words as provided by the language analysis and

we combine them together to form all the possible three-

word sentences. We then extract the frequency of each sen-

tence from the Google 3-gram dataset.

Consider, for instance, these ordered sets of words ob-

tained by the previous analyses when the user typed “we

talk tomorrow”:

{we, mill, will} {walk, table, talk}

{tomorrow, tomato, automate}

Most of the sentences, like “we table tomato,” are

grammatically incorrect and therefore they are not present in

the Google dataset. The word candidates that never appear

in any valid 3-gram are discarded as wrong suggestions and

the remaining ones are re-ordered to reflect the frequency

in which they appear in combination with their neighboring

words. The result of the 3-gram analysis is:

{we, will} {talk, walk} {tomorrow}

A first important effect of this analysis is the reduction

in the size of the candidate sets. For example, tomorrow,

which was already the best candidate word in the third set,

after the context sensitive analysis is the only word remain-

ing. Another effect is that talk, which was the least prob-

able candidate in the second set, has been promoted to the

first position. Both these results can greatly simplify the at-

tacker’s job of reconstructing the original text.

After the analysis has been applied to a window of three

words, the window is moved ahead of one step and the pro-

cess continues. It may happen that the analysis reaches a

point where no valid 3-gram sequence can be constructed.

This means that a misfit set, which is a set that does not con-

tain the correct word, was involved in the process. However,

the misfit set could also be one of those analyzed a few steps

before realizing that no valid sequence can be constructed.

To better spot the misfit set, we move the sliding win-

dow back four steps and we temporarily switch to a 4-gram

analysis. This analysis works exactly as the 3-gram one,

just considering sequences of four words instead of three.

This is much more precise and much more sensitive to the

presence of a misfit set. In fact, while a valid 3-gram can

be found by chance also when one of the sets is a misfit,

this is much less probable in a 4-gram analysis. During the

4-gram analysis, when we reach the point in which no se-

quence can be constructed, we mark that last set as being a

misfit and we restart the analysis from the word set follow-

ing the misfit set. Unfortunately, 4-gram analysis is slower,

and, therefore, we use this technique only when we suspect

the presence of a misfit set. Once the misfit set is identi-

fied, the analysis switches back to using the faster 3-gram

technique.

3 Evaluation

To evaluate our approach to the reconstruction of typed

text from the video of typing activity, we are interested in

addressing the following questions:

1. How difficult is it for a human analyst to analyze a

video of a typing session and reconstruct its contents?

2. How well does ClearShot perform at the same task?

Given the attack scenarios we devised (e.g., the installa-

tion of a hidden camera in an office, or the eavesdropping

with a camera-enabled mobile phone), we decided to record

the typing activity from directly above the keyboard. We

decided to use a simple web cam, but, of course, more ad-

vanced cameras could also be used, for example to spy from

a distance.

3.1 Setup

The typing sessions were performed on a regular desktop

computer. The keyboard used was a model SK-8110 key-

board, in black color, manufactured by Dell. As a recording

device, we used an inexpensive, off-the-shelf Unibrain Fire-

i web camera, capable of recording up to 15 frames per sec-

onds at 640x480 resolution. We installed the camera over

the monitor and configured it to record the keyboard. The

keyboard image covered an area of roughly 600x200 pix-

els. The recordings were taken in an indoor environment, in

normal lighting conditions: in particular, light was provided

from fluorescent lamps attached to the ceiling and fromwin-

dows in front of the desktop.

The analysis was performed on a Pentium 4, 3.60GHz

machine with 2GB of RAM. We used a dedicated machine

with similar processing power to store and access the dataset

used in the context-sensitive text analysis. We used the 3-

gram and 4-gram datasets from the Google’s Web 1T cor-

pus. In particular, we filtered out all entries containing non-

alphabetic characters and loaded the remaining entries in a



MySQL database. After the filtering, the database contained

453M 3-gram entries (which used 17GB for the data and

9.7GB for the indexes), and 517M 4-gram entries (which

used 19GB for the data and 14GB for the indexes).

3.2 Experiments

We recorded a typing session of two users, Alice and

Bob. They were asked to transcribe two paragraphs for a

total of 118 words from the beginning of John Fitzgerald

Kennedy’s inaugural address [21].

