
Supporting Configuration Management for Virtual
Workgroups in a Peer-to-Peer Setting

[Full paper]

Davide Balzarotti
CEFRIEL

Via Fucini, 2
I 20133 – Milano, Italy

balzarot@cefriel.it

Carlo Ghezzi
Politecnico di Milano
Dip. di Elettronica e

Informazione
Piazza Leonardo da Vinci, 32

I 20133 – Milano, Italy

ghezzi@elet.polimi.it

Mattia Monga
Politecnico di Milano
Dip. di Elettronica e

Informazione
Piazza Leonardo da Vinci, 32

I 20133 – Milano, Italy

monga@elet.polimi.it

ABSTRACT
In this paper we describe a configuration management tool suitable
for the untethered scenarios typical in a mobile environment. The
scenario envisions a number of homogeneous peers that are able to
provide the same services, disconnect frequently from the net, and
perform part of their work while disconnected. In these contexts the
absence of a host is not the exceptional case, but rather the normal
behavior. Thus, a traditional architecture based on a central repos-
itory exposes the system to failures when the server is unavailable.
Instead, we build our system on a peer-to-peer middleware able to
provide the abstraction of global virtual data structure, i.e., a data
structure composed by all the data actually connected in a given
instant. Thanks to this, we can exploit the service provided by the
network even if relevant hosts are disconnected.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software configu-
ration management

General Terms
Mobile computing, middleware, peer-to-peer

1. INTRODUCTION
The recent advances in the area of wireless networks and the pop-
ularity of powerful mobile computing devices, such as laptops,
PDAs, or even mobile phones, is fostering the diffusion of a new
form of distributed computing usually calledmobile computing.
Mobile computing enables a broad spectrum of services to sup-
port nomadic users, i.e., users who connect to the network from
arbitrary locations and who are not permanently connected. As an
example, scenarios where nomadic users can read their e-mail or
browse the web while moving from a place to another are being
enabled by wireless technology.

SEKE’02 Ischia, Italy

This is likely to affect the way people work and what they request
to their supporting tools. In a fully nomadic scenario, no fixed net-
work topology can be assumed. This affects the software architec-
ture of the underlying infrastructure. In particular, the pure client-
server paradigm, where some machines play the role of service
providers for other machines, appears to be unsuitable to enable
the required intrinsic dynamism. Machine disconnection is not an
exceptional case. Computational nodes are often forced to accom-
plish their computationsoff-line, and this, in turn, requires some
form of reconciliation with theon-line part of the environment
when disconnected machines later rejoin the network of nodes. In
particular, the presence of two classes of computational elements,
namely, clients and servers, is a weak point: a service cannot be
exploited every time servers are not available. For this reason, re-
searchers of mobile computing were recently attracted by the so-
called peer-to-peerarchitectures, where all nodes are peers, i.e.
they are functionally equivalent and any could provide services to
any other [10]. When the topology of the network environment is
not knowna priori, peer-to-peer settings have some advantages:

• absence tolerance:the absence of a single peer, because of a
fault or a voluntary disconnection, can be often compensated
by the presence of other peers;

• bandwidth economy:network links towards servers are typ-
ically the bottle-necks of client-server environments, in par-
ticular if the number of peers is high. In a peer-to-peer set-
ting the network topology can be conceptually considered as
a complete graph, and the traffic is more homogeneously dis-
tributed on all edges;

• ease of configuration:because in theory each peer acts both
as a client and as a server, it can customize the services it pro-
vides according some commonly accepted protocol, without
requiring a centralized supervision;

• efficient use of resources:popular resources (data and ser-
vices) can be easily replicated on several peers. Moreover,
unused or obsolete resources could be eliminated by the a
decision of the subset of peers which was interested in them.

