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ABSTRACT
The Dark Web is known as the part of the Internet oper-
ated by decentralized and anonymous-preserving protocols
like Tor. To date, the research community has focused on
understanding the size and characteristics of the Dark Web
and the services and goods that are offered in its under-
ground markets. However, little is still known about the
attacks landscape in the Dark Web.

For the traditional Web, it is now well understood how
websites are exploited, as well as the important role played
by Google Dorks and automated attack bots to form some
sort of “background attack noise” to which public websites
are exposed.

This paper tries to understand if these basic concepts and
components have a parallel in the Dark Web. In particular,
by deploying a high interaction honeypot in the Tor network
for a period of seven months, we conducted a measurement
study of the type of attacks and of the attackers behavior
that affect this still relatively unknown corner of the Web.

CCS Concepts
•Security and privacy → Web application security;
Domain-specific security and privacy architectures;
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1. INTRODUCTION
Based on the accessibility of its pages, the Web can be

divided in three parts: the Surface Web – which covers ev-
erything that can be located through a search engine; the
Deep Web – which contains the pages that are not reached
by search engine crawlers (for example because they require
a registration); and the more recent Dark Web – which is
dedicated to websites that are operated over a different in-
frastructure to guarantee their anonymity, and that often
require specific software to be accessed.
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The most famous“neighborhood”of the Dark Web is oper-
ated over the Tor network, whose protocols guarantee anony-
mity and privacy of both peers in a communication, making
users and operators of (hidden) services in the Dark Web
more resilient to identification and monitoring.

As such, over the last years, miscreants and dealers in gen-
eral have started to adopt the Dark Web as a valid platform
to conduct their activities, including trading of illegal goods
in marketplaces, money laundering, and assassination [12].
Moreover, Tor has been reported to be leveraged in host-
ing malware [18], and operating resilient botnets [9]. While,
to a certain extent, these studies have shown how the Dark
Web is used to conduct such activities, it is still unclear if
and how miscreants are explicitly conducting attacks against
hidden services, like a web application running within the
Tor network. While web attacks, or attacks against exposed
services on the Internet are common knowledge and have
been largely studied by the research community [10, 11, 22],
no previous work has been conducted to investigate the vol-
ume and nature of attacks in the Dark Web.

To this extend, in this work we discuss the deployment of
a high-interaction honeypot within the Dark Web to collect
evidence of attacks against its services. In particular, we
focus our study on web applications to try to identify how
attackers exploit them (without a search engine for localiza-
tion) and what their purpose is after a service has been com-
promised. Our preliminary measurement casts some light on
the attackers’ behavior and shows some interesting phenom-
ena, including the fact that the vast majority of incoming
attacks are unintentional (in the sense that they were not
targeted against Dark Web services) scattered attacks per-
formed by automated scripts that reach the application from
the Surface Web through Tor2web proxies.

2. HONEYPOT IN THE DARK WEB
In this section, we discuss the main differences, in terms of

advantages and disadvantages, between deploying and main-
taining a honeypot in the Surface Web versus operating a
similar infrastructure in the Tor network.

In fact, the anonymity provided by Tor introduces a num-
ber of important differences. Some are positives, and make
the infrastructure easier to maintain for researchers. Some
are instead negative, and introduce new challenges in the
honeypot setup and in the analysis of the collected data.

Table 1 summarizes the five main differences between the
two environments, mentioning their impact (on the deploy-
ment, operation, or on the results collected by the honeypot)
and which environment (Dark or Surface Web) provides bet-
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Area Impact Better in

Attack Identification Results Surface Web
Service Advertisement Operation Surface Web
Stealthiness Deployment Dark Web
Operational Costs Deployment Dark Web
Collected Data Operation Surface Web

Table 1: Advantages and Disadvantages of Operat-
ing a High-Interaction honeypot in the Dark Web

ter advantages in each category.

Attack identification
The most significant difference between a deployment on
the surface Web and on the Tor network is the anonymity
of the incoming requests. In a traditional honeypot, indi-
vidual requests are typically grouped together in attack ses-
sions [10] to provide an enriched view on the number and
nature of each attack. A single session can span several
minutes and include hundreds of different requests (e.g., to
probe the application, exploit a vulnerability, and install
post-exploitation scripts).