We chose the users because of their different typing

styles: Alice types using mostly her index and middle fin-

gers. It took her 3m:55s to complete the task. Bob is a touch

typist: he types with eight fingers and uses the thumbs to

press the space bar. It took him 3m:10s to copy the text.

They were asked to type normally and were not given the

text in advance to practice. As a consequence, their typing

sessions contain “empty” intervals, where they interrupt the

transcription to read the source text. Therefore, the duration

of the experiment does not reflect the actual typing speed of

the candidate. Finally, the two users also introduced some

typographical errors: Alice had 5 words misspelled, Bob 6,

and both used the backspace key to correct errors through-

out the text.

3.2.1 Reconstruction Capability

To assess the difficulty of the eavesdropping task for a hu-

man analyst, we asked two people not involved with this

project, Analyst 1 and Analyst 2, to manually recover the

typed text from the video recording of Bob. They were told

that the typed text was taken from a Kennedy’s speech, but

had no additional information. Also, none of them had pre-

vious knowledge of the text. Analyst 1 was able to complete

the task in 59m (at a speed of approximately two words per

minute), correctly recovering 89% of the actual text; Ana-

lyst 2 took 1h55m (at a speed of about one word per minute)

and he correctly recovered 96% of the text. These results in-

dicate that the manual analysis is very time-consuming and

not completely error-free. Note that both the test subjects

found the task very fatiguing and clearly stated that they

would not be able to perform it for an extended amount of

time, e.g., several hours.

We then ran ClearShot on the two recordings, and the

tool produced a sorted list of word candidates. We mea-

sured the efficacy of our analysis in reconstructing the typed

words by marking the position of the correct word in the list.

Table 2 shows the results of the analysis: for each user,

we report the percentage of correct words proposed within

the top 1, 5, 10, 25, and 50 choices. The last column shows

the percentage of missed words, i.e., the cases in which the

correct word is not within the first 50 candidates proposed

by our analysis tool.

Note that for Alice the context-sensitive analysis had a

limited effect on the detection capability of the tool: it in-

creased by 3% the number of correct words proposed as

first choice. The improvement was more consistent in Bob’s

case, where 7% more correct words ended as the first candi-

date words. The analysis had an even more significant effect

in terms of reducing the effort required by a human analyst

to review the results: it trimmed the length of the list of pro-

posed words down to an average of 10 for Alice and 12 for

Bob (from the 50 proposed by the language analysis), and

for about 30% of the words in Alice’s case (38% in Bob’s

case) the length of the list of proposed words is less than or

equal to five.

Table 3 shows a sample of the output produced by our

tool. It reports the first five candidate words produced by our

tool for the first sentence of the original text. We highlighted

the correct words using a bold face.

These results show that ClearShot can effectively recon-

struct the contents of a typing session from its video in an

automatic fashion. This capability can be leveraged by a

human analyst in a number of ways. First, ClearShot al-

lows one to quickly understand the general meaning and the

topic of the text. For example, by simply looking at the

set of candidate words, it is easy to distinguish a political

speech from a computer code or a description of a summer

vacation. Second, ClearShot’s output can be used to auto-

matically check if the typed text contains one or more in-

teresting words. In this case, the context-based analysis can

be avoided saving a considerable amount of time and the at-

tacker only has to verify if the interested words are present

in the list of the 50 candidates generated by the language-

based analysis. Therefore, the values reported in the top 50

column of Table 2 (respectively 82% and 77%) also corre-

spond to the detection capability of the tool in this scenario.

Finally, when the complete text typed by a user needs

to be recovered, ClearShot can be used to significantly re-

duce the required manual effort: in fact, from its output, it is

generally easy to pinpoint the parts of the recording where

automatic analysis was not precise enough and manual ex-

amination of the video is required.

3.2.2 Performance

The performance results of ClearShot are shown in Table 4.

Note that the current prototype is not optimized for speed: it

is mostly implemented in Python, with only a few modules

in C. Porting the tool to C would considerably improve its

running time.

We observe that the computer vision phase of the anal-

ysis runs in about two to three times the actual recording

time. The duration of the language-based analysis is mostly

sensitive to the number of false pressings generated by the

computer vision phase, as they increase the dimension of the

word model graph and, therefore, the number of templates

that have to be evaluated. The context-sensitive analysis is

mostly influenced by the number of missed words, which

force the tool to switch to the more expensive 4-gram anal-

ysis. However, it would be easy to parallelize the language



User Analysis Top 1 Top 5 Top 10 Top 25 Top 50 Missed

Alice
Language-based 43% 64% 73% 78% 82% 18%

Context-based 46% 64% 72% 78% 82% 18%

Bob
Language-based 29% 57% 63% 73% 77% 23%

Context-based 36% 58% 68% 73% 77% 23%

Table 2. Detection results.

