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Abstract—In the realm of the Android ecosystem, one relevant
threat is posed by phishing attacks. Phishing attacks are particularly
problematic for mobile platforms because they do not provide enough
information for a user to reliably distinguish a legitimate app from a
malicious app spoofing the UI of the legitimate one. A key factor that
determines the success rate of a phishing attack is proper timing: The
user is more prone to provide sensitive data (such as her passwords) if
the malicious spoofed UI appears when the victim expects to interact
with the target app. On Android, malware determines the right timing
by mounting so-called state inference attacks, which can be used, for
example, to infer the exact moment that the user started a target
app and thus expects to interact with it. Even though Android app
sandbox is designed to prevent these attacks, they are still possible
by abusing vulnerable APIs that leak such sensitive information: the
usual scenario is a malicious app that “polls” these vulnerable APIs,
infers when a target app is about to be used by the user, and makes the
spoofed UI appear on top of the screen at the right time. All previous
bugs of this kind have been fixed in the latest version of Android.

This paper presents two main research contributions related to
preventing and detecting state inference attacks. First, we discuss the
design and implementation of a new vulnerability detection system,
which specifically aims at identifying new vulnerabilities that can be
used to mount state inference attacks. Our approach relies on both
static and dynamic analysis techniques and it identified 18 previously
unknown bugs (leading to 6 CVE) in the latest versions of Android.
Second, we present a new on-device analysis system able to detect
exploitation attempts of vulnerable resources and APIs. This system
is based on the key hypothesis that mere “polling behaviors” can be
used as a strong signal of a potential attack, independently of other
factors (that previous works rely on). We performed an empirical
analysis over a corpus of benign and malicious apps, and we find that
this hypothesis is indeed correct. This approach has the advantage
of being able to detect exploitation attempts even when the abused
API is not known to be vulnerable in advance. We implemented this
system as an Android framework modification, and we show it incurs
a negligible overhead.

I. INTRODUCTION

One of the key security features of Android is the application
sandbox. This mechanism aims at enforcing a strong security
boundary between different apps and protects sensitive information.
One of such sensitive information is the “state” a given app is
currently in. With “state,” we refer to, for example, whether an app
is currently in the background, in the foreground, or is transitioning

between these states. Attacks aiming at determining the state of
another app are called state inference attacks, which are particularly
relevant in the context of phishing attacks. Phishing attacks
consist of luring an unsuspecting user into revealing her sensitive
information (e.g., credentials) to a malicious app that mimics the
UI of the legitimate one, a technique we refer to as UI Spoofing.
The peculiar problem of mobile platforms is that the user cannot
understand whether she is inserting her credentials into a legitimate
app or into a malicious app spoofing its UI. State inference attacks
play a key role in this context since, if the malicious app can infer,
for example, that the user is about to use a specific app, it can show
the spoofed UI at the right time, and hijack the legitimate app’s flow.

In the context of Android security, malicious apps are able to
leak this state-related information by exploiting vulnerable APIs
or resources (e.g., /proc file system). For example, a vulnerable
API, when invoked with specific arguments, may return data that can
be used to infer whether another app was just started. These attacks
have been known for several years, and previous works have shown
that several APIs and resources do leak sensitive information [6], [4].
Given the security implications of these vulnerabilities, Google has
restricted access to the /proc file-system (eradicating potential
bugs at its root) and fixed all APIs known to be vulnerable [18].
However, as for many forms of bugs, this is an arms race and there
can potentially be many more vulnerable APIs still undisclosed.

As the first contribution of this paper, we design, implement,
and evaluate a new analysis framework to automatically pinpoint
Android APIs that may disclose state-related information about
other apps or the operating system itself. The main idea is to first
systematically enumerate the attack surface in terms of which APIs
could be potentially abused, to then repeatedly invoke each API (with
appropriate arguments) while changing the surrounding context (e.g.,
another app is started), and finally, to monitor how the returned
values change (if they do) depending on such context. We note
that we are not the first ones to propose this research direction. A
recent work that tackles a similar problem is SCAnDroid [27], which
attempts to employ a technique similar to ours. Our paper shows that
while SCAnDroid’s direction is indeed promising, there are several
conceptual and technical challenges that were overlooked, leading
to undetected vulnerabilities. One of the main problems we uncover
is that previous works have mischaracterized the attack surface avail-
able to a malicious app, leading to many APIs to not be even selected
as candidates for analysis in the first place: our analysis shows that
it considered only ∼44% of the attack surface. One other open
challenge is how each of these APIs should be analyzed to uncover
potential problems, and previous works oversimplified this step as
well. As the last example, we found that even the task of determining
whether the return value of an API contains sensitive information can
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be challenging, and we find that this is another venue for mistakes.