These advantages are available at the cost of the loss of the central-
ized control. Distributed coordination in a network environment

can be the source of difficult problems, as the proof of the impos-
sibility of a distributed consensus[8] demonstrates. Nonetheless,
it is possible and convenient to build middleware components that
provide primitives aimed at supplying a common framework where
coordination and cooperation of peers is facilitated, and the chang-
ing network topology is hidden. In this paper we assume the exis-
tence of such a middleware. In particular (see Section 3.1),we base
our work on PEERWARE, a middleware suitable for peer-to-peer
settings developed at Politecnico di Milano [5, 1].

The increasing availability of distributed computational infrastruc-
tures is affecting the way software itself is developed. Software
production is often dispersed among geographically distant loca-
tions, and software processes become necessarily network aware
cooperative processes. Software development environments, how-
ever, are still far from supporting these new forms of virtual work-
groups through specific network-aware services [7]. As an example
consider the case of configuration management (CM) tools. Soft-
ware processes are typically supported by CM tools [2] that help
developers to keep consistent their work, and, despite of dynamic
nature of software teams, these are typically client-server applica-
tions. For example, one of the simplest, but most popular of these
tools, i.e., CVS [6], is based on the concept of theartifact reposi-
tory. This is a central database of configuration items, accessed by
developers thatcheck-outtheir working copy from it, andcheck-in
a new version incorporating their work. Clearly, the availability of
a repository machine is critical, because without it no check-out or
check-in operations are permitted, even in the frequent case that no
concurrent work is done on a particular item.

In this paper we describe a configuration management tool suitable
for the untethered scenarios typical in a mobile environment. The
scenario envisions a number of homogeneous peers that are able
to provide the same services, disconnect frequently from the net,
and perform part of their work while disconnected. In Section 2 we
describe the requirements for what we want from such a tool. In
Section 3 we describe the architectural structure of the tool. Finally,
in Section 4 we draw some conclusions.

2. REQUIREMENTS FOR THE SUPPORT
TOOL

In a cooperative work effort, configuration items are parceled among
collaborators. In general, for each item we can distinguish anowner,
who has created the artifact or who has the duty of carrying on the
work on it. However, there are typically other workers who need
or want to manipulate items that are not under their control, i.e.,
artifacts they do not own.

The main disadvantage of client-server systems is that they are like
little “solar systems”: the entire application orbits around the main
server stars. When servers are not reachable, the entire system
is just a dead cold set of asteroids. As far as software processes
are concerned, this means that the entire service is blocked, until
servers arise again to bring new life in the developers’ work.

In a highly mobile settings, disconnected work is not an exceptional
case. Developers may wish to check-out the modules they need
also when the owners are not connected to them. This, of course,
requires the system to provide support for some caching policy.
Moreover, check-in should be a transparent operation, which should
not require knowledge of who is on-line when the operation is exe-
cuted. A check in request should be executed asynchronously when
the owner of the item becomes available on-line. Finally, when new

versions of configuration items that are under one’s control become
available on-line, a notification should be submitted to all interested
peers, to enable them to keep an updated view of the system.

As an example, consider the following scenario: A developerD
wants to modify a source filef owned byZ, butZ is currently off-
line. However, this is not a problem, becauseX, who is available
on-line, has a recent version off that can be downloaded byD. In
the meanwhile,Z is working (off-line) onf and she checks in a
new versionf ′ of it. WhenZ reconnects herself with the rest of
the system, a notification of the existence off ′ is submitted to the
peers. IfX now asks to check outf , the new versionf ′ is down-
loaded, since the previously locally cached copy is no more valid.
If D decides to check in his modified version off , a conflict arises,
which may be solved by a manual merge of the two independently
developed modifications of the same module.

Summing up our requirements, the configuration management tool
should provide the following features:

1. check-out: this is the operation that starts a work session.
Configuration items should be accessible also when owners
are not connected, thanks to suitable caching policies;

2. check-in: this is the operation that ends a work session. It
should be possible to check in items at any moment. How-
ever, the actual check-in is physically carried out only when
the owner is available. Since concurrent changes of a config-
uration item are possible, this may generate conflicts. Con-
flict resolutions, which may imply some manual merge, is
performed when the owner is on-line;

3. change notification: when a peer joins the network, it notifies
the changes made to its own items since it last left off to all
interested peers. In this way, any cached copies kept by such
peers become invalid.