Since many malicious tools do not honor server-side cook-
ies, this clustering phase is often performed by combining
two pieces of information: the timestamp of each request,
and its source IP address. Thus, requests coming in the
same empirically-defined time window and from the same
host are normally grouped in a single session.

Unfortunately, the source of each connection is hidden in
the Tor network, and therefore the identification of individ-
ual attacks becomes much harder in the Dark Web. More-
over, if the attacker uses the Tor browser, also the HTTP
headers would be identical between different attackers.

Stealthiness
If on the one hand the anonymity provided by the Tor net-
work complicates the analysis of the attacks, on the other it
also simplifies the setup of the honeypot infrastructure. In
fact, a core aspect of any honeypot is its ability to remain
hidden as the quality of the collected data decreases if at-
tackers can easily identify that the target machine is likely
a trap.

For instance, the nature of the Surface Web reveals in-
formation like the Whois and SOA records associated with a
domain name, or the geo-location of the IP address the hon-
eypot resolves to. To mitigate this risk, Canali et al. [10]
employed a distributed architecture including hundreds of
transparent proxy-servers that redirected the incoming traf-
fic via VPN to the honeypots hosted on the researchers’ lab.
This solution successfully solve the problem of hiding the
real location of the web applications, but it is difficult to
maintain and requires the proxies to be located on many
different networks (often on online providers).

Luckily, this problem does not exist on the Dark Web. The
honeypot can run anywhere, without additional expedients
as the Tor network is sufficient to guarantee the anonymity
of the endpoints. Moreover, if a particular domain is black-
listed by the attackers, it is sufficient to generate a new pri-
vate key/hostname pair to host content under a new domain
name.

Service advertisement
As the most important value of a honeypot is the collected
data, it is essential to attract a large number of attackers.
On the Surface Web, it is typically the role of search engines
to make the honeypot pages visible to the attackers inter-
ested in a certain type of target. For instance, honeypots
often employ vulnerable versions of popular CMSs, as at-
tackers routinely look for them by using Google Dorks [25].

It is also possible for a website on the Surface Web to at-
tract attackers by simply placing some keywords or specific
files as John et al. described in their work [14]. For exam-
ple, including a known web shell or disclosing the vulnerable
version of an installed application along with its name is a
widely used strategy to lure attackers.

These popular“advertisement”approaches are not straight-
forward to apply to services hosted on the Tor network. As
we later discuss in Section 4, it is still possible for .onion

web sites to be indexed by Google. However, in order to gain
popularity and attract attackers, researchers should care-
fully employ alternative techniques – such as advertising the
website in forums, channels, or link directories specific to the
Dark Web.

Operational costs
Since, as explained above, operating a honeypot in the Dark
Web does not require any special domain registration or ded-
icated hosting provider, the total cost of the operation is
typically very low. Canali et al [10] had to register hun-
dreds of domain names (and routinely change them to avoid
blacklisting) as well as several dedicated hosting providers –
which are often difficult to handle because they often block
the accounts if they receive complains about possibly mali-
cious traffic.

In comparison, an equivalent infrastructure on the Dark
Web only requires the physical machines where the honey-
pot is installed, as creating new domains is free and can be
performed arbitrarily by the honeypot administrator.

Nature of the collected data
Some criminals use the Tor network to host illicit content
like child pornography, since it protects both the visitors and
the host by concealing their identities. Therefore, as we ex-
plain in Section 3, we had to take some special precautions
to prevent attackers from using our honeypot to store and
distribute this material. Unless researchers work in collabo-
ration with law enforcement, these measures are required to
safely operate a honeypot in the Dark Web.

3. HONEYPOT SETUP AND DEPLOYMENT
In this section we describe the setup of our honeypot.

Our deployment is composed of three types of web-based
honeypots and a system-based honeypot. Each of them is
installed in a separate virtual machine (VM) hosted on our
premises. The use of virtual machines allow us to revert
the honeypots to a clean state after they are compromised.
All honeypots are connected to the Tor network and made
available as hidden services.