Rank w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

1 the observe by no a victory of try but a certain

2 be observed may in and victor off arts buy and corporation

3 we observer any not at victories offer party butt at celebration
4 are observers day on as victors office toy bus as cartoon

5 he observes my and an victorious often toys bug an cartoons

Table 3. Output produced by ClearShot after running the language-based textual analysis when ana-
lyzing Alice’s video. We only report the top 5 words generated and highlight correct words using a

bold face.

analysis: by using k processing units, each analyzing differ-

ent words, it is possible to speed up the running time of this

phase by k times.

3.3 Tuning Parameters

Our tool has a few parameters that can be tuned to take

into account differences in light conditions, typing charac-

teristics of users, and keyboard position.

First, color thresholding is used during the contour de-

tection process in order to convert the original image into

a binary (black and white) image. Depending on the value

chosen for the threshold level, the sensitivity of the analysis

to the light can be changed. When this happens, the motion

detection sensitivity changes as well: higher values identify

more regions as being in motion, which increases the pos-

sibility of detecting all key pressings. However, this also

increases the amount of noise generated.

Another parameter is the number of empty frames after

which the computer vision analysis assumes that a pressing

has been missed. This parameter is dependent on both the

number of frames per second captured by the camera and

the typing speed of the user: faster users take less time to

move from one key to the next one, and vice versa.

The typing speed also influences the number of frames

in which a key is identified as being pressed. As we have

seen, this value is used to determine the score of keys in the

character models. It is possible to tune the coefficients used

in the key scoring system to compensate for different typing

speeds.

Finally, in this initial prototype, the model of the key-

board, which contains the absolute position of each key in

the video, is manually determined by examining the first

frame of a recording. Clearly, this has to be generated once

for each recording session.

4 Related Work

The work described in this paper draws upon or ex-

tends previous research in the fields of computer vision and

spelling correction. We have described some of the related

works in these areas in Section 2, so we will not discuss

these fields any further here. Instead, hereinafter we focus

on works that address the possibility of leveraging emissions

generated from computing devices to eavesdrop on unsus-

pecting users. Such emissions have often been called com-

promising emanations. The first works in this direction date

back to the ’60s and have focused on electromagnetic radi-

ations.

According to Highland, the security risks associated with

electromagnetic radiation have been known in the military

and intelligence communities since 1967 [16], and have re-

ceived more widespread attention in 1985, when van Eck

demonstrated that the screen content of a display could be

effectively reconstructed at a distance using cheap and read-

ily available equipment [44]. More recently, Kuhn and An-

derson described a number of simple eavesdropping exper-

iments performed with a TEMPEST receiver and a cheap

AM radio. They also proposed an active attack consisting

of a Trojan that creates a particular video pattern, which,

in turn, causes the monitor to emit at a specific radio fre-

quency [24]. In addition, Kuhn describes eavesdropping

techniques that can be used to read cathode-ray tube (CRT)

and flat panel displays at a distance [22, 23]. Loughry

and Umphress discuss the use of LED status indicators on

data communication equipment as an eavesdropping device.

They also describe an active attack with a Trojan that ma-

nipulates the LEDs on a standard keyboard to implement a

high-bandwidth covert channel [29]. Finally, Backes et al.

have proposed to use the reflections of the screen’s optical

emanations in common objects to read the screen’s contents



Computer Vision Language-based Context-sensitive Total Words per Minute

Analysis Analysis Analysis

mm:ss mm:ss mm:ss mm:ss #

Alice 10:08 59:58 44:15 114:21 1.0

Bob 7:33 15:00 48:00 70:33 1.7

Table 4. Performance breakdown of ClearShot.

at a distance [4]. They use a telescope to pick up the re-

flections in objects commonly located in proximity of the

screen, such as plastic bottles and eyeglasses. They use stan-

dard algorithms to improve the readability of the recovered

image but they do not perform any analysis to automatically

identify or reconstruct the eavesdropped contents.