3. AN ARCHITECTURAL VIEW
In order to implement the requirements described in Section 2, the
configuration items repository must be distributed among all pro-
cess participants, as showed in Figure 1. In a process withn par-
ticipants, the global repositoryR is composed by the union of the
local repositoriesRi

R =

n⋃
i=1

Ri

Two different architectural choices are feasible:

n⋂
i=1

Ri = ∅ (1)

n⋂
i=1

Ri 6= ∅ (2)

The choice (1) gives a system with no replicated information. This
solution allows efficient implementations (see for example DVS [3,
11, 12]) and does not introduce the risk of getting inconsistent
replicated information. However, items can be accessed only if the

Figure 1: Distributed repository of configuration items

unique host that provides them is on-line, and this does not satisfy
our requirements about check-out.

The choice (2) suits better our requirements, but it needs more ma-
chinery to compose conflicts among different versions of configura-
tion items. The situation is similar to the Domain Name System [9],
in which the data regarding associations between IP numbers and
host names are replicated on several DNS servers. DNS servers
do not rely on one large centralized name repository. Instead, each
DNS server records some associations known with certainty (au-
thoritative associations) and some others simply as remembered
form previous accesses (cachedassociations). Whenever a DNS
server gets a request for a host for which it cannot give an author-
itative answer or that is not contained in its cache, it queries the
network, possibly ending up asking the authoritative server, who
knows the correct answer.

The same strategy can be applied to the implementation of a dis-
tributed configuration management system. Each peer isauthor-
itative for the configuration items it owns, and its copy of such
items is the “master” copy. Every check-in of a new version be-
comes definitive only if it is authorized by the authoritative peer. If
a peerX wants to check-in a document whose authoritative peer is
A (6= X) two cases may occur:

• A is on-line (reachable byX): a check-in proposal is noti-
fied toA. A can reject the proposal or commit to making it
persistent in its local repository as a new master copy;

• A is disconnected fromX: a check-in proposal is recorded
in the local repository hosted byX. WhenA becomes avail-
able, the proposal is notified to it.A can reject the proposal or
commit to making it persistent in its local repository as a new
master copy. IfA has an item newer than the one proposed
by X, a conflict arises. Similarly, other concurrently pend-
ing check-in requests generate conflicts. Conflicts must be
managed by merging the various change requests, and then
issuing a new check-in proposal.

When a peerX wants to check-out a documentd whose authorita-
tive peer isA (6= X) two cases may occur:

• d is present inX ’s the local repository and the copy isvalid
(see below). The check-out operation boils down to getting a

copy ofd;

• d is not present in the local part of repository under control
of X: a network search is issued to retrieve a valid copy. If
no valid copy is found, the check-out operation fails. No-
tice, however, that it may also happen that an invalid copy is
found, but the authoritative peer for the searched item is off-
line. This may happen when the authoritative peer gets on-
line, notifies all interested peer that a new version is available
for a given item, and then immediately gets disconnected
from the network. In such a case, the cached versions of
the item become invalid, but at the same time the most recent
version of the item is unaccessible. We decided that, in this
case, the check-out operation retries the invalid copy.

Finally, when a peer enters the community of peers, a reconciliation
step is performed. More specifically, whenX gets connected, for
each itemi for which X is the authority,X notifies all interested
peers if a newer version ofi is made available. In such a case, the
locally cached copies of peers that are not authoritative for the item
becomeinvalid.

The operations we described here to support distributed configura-
tion management are implemented on top of a middleware which
is sketched in the next section.