Our paper systematizes these challenges, discusses how we
address them, and shows that each of these overlooked challenges
is the direct cause of false negatives of the closest related work,
SCAnDroid (see Section VI-F for a detailed comparison). We tested
the effectiveness of our framework on Android 8.1, 9.0, and 10,
unveiling 18 previously unknown bugs. All the vulnerabilities
were reported to Google and several of these have been already
acknowledged and fixed.

While we believe that our framework is a good first step to auto-
matically detect this category of bugs, we acknowledge that identify-
ing and removing all vulnerable APIs is not always possible. Thus, as
a second contribution of this paper, we design and implement an on-
device monitoring system to detect state inference attacks when they
occur. This system builds on two observations: 1) all existing state
inference attacks implement a polling behavior, thus making it per-se
a good candidate for detection; 2) the second observation, which, to
the best of our knowledge, has not been explored before, is based on
the following key hypothesis: benign apps rarely rely on polling and,
when they do, the nature of their behaviors is different than those
of malicious apps. In other words, if benign apps do not commonly
employ polling, the mere detection of these behaviors could be then
used as a strong signal for flagging an app as suspicious.

To verify the validity of our hypothesis, we performed an
empirical study over all known families of malware exploiting
vulnerabilities to perform phishing attacks, as well as on a set of
more than 10,000 popular benign applications. The results of this
experiment show that, as expected, all malicious samples implement
some form of polling when mounting state inference attacks. For
what concerns the benign apps, our study unveils a surprising insight:
there are several benign apps that also perform polling; However,
more in-depth experiments show that these behaviors are of different
natures, and it is easy to distinguish between them and their mali-
cious counterparts. We thus show that polling itself can be leveraged
as a strong signal to detect state inference attacks. We implemented
this system as a modification to the Android framework, and our
experiments show that this system would incur a negligible overhead.

We note that using “polling detection” as a mean to
identify malicious apps is not novel per-se: a previous work,
LeaveMeAlone [38], has explored this aspect. However, we
show how this related work is not suitable when tasked to detect
phishing attacks on modern versions of Android. We offer a detailed
comparison in Section IX-E. We thus believe that our work discusses
a new interesting point in the design space of detection approaches.

In summary, this paper makes the following contributions:

• We systematize and pinpoint open challenges to tackle the
automatic detection of APIs vulnerable to state inference
attacks. Among these, we show that the attack surface is
bigger than what previously thought.

• We implement an automatic framework to unveil
vulnerable APIs leading to state inference attacks. We
tested its efficacy on Android 8.1, 9.0, and 10, identifying
18 new vulnerable APIs (and 6 CVE were assigned).

• We hypothesize that the mere polling can be used as a
strong signal to identify in-progress state inference attacks.
To validate our hypothesis, we performed an empirical
study on both malware and benign applications, and

while (1) {
ActivityManager am = (ActivityManager) 
Context.getSystemService(ACTIVITY_SERVICE);
List<ActivityManager.RunningTaskInfo> apps = am.getRunningTasks(1);
String app = apps.get(0).topActivity.getPackageName();
if (app.equalsIgnoreCase(TARGET_APP)) {
   // Perform the attack
}

}
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Fig. 1: Anatomy of a phishing attack.

we show it is indeed possible to reliably and efficiently
pinpoint attacks. This can be the basis for an on-device
detection system that does not have the limitations affecting
previous works.

In the spirit of open science, we will release all the source code
developed for this paper and the relevant datasets.

II. PHISHING ATTACKS ON ANDROID

This section provides the technical background about phishing
attack and how a malicious application can successfully mount it.
It then discusses a systematic survey on all known classes of state
inference vulnerabilities, their role in the context of phishing attacks,
and which of these classes are still problematic on Android.