Note that each VM was fully patched to prevent privilege
escalation, i.e. an attacker who compromised any of our ma-
chines would not be able to modify any system file and could



Honeypot

root

debian-tor

MYSQL

INTERNET

Logs

FirewallInotify

Web Page

Manager

Collect Files

Snapshot

Figure 1: Simplified Honeypot Infrastructure

only interact with the content of few selected directories1.
Moreover, we used a set of firewall rules to restrict the

attackers’ network capabilities. In particular, we blocked all
incoming and outgoing connections from all ports, except
the ones used by Tor to operate, and ports associated to
services that we explicitly offered. The firewall was also
configured to enforce strict rate-limits to prevent denial-of-
service attacks.

Web Applications
To mimic the setup used by a casual user, we decided to
install all the applications in their default configuration, e.g.
with all files located under /var/www and owned by the user
debian-tor.

In each honeypot we installed ModSecurity [5], a popu-
lar monitoring and logging tool for the Apache web server.
We configured ModSecurity to log the content of all HTTP
POST requests along with their headers.

We also used a real-time file system event monitoring
framework called inotify to detect all newly created/mod-
ified files, and copy them in a private directory for later
inspection. Most importantly, using inotify we promptly
detected, deleted, and shred any multimedia file uploaded
by an attacker – to prevent our servers from hosting illegal
material.

After we completed the configuration of our honeypots,
we took a VM snapshot of their clean state. Later, every
night, our system was configured to automatically retrieve
all the files collected by inotify and a copy of all log files,
and then to revert each VM to its original snapshot. A
simplified representation of our honeypot infrastructure is
given in Figure 1.

In order to bait the attackers, we decided to deploy three
different honeypot templates:

1. A website disguised as an exclusive drug mar-
ketplace that only trades between a close cir-
cle of invited members – The website was realized

1Excluding attacks leveraging 0-days and undisclosed vul-
nerabilities
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Figure 2: Initial deployment of honeypots with dif-
ferent advertisement strategies

using an old version of the popular OSCommerce e-
marketing application. The version used in our exper-
iments contains several known vulnerabilities, which
allow an attacker to take over the admin panel and
arbitrarily manipulate accounts and files.

2. A blog site that advertises customized Internet
solutions for hosting in the Tor network – The
website was realized using an old version of WordPress,
which contained several known vulnerabilities.

The honeypot also contained a number of sub-directories
with different web shells, in order to mimic the fact
that the site was already compromised by other at-
tackers. The website was misconfigured to allow di-
rectory listing, so that an attacker (or an automated
script) could easily navigate through the structure of
the website and locate the shells.

3. A custom private forum that only allowed regis-
tered members to login – The website described the
procedure to become a member, which required a valid
reference from another existing member. In this case,
we manually included a custom remote file-inclusion
vulnerability that allowed an attacker to upload arbi-
trary files by manipulating PHP filters. The vulnera-
bility was designed to be quite “standard”, mimicking
many existing vulnerabilities of the same type reported
in other applications. However, it was also designed
not to be straightforward to identify for automated
scanners, as the goal of this third honeypot service
was to collect information about manual attacks.

Although slightly tailored for our scenario in terms of ad-
vertised content, the first two templates were also used by
a previous study of web honeypot [10]. These were inten-
tionally chosen to be able to compare the types of attacks
received on the Dark Web with those normally observed in
the Surface Web.

The third template was instead specifically designed to
avoid automated scanners and study more sophisticated at-
tackers who may be interested in manually exploiting ser-
vices hosted in the Dark Web.

We started by advertising our honeypot applications in
three different ways: (i) by posting their URLs in several



Tor network’s forums, channels, search engines and yellow
pages, (ii) by visiting (twice a day) the applications via the
Tor2Web proxy – which shares the visited URLs with Ah-
mia [2], a search engine for Tor, and (iii) by posting their
URLs to several pages on the Surface Web.

In particular, to measure the success of our approaches,
we deployed the first template three times (i.e., one for each
advertisement technique). On top of that, we also deployed
a copy of all templates by using a more aggressive strategy
that includes all the three mechanisms described above.