3.1 The underlying middleware
PEERWARE [5, 1] provides the abstraction of aglobal virtual data
structure(GVDS), built out of the local data structures contributed
by each peer. PEERWARE takes care of reconfiguring dynamically
the view of the global data structure as perceived by a given user,
according to the connectivity state. The data structure managed by
PEERWARE is organized as a graph composed of nodes and docu-
ments, collectively referred to as items. Nodes are essentially con-
tainers of items, and are meant to be used to structure and classify
the documents managed through the middleware.

This means that nodes are structured in a forest of trees, with dis-
tinct roots, which most likely represent different perspectives on
the documents contained into the data structure. For instance, one
could have an “GNU/Linux projects” tree, a “Latex papers” tree,
and so on. Within this graph, each node is linked to at most one
parent node and may contain different children nodes (see for ex-
ample Figure 2). Conversely, stand-alone documents are forbidden;
documents are linked to at least one parent node and do not have
children. Hence, a document may be contained in multiple nodes.
As for labels, two nodes may have the same label, as long as they
are not both roots and are not directly contained into the same node.

At any time, the local data structures held by the peers connected
to PEERWARE are made available to the other peers as part of
the global virtual data structure managed (GVDS) by PEERWARE.
This GVDS has the same structure of the local data structure and its
content is obtained by “superimposing” all the local data structures
belonging to the peers currently connected, as shown in Figure 3.

Changes in connectivity among peers determine changes in the
content of the global data structure constituting the GVDS, as new
local data structures may become available or disappear. Never-
theless, the reconfiguration taking place behind the scenes is com-
pletely hidden to the peers accessing the GVDS, which need only
to be aware of the fact that its content and structure is allowed to
change over time.

Figure 2: An example of the PEERWARE data structure man-
aged by a peer

Figure 3: An example of the global virtual data structure man-
aged by PEERWARE

There is a clear distinction between operations performed on the
PEERWARE local data structure and on the whole GVDS. While
hiding this difference would provide an elegant uniformity to the
model, it may also hide the fundamental difference between lo-
cal and remote effects of the operations [13]. In particular the
operations for creating or destroying a node (createNode(node,-
parent), removeNode(node)), for inserting or removing a docu-
ment (placeIn(node,document), removeFrom(node, docum-
ent)), and for publishing an event occurred on an item (publish(-
event,item)) are defined only on the local data structure. PEER-
WARE provides three operations that can be performed both on the
local and the global data structures:

1. I = execute(FN , FD, a). An actiona is performed on all
documents – contained in nodes whose name matches the
filter FN – that match the filterFD. The matching set of
documentsI, affected bya is returned to the caller.

2. subscribe(FN , FD, FE , a). Allows a peer to subscribe to
the occurrence of an event matching the event filterFE and
being published within the projection of the data structure
identified by the filtersFN andFD. When the event occurs
the actiona is executed locally to the caller.

3. I = execSubscribe(FN , FD, FE , ae, as). Executes an ar-
bitrary actionae on the projection of the data structure iden-
tified byFN andFD, similarly toexecute. Also, in the same
atomic step, it subscribes for events that matchFE , and oc-
cur within the same projection, by specifying the actionas

that must be executed locally to the caller, when one of such
events occurs.

The semantics of a global operation can be regarded as being equiv-
alent to a distributed execution of the corresponding operation on
the local data structures of the peers currently connected. While as
far as concerns local operations atomicity can be assumed, this is an
impractical assumption in a distributed setting. Hence, the global
operations do not provide any guarantee about global atomicity, and
they guarantee only that the execution of the corresponding oper-
ations on each local data structure is correctly serialized (i.e., it is
executed atomically on each local data structure).

The operations provided by PEERWARE together with a publish-
subscribe engine on which PEERWARE itself relies on (the dis-
tributed event dispatcher JEDI, see [4]) build the framework needed
to implement the configuration management operations described
in Section 3. In particular, by using PEERWARE we can abstract
from the actual network topology and perform actions onon-line
items.