In more recent years, researchers have investigated the

use of emanations of different nature than electromagnetic.

In particular, several works focused on acoustic emanations

caused by a user typing on a regular keyboard. Asonov and

Agrawal show that it is possible to differentiate the sound

caused by the pressing of different keys, and employ a neu-

ral network to recognize the key being pressed [2]. They

report about a 50% probability of finding the pressed key in

the set of 4 keys proposed by the system in tests consisting

of 10 clicks per key. Differently from our study, their ex-

periments do not seem to address realistic typing patterns.

Zhuang et al. present an attack that uses the statistical con-

straints of the English language to reconstruct single words

from 10-minute sound recordings without any labeled train-

ing data [48]. Similarly to our work, they employ several

error correction techniques to improve the performance of

their keystroke classifier. They report a word recognition

success rate in an unsupervised setting between 47% and

74% and higher in a supervised setting.

The work most similar to ours is the one from Berger et

al. [6]. The authors analyze an audio recording of the clicks

made by a user typing single words, and compute spatial

constraints (equal, adjacent, near, distant) for each pair of

keystrokes. They use a dictionary to identify words that sat-

isfy the inferred constraints. They evaluate their technique

as a way to reconstruct passwords derived from a dictionary

and discuss its use as a building block for a long-text re-

construction system. Their experiments involve only single

words. They analyze a set of 27 words, each 7–13 characters

long, using 3 keyboards, and report about 40% probability

of finding the correct word in the top 10 proposed words,

about 60% in the top 25, 70% in the top 50. Our approach

focuses directly on long text reconstruction and introduces

a number of techniques that aid in achieving this goal.

Reconstructing the typed text from a video recording

might seem simpler than performing a sound-based anal-

ysis. However, analyzing a video introduces a set of new

challenges. In particular, extracting from a mute video the

information of when a key pressing occurs is more difficult

than extracting the same information from a sound record-

ing. As a consequence, in a video-based analysis, basic

information, such as how many characters compose each

word, is not immediately available and has to be inferred.

We expect that the combination of the two techniques would

achieve very high detection rates.

Traffic analysis techniques have been used to eavesdrop

on encrypted communications transmitted over a network.

For example, Song et al. leverage the keystroke timing data

observable in older SSH implementations to recover pass-

words typed in encrypted sessions [39]. In a test with 4

users typing 5 passwords of 6, 7, and 8 characters taken

from a reduced alphabet, they report that the correct pass-

word was found in the top 0.1%–62.3% of the strings pro-

posed by their system. Timing is used actively, as opposed

to passively, by Shah et al. [38]: they introduce JitterBugs, a

class of in-line interception mechanisms that covertly trans-

mit data by perturbing the timing of input events likely to

affect externally observable network traffic. Finally, Wright

et al. analyze Voice over IP (VoIP) communications. They

observe that different languages are encoded at different bit

rates by Variable Bit Rate encoders and that packet sizes can

be used as a predictor of the bit rate used to encode the cor-

responding frame. They use this information to identify the

language spoken in encrypted VoIP traffic [46].

5 Conclusions

In this paper, we presented a novel approach to the au-

tomated extraction of information from a web cam video

that records a user typing on a keyboard. The approach is

based on several novel techniques for movement tracking,

sentence reconstruction, and error correction. The approach

has been implemented in a tool, called ClearShot, which is

able to extract a substantial portion of the text being typed

in a video, under certain assumptions.

Even though the automatic recognition of the keys

pressed by a person based on video information only is a

very complex and challenging task, preventing this attack is

easy. The obvious solution is to place some kind of physical

shield over the keyboard so that the keys can be seen only

by the typist. This technique is sometimes used to protect

keypads used to enter PINs at ATMs and POSs. However,

this type of protections are not widely used for computer

keyboards.

Future work will focus on improving the motion tracking

algorithm so that it works reliably in a number of different



settings (i.e., different lighting conditions, different camera

angles, and different camera types). In addition, we plan to

explore how the context of the information being extracted

(e.g., the use of specific keywords) can be leveraged to im-

prove the selection of words among multiple alternatives.

As far as we know, this is the first tool of this kind. We

envision that this tool could be of value in the case of long-

lasting surveillance operations. In addition, we anticipate

that some of the techniques developed to extract text from

a typing video could be reused and adapted to other fields,

such as computer vision and augmented reality.
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