Other Services
We also decided to include in our system a machine dedi-
cated to collect system-level attacks directed towards other
type of services appropriately configured to facilitate recon-
naissances from attackers (e.g., by leaking the list of users
via finger) or to expose weaknesses or misconfiguration.

This machine, reachable only over the Tor network, ran
the following services:

1. We used finger to broadcast the list of active users
and we provided a file containing the hashed version
of a user’s password on an open FTP server. We also
used message-of-the-day informative to advertise our
honeypot as a file-server.

2. We offered an open (anonymous) FTP server. We
served a valid upload directory (incoming) for hypo-
thetical illicit uses like drop-zone and exploitation, and
we provide some documents for download, one of which
contained the password for one of the system users.

3. We enabled SSH login on 2 users. The shell was chroot
jail protected. Both accounts were easily guessable,
i.e. the first having a straightforward name and pass-
word combination (guest:guest); the second having
the base64-encoded version of the password leaked in
the FTP document.

4. IRC. Chats are known to be used as rendez-vous points
to discuss illicit offers (e.g. stolen accounts) or host
C&C servers of botnets. With the intent of under-
standing whether attackers would try to abuse chats
in the Tor network, we installed an open IRC service
(UnrealIRCd) and registered anonymous logins.

This machine was also advertised using all the previously
described channels (for the Tor2web case, we used the proxy
to access a static webpage hosted on the honeypot, describ-
ing the machine as a Dark Web file hosting server). Figure 2
shows a summary of the initial deployment strategy used in
our experiments.

4. DATA COLLECTION AND ANALYSIS
We run our experiments over a period of seven months be-

tween February and September 2016. Due to maintenance
and re-configuration of the honeypots, the individual hon-
eypot services were online for a total of 205 days.

The experiments were divided in three phases. During
the first phase (which lasted for 37 days until the end of
March) we applied the three advertisement strategies de-
scribed in Section 3 on a single honeypot template (CMS
#1), to measure their impact on the incoming traffic and on
the number of attacks. In the second phase (from the 1st of

Clone #1
(Tor Only)

Clone #2
(Tor2Web)

Clone #3
(Surface Only)

GET 3.29M 1.26M 1.02M
POST 20 147 1

Table 2: Number of GET & POST requests for dif-
ferent advertisement strategies

April to end of May) we advertised the three templates using
all available strategies, to maximize the amount of collected
data. Finally, for the last four months of experiments, we
restricted the access to our honeypot by blocking Tor2web
proxies, in order to exclusively focus on attacks within the
Tor network.

In the rest of the section we describe the impact of these
three factors on the collected data: the advertisement strat-
egy, the source of the attack (from the Surface or the Dark
Web), and the type of honeypot template.

4.1 Impact of Advertisement Strategies
As we mentioned in Section 3, we created three clones

of our first honeypot template (CMS #1), which we then
advertised using different channels.

In Table 2, we present the total number of requests re-
ceived by the three clones. Quite interestingly, all clones
received a comparable amount of overall traffic (between 1
and 3.3M hits). However, looking at the POST requests
the picture is quite different. For instance, the honeypot
advertised on Tor only received over 3M GET requests but
only 20 POSTs. The first number is inflated because the
same visitor may have requested multiple resources – and
we already discussed how difficult it is to track visitors in
the Dark Web, when using the same browser and no end-
point information are available. In addition, since attackers
required a POST request eventually to upload their files, we
decided that looking at POST requests was a better way to
estimate the “interesting” traffic, and filter out most of the
harmless visitors, automated Internet scanners, and other
forms of background noise.

Finally, it is interesting to note how the second clone –
advertised through Tor2web, was the only one to receive
attacks (over 20) in this first phase of our experiments.

4.2 Role of Tor Proxies
The Tor2web2 projects provide a simple way for users to

access resources on the Dark Web by simply appending spe-
cial extensions to onion domains. These special domains
(such as .onion.to, .onion.link, and .onion.city) resolve
to one of the Tor2web operators which in turn act as proxies
from the Surface Web to the Dark Web. These services fa-
cilitate the access to the Tor network with the disadvantage
of sacrificing the anonymity of their users.