4. CONCLUSIONS AND FUTURE WORK
We have discussed how a highly distributed system supporting mo-
bile users can provide an infrastructure for cooperative design ac-
tivities. In particular, we presented the design of a configuration
management tool which is especially oriented to supporting sce-
narios in which users’ connectivity to the network can change dy-
namically. A possible scenario is that a software development team,
provided with laptops and some kind of wireless connection, sets
up impromptu meetings during which they can, for example, cor-
rect bugs on the fly and merge the patches in the baseline.

In these contexts, we cannot assume that a number of hosts, act-
ing as servers, are always available on-line. The absence of a host

is not an exceptional case, but rather the normal case. The tradi-
tional solution to the configuration management problem, which
is based on a client-server architecture, is clearly not suitable for
these kinds of scenarios: it exposes the system to failures when the
server is unavailable. Along the same line, repositories based on
distributed file systems in which each item exists in only one loca-
tion suffer from analogous limitations. Instead, we built our sys-
tem on a peer-to-peer middleware able to provide the abstraction
of a global virtual data structure, i.e., a data structure composed
by the data contributed by the peers that are connected in a given
time instant. Our solution is based on caching copies, and therefore
making them available for use even if the hosts that own them are
disconnected. The outcome is a genuine peer-to-peer architecture,
where any on-line machine can in principle replicate the unavail-
able resources. We pay, of course, this advantage in terms a harder
coordination effort.

The approach we described in the paper is being implemented as
part of our current efforts in the provision of a suite of software
process support tools well suited for the challenging scenarios of
mobile work

5. ACKNOWLEDGMENTS
This work has been supported in part by a grant from Microsoft
Research and in part by a grant from Compaq. We would also like
to thank the anonymous reviewers for their comments on this paper.

6. REFERENCES
[1] F. Bardelli and M. Cesarini. Peerware: un middleware per

applicazioni mobili e peer-to-peer. Master’s thesis,
Politecnico di Milano, 2001.

[2] E. H. Bersoff. Elements of software configuration
management.Software Engineering, 10(1):79–87, 1984.

[3] A. Carzaniga. Design and implementation of a distributed
versioning system. Technical report, Politecnico di Milano,
Oct. 1998.

[4] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an
event-based infrastructure to develop complex distributed
systems. InICSE98 proceedings, Kyoto (Japan), April 1998.

[5] G. Cugola and G. P. Picco. Peerware: Core middleware
support for peer-to-peer and mobile systems. submitted
ESEC’01, 2001.

[6] Concurrent versions system.
http://www.cvshome.org/ .

[7] J. Estublier. Software configuration management: A road
map. In A. Finkelstein, editor,The Future of Software
Engineering. ACM Press, May 2000.

[8] M. Fisher, N. Lynch, and M. Patterson. Impossibility of
distributed consensus with one faulty process.Journal of the
ACM, 32(2):274–382, 1985.

[9] P. Mockapetris. Rfc 1035 (standard: Std 13) domain
names–implementation and specification. Technical report,
Internet Engineering Task Force, November 1987.

[10] A. Oram, editor.Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology. O’Reilly & Associates, first edition,
Mar. 2001.

[11] A. van der Hoek, A. Carzaniga, D. Heimbigner, and A. L.
Wolf. A reusable, distributed repository for configuration
management policy programming. Technical report,
University of Colorado, Boulder CO 80309 USA, Oct. 1998.

[12] A. van der Hoek, D. Heimbigner, and A. L. Wolf. A generic,
peer-to-peer repository for distributed configuration
managemenet. In18th International Conference on Software
Engineering, page 308, Berlin - Heidelberg - New York,
Mar. 1996. Springer.

[13] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on
distributed computing. InMobile Object Systems, volume
1222 ofLecture Notes in Computer Science, pages 49–64.
Springer-Verlag, Berlin, 1997.