Since Tor proxies make hidden services in Tor reachable
with a normal HTTP request over the Internet and with
no additional configuration, they can be used by traditional
browsers but also by automated scripts and crawlers. The
presence of these proxies turned out to be extremely impor-
tant for our experiments. In fact, once a proxy domain is
indexed by a search engine, the target website can be located
using traditional Google Dorks [23] and therefore becomes
implicitly a target of automated exploitation scripts [10].

2https://www.tor2web.org/
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Proxy Online Transparent

*.onion.to 3 7
*.onion.link 3 7
*.onion.city 3 7
*.onion.nu 3 3
*.onion.cab 3 3
*.onion.direct 71 Unknown
*.onion.lt 72 Unknown
*.onion.sh 7 Unknown
*.onion.ink 7 Unknown
*.tor2web.org 7 7
*.tor2web.fi 73 7
*.onion.rip 3 7

1 discontinued
2 website is offline
3 redirects to tor2web.org

Table 3: List of inspected Tor proxies
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Figure 3: Average number of daily post requests

Once we noticed this phenomenon and the fact that the
vast majority of the attacks indeed came through these
proxy services, we decided to block the request coming from
Tor2web.

Table 3 shows a list of different operators, mentioning
those that were online during our experiments and those
that we could identify by looking at the HTTP headers
they append. For example, some of the Tor2web operators
like .onion.to, .onion.link, and .onion.city includes ex-
tra headers in the request field (such as HTTP_X_TOR2WEB,
HTTP_X_FORWARDED_PROTO and HTTP_X_FORWARDED_HOST).
This allowed us to identify and block the requests coming
from these services, by serving them a static page explaining
that our services were only available from the Tor network.

This change – implemented from June in our experiments,
lead to a sharp drop in the number of incoming requests and
in the number of incoming attacks (see Figure 3).

Interestingly, blocking Tor2web proxies also had a clear
effect on the type of files uploaded by the attackers. For
example, we stopped receiving phishing kits or mailers
(see Section 5 for more details) after we implemented
our blocking strategy. Therefore, it is safe to say that
even though it was possible that some requests still came
through transparent proxies, our countermeasure was able
to effectively prevent most of the automated attacks spe-

CMS #1
(OsCommerce)

CMS #2
(Shells & WordPress)

CMS #3
(Custom Vuln.)

Tor2web 115 (8 days) 1,930 (23 days) 0
TOR 0 2,146 (79 days) 689 (5 days)

Table 4: Number of attack-related POST requests

cific to the Surface Web– which, indeed, was our initial goal.

4.3 Honeypot Templates
As we explained in Section 3, we used three honeypot tem-

plates based on different web applications and, more impor-
tantly, with different types of vulnerabilities.

Table 4 shows the number of attack-related POST re-
quests along with the number of days in which we received
at least a single attack. We consider a request as attack-
related if it contains an attempt to exploit a vulnerability
or if it is involved in the post-exploitation phase – for exam-
ple, to upload further files on the exploited application or to
inspect the host through a webshell.

Predictably, the web shells installed on CMS #2 served as
bait to attract the highest number of attack-related requests.
CMS #1, instead, received less attacks and all originating
through proxy services likely as the result of using Google
Dorks.

Interestingly, some attackers used dorks on Tor-specific
search engines. For instance, an attacker found one of the
honeypots through a Tor search engine3 by simply querying
the set of keywords “Index of /files/images/”.

Finally, CMS #3 (i.e., the one containing our custom vul-
nerability) received the lowest number of attacks and none
of them actually succeeded. Even more interestingly, while
CMS #1 was only attacked from the Surface, CMS #3 was
only attacked from the Tor network. This is in line with our
expectations: well-known vulnerable CMSs are targeted by
automated scripts using dorks, while custom websites are
only targeted by humans or dedicated scanners (which in
our case were run in the Tor network).

Afterward, we manually analyzed all POST requests to
identify the successful attacks, i.e. those in which the at-
tacker successfully compromised the honeypot application.
CMS #1 was successfully compromised by attacks originat-
ing from the Surface Web. Out of 115 attack-related re-
quests, 105 (91%) of them were successful attacks. After
we started blocking Tor proxies, we did not observe further
attacks.

For CMS #2, we counted an attack as successful if it ex-
ploited the WordPress vulnerability or if it used one of the
existing webshell to install or modify a file in the system
(i.e., a simple inspection of the system was not considered
a successful attack). Overall, 1,255 (65.0%) of the attack-
related requests originating through Tor2web succeeded. On
the contrary, only 154 (7.2%) of the ones coming through
the TOR network succeeded. This is a very interesting re-
sult, and it shows that the majority of the attackers who
interacted with our shells from the Surface Web ended up
performing some change on the system. The attackers from
the Tor network instead mostly inspected the system and
moved away without touching any file (more about this phe-
nomenon will be discussed in Section 5).

3http://hss3uro2hsxfogfq.onion
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CMS #3 never received a single attack from Tor2web, if
we exclude some manual attempts to guess a valid username
and password (which we did not count as an attack in our
statistics). As we mentioned in the beginning of this section,
this one never received a successful attack.

5. ATTACK EXAMPLES
Over the entire experiment, attackers uploaded on our

honeypot 287 files (an average of 1.4 per day). In compari-
son, Canali et al. [10] collected over 850 files per day – but
they used 500 clones (against the 3 we used in our exper-
iments). In fact, the goal of our study was not to collect
a large number of attacks, but rather to study their nature
and how the effect of different factors like the advertisement
channel, the type of service, and the source of the attack
affected.

In the following sections, we classify the attacks into three
different categories: automated scattered attacks from the
Surface Web, automated attacks from the Tor network, and
manual attacks. For each category, we present some exam-
ples and we discuss in more details the attacks most com-
monly observed in our honeypots.

5.1 Scattered attacks
As we described previously, regular search engines unex-

pectedly index web pages hosted on the Dark Web through
Tor2web proxies. As a result, websites located in the Tor
network receive part of the background noise of automated
attacks that plague the Web, scattered through the proxies
that act as gateways between the two “sides” of the Web.

For this reason, the vast majority of the attacks observed
in our honeypot were simple, and very similar to what was
observed by previous studies [10, 14]. Basically, the modus
operandi of these attackers consisted of locating our web-
sites using Google Dorks, and employing automated scripts
to visit the pages, exploiting the known vulnerabilities, and
possibly uploading files for the next phase of the attack.
In the majority of the cases, these attacks involved the use
of web shells, which allowed the attackers to later run sys-
tem commands on our honeypot. Using these web shells,
attackers could upload other files including web mailers, de-
facement pages, and phishing kits.

The completely automated nature of these attacks and
the types of files uploaded in the honeypot make us believe
that in the majority of the cases the attackers were not even
aware of the fact that they compromised applications hosted
in the Dark Web.

Web shells – We collected 157 unique variations of web
shells uploaded by the attackers. This was an expected be-
havior since most of the time the attackers made use of au-
tomated scripts for the first phase of the attack. We also
observed that once a web shell was deployed, other shells
were often uploaded using this first web shell, over a short
period of time. Usually, while the initial shell was unobfus-
cated, the subsequent ones were protected with a password.
Some of the collected web shells were base64-encoded and
they were configured to de-obfuscate at run time by means
of the PHP’s eval function.

Phishing kit & Mailers – Surprisingly, attackers up-
loaded six phishing kits for popular targets (in particu-
lar Paypal). Having a phishing kit for such applications
does not make much sense in our setting, since there is no
Paypal on Tor to begin with. But the fact that all the

phishing-related attacks were coming through TOR prox-
ies, strengthen our hypothesis that the attackers (or their
automated scripts) were probably not aware of the location
of the exploited application. Similarly, 22 mailers were up-
loaded through Tor proxies, but none of them was ever used
by the attackers.

Defacements – Our web applications got defaced 33
times. Usually, a web shell was uploaded before the de-
facement and subsequently the index page was modified or
a brand new one was uploaded by using the prior web shell.
From an analysis, this process looked automated since the
same pattern was observed multiple times with the same
defacement page. Half of the attacks originated from the
Surface Web, and the rest came directly from the Tor net-
work.

In one defacement specific to Dark Web, the defacer mod-
ified the index page of CMS#2 to promote one of his sites
called Infamous Security4, where the authors apparently ad-
vertise their hacking services.

5.2 Automated Attacks through Tor
Automated Scans – Our honeypots received over 1,500

path traversal attempts (e.g. to fetch ../../etc/passwd, or
../../etc/vmware/hostd/vmInventory.xml). As we could
infer from the User Agent, attackers seemed to be using the
NMap5 scripting engine for scanning their targets.

Access to the Service Private Keys – One of the most
common scan attempt we received within the Tor network
was the download of the private key that we voluntarily
hosted on the web applications’ root directory.

Every time the Tor service starts, it creates a private
key (if not existing) and assigns the corresponding hidden-
service descriptor (i.e. the hostname) to this private key.
While the private key must not be accessible with default
Tor and Apache configurations, in our case we intentionally
misconfigured the service to let it accessible from the Web
for CMS #3 starting from mid Agust. Exposing a private
key simply means that the owner risks losing the hostname
to the adversary (and therefore potentially all incoming traf-
fic). Thus, the first and the easiest automated attack is to
fetch this key, if its location and permission are not config-
ured correctly.

During the operation of our honeypot, we observed and
confirmed over 400 attemps to fetch the private key. Attack-
ers could use those keys to impersonate our honeypot and
conduct attacks like phishing or hosting of malware.

Other Services – We reported a number of successful
connections to our FTP, SSH, and IRC services that, most
likely, represent instances of banner grabbing or informa-
tion gatherings. In total, we confirmed 74 SSH connec-
tions (client-side terminated or timeout), 61 successful FTP
(anonymous) logins and 91 IRC logins.

5.3 Manual attacks
Post-Exploitation Actions – We noticed that attack-

ers connecting via Tor network (instead of using Tor proxies)
were generally more careful and spent more time to investi-
gate the environment. For instance, their first action when
using a web shell was to gather additional knowledge by list-
ing directories, checking the content of the local database,

4http://5eaumbq2k6yc4sjx.onion/
5http://nmap.org
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fetching phpinfo and system files such as crontab, passwd,
fstab and pam.conf.

Such attackers never went beyond exploring the system,
compared to the ones we mentioned in Section 5.1 – who al-
most always installed additional components. In fact, man-
ual attackers from the Tor network often deleted their files
and left the honeypot after their initial inspection. In few
cases, the attackers also left messages (such as “Welcome to
the honeypot!”) or redirected our index page to a porno-
graphic video. In one example, the attacker downloaded
1GB of random data from a popular website to test the net-
work download speed and renamed the file as ‘childporn.zip’
– supporting the fact that many attacks from Tor were man-
ually operated and resulted in a successful identification of
the honeypot.

While these cases support the fact that there are people
manually exploiting websites on the Dark Web, all these at-
tacks used previously installed web shells or extremely pop-
ular CMS vulnerabilities. None of them was able to exploit
the (still relatively simple) custom vulnerability on CMS #3.

FTP and SSH – Overall, we identified 71 FTP file down-
loads. Interestingly, all occurred in a sub-directory and none
on the root directory of the server – showing the manual na-
ture of the action and the interest in accessing specific data.
In one case, the miscreant used our bait login credentials
included in our honey-document to log in to the SSH server.
This was an interesting scenario, in which the attacker was
able to manually extract information collected from one ser-
vice to connect to another service.

Even more interestingly, the attacker first connected to
the SSH server sending his real username for the login, likely
due to the fact that this is performed automatically by ssh
clients. The attacker then immediately killed the session and
reconnected with the correct username previously gathered
from the honey-document.

Attacks Against the Custom Application – The ap-
plication with the custom vulnerability received little atten-
tion through the entire experiment. Except for some au-
tomated background noise of SQL injections and directory
traversal attempts, we noticed 87 requests (GET and POST)
that attempted to tamper with the parameter vulnerable to
remote file inclusion, but without any success. One attacker
analyzed the entire website using the Acunetix [1] web vul-
nerability scanner but the tool was unable to exploit the
vulnerability. Another attacker focused on the login form
and run the sqlmap6 tool to try to detect a possible SQL
injection, again without success.

6. RELATED WORK
Attacks against web applications have already been stud-

ied by using either low-interaction [3, 6, 14, 20] or high-
interaction web honeypots [4, 10, 11, 22]. However, all these
works targeted the Surface Web and we believe we are the
firsts to document attacks in the Dark Web by mean of the
practical deployment of a high-interaction honeypot.

A related set of studies focused on measuring the char-
acteristics of the Dark Web, including its size, the connec-
tion between websites, and the services (i.e. protocols) pro-
vided over the Tor network. OnionScan, for example [16],
leverages hyperlinks contained in web pages and other fea-
tures (like correlation on ssh fingerprints and ftp banners),

6http://sqlmap.org

to build relationships among hidden services. This dataset
consists of about 5,600 active sites that were scanned in June
2016.

In a similar work, Ciancaglini et al. [12] actively crawled
the Dark Web for a period of two years and reported on
the cyber-criminal services and illicit goods available in the
Dark Web like marketplaces, laundering services for crypto-
currencies, and hosting platforms for malware.

When it comes to attacks in the Dark Web, or against
the darknets used to operate the Dark Web, a consistent
amount of literature has been produced. A first class of
papers propose attacks aimed at de-anonymize hidden ser-
vices, e.g. by recovering the public IP address on which the
hidden service operates. CARONE [17] makes use of heuris-
tics to match information like keywords in the content of the
hidden service and certificates chain with candidate Internet
endpoints, then validated in a second phase.

Kwon et al. [15] propose an attack in which a combi-
nation of website fingerprinting and circuit fingerprinting
techniques are used to de-anonymize hidden services. While
website fingerprinting is already widely used (e.g., in the
Surface Web), authors revealed that during the circuit con-
struction phase between clients and hidden services, dark-
nets as Tor exhibit fingerprintable traffic patterns that allow
an adversary to efficiently and accurately identify and cor-
relate circuits involved in the communication.

Panchenko et al. [19] propose a more general approach
that identifies the content of encrypted and anonymized con-
nections (e.g., Tor) by observing patterns of data flows such
as packet size and direction. Other researchers recently hit
the media when they revealed their ability in de-anonymize
users and hidden services in Tor [7, 8].

A different class of attacks has been analyzed in [24]
and [21]. Winter at al. [24] document malicious exit re-
lays in the Tor. The authors developed exit relays scanners
for credential harvesting and MitM attacks, and used them
to identify malicious exit relays nodes. More recently, Sa-
natinia et al. [21] exposed another category of misbehaving
Tor relays (HSDirs) that are integral to the functioning of
the hidden services.

On top the Dark Web-specific attacks described so far,
denial of service (DoS) against hidden services has been re-
ported in the wild [13]. In fact, with the increase on the
number of business-related websites been deployed in hid-
den services, well-understood attacks (like DoS) are seen
occurring in the Dark Web. What is not clear, so far, is how
much a hidden service is exposed to threats like web-based
attacks (e.g. SQLi, path traversal, etc..), bruteforce attacks,
and how these attacks are conducted in the Dark Web– e.g.,
if manually or automatically.

7. CONCLUSIONS
This paper discusses the deployment of a high-interaction

honeypot in the Tor network, to explore the modus operandi
of attackers in the Dark Web. We conducted our experi-
ments in three different phases over a period of seven months
and we assessed the effectiveness of advertisement strategies
on the number and nature of the attacks. Our preliminary
results show that also hidden services can receive automated
attacks from the Surface Web with the help of Tor proxies.
Moreover, we found that miscreants in the Dark Web tend
to involve more manual activity, rather than relying only on
automated bots as we initially expected. We hope that our

http://sqlmap.org


work will raise awareness in the community of operators of
hidden services.
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