A. Phishing

One common task of Android malware is “phishing.” With this
term, we refer to malicious applications trying to steal user’s sensitive
information (e.g., credentials). Phishing attacks are particularly prob-
lematic for mobile platforms because they do not provide enough
information for a user to reliably distinguish a legitimate app from
a malicious app spoofing its UI. To make the attack more effective,
malware relies on the ability to mount state inference attacks, useful
to monitor when the user is about to interact with a target app.
Inferring the right time is important, as it allows a malicious app
to ask for user’s credentials exactly when the user expects to insert
them. We note that these techniques are not only known and studied
in the academic world [12], [6], [23], [26], [27], but they are used by
real-world malware [15], [28], [32], [21], [17], [20], [29], [16], [31].

B. Anatomy of a Phishing Attack

Figure 1 depicts the various phases of a phishing attack. We start
from a scenario where the user ( 1 ) wants to interact with a sensitive
app (e.g., PayPal). Meanwhile, in the background, the attacker ( 2 )
repeatedly invokes the once-vulnerable API getRunningTasks
API to determine which app is in foreground. Before the victim clicks
on the PayPal icon, the attacker could determine that the foreground
app is the “Home Launcher.” However, by repeatedly invoking this
API and checking its return value, the attacker could mount a state
inference attack and infer the exact moment the user clicks on the
PayPal icon: the attacker would in fact notice the transition from the
Home Launcher to the PayPal app. At this point, the attacker knows
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this is the best time to hijack the PayPal activity with a spoofed one
which looks the same as the original ( 3 ). A successful attack will
leave the user completely unsuspecting since the victim initiated
the interaction with the target app herself, she would not find an
authentication request from that particular target app unexpected.

C. Characterizing State Inference Attacks

Previous research identified many venues to mount state
inference attacks [12], [6], [23], [26], [27]. With the goal of better
characterizing this threat and to better understand the state-of-the-art
of Android state inference attacks, we analyzed all the different
vulnerabilities exploited by malware and discovered during the
years [12], [6], [23], [26], [27], [15], [28], [32], [21], [17], [20],
[29], [16], [31]. All existing vulnerabilities can be grouped into two
conceptual categories:

Filesystem layer. The first category relates to the filesystem layer.
The root cause of these vulnerabilities resides in the presence of
sensitive information obtainable by reading files accessible by
any unprivileged app. From the technical standpoint, all known
vulnerabilities are caused by unrestricted access to procfs, via
the /proc directory. For example, one of the first vulnerabilities
relied on accessing /proc/$PID/cmdline, which contains
the name of the program run by a process with a given $PID.
By continuously monitoring the content of this directory, the
attacker could identify the creation of new processes (by monitoring
sub-directories of /proc), and infer the app started by the user
(by reading the cmdline file).

Many similar vulnerabilities were discovered, but they all had
the same root cause: unprivileged apps had access to procfs.
Thus, to patch these vulnerabilities, from Android 7.0 the access
to almost the entire /proc directory is forbidden. We believe this
solution eradicates this category of vulnerabilities at its root.

Android System Services layer. The second category of
vulnerabilities relates to Android System Services. Services are a
fundamental sub-system in the Android Framework. They allow
apps to interact with “lower” operating system and hardware
components, such as GPS, network, etc. Since this operation
normally requires interaction with privileged components, services
are offered by a process called system_server, which runs as
the privileged system user. This process is in charge of handling
almost all the core services and provides a bridge between the
functionality requested by the app and the service implementing it.

We note that all API-related vulnerabilities identified by previous
works relate to APIs exposed by services. Even though Google
has fixed all known vulnerabilities, the complexity of the services
infrastructure makes it significantly more challenging to identify
a single root cause that led to all existing vulnerabilities. Moreover,
we show how there are several previously overlooked challenges
and subtleties that make the automatic vulnerability discovery
process more difficult than what previously thought, and that this
is the direct cause for false negatives in recent related works [27].

III. THREAT MODEL

We consider a threat model in which an attacker controls a
malicious app on the victim’s phone. We also assume that such app
can ask (and obtain) those permissions that are usually available
to non-system third-party apps. Some of these permissions are
automatically granted, while others require user interaction.

An example of a permission automatically granted is the
INTERNET permission: at installation time, the system grants this
permission to the application and no user interaction is required.

Instead, examples of permissions that require user
interactions to be granted are ACCESS_COARSE_LOCATION or
PACKAGE_USAGE_STATS. Note that, in Android, this interaction
may be implemented is two ways.

The first type of interaction relies on runtime prompt and it
is used to grant the permissions labeled as dangerous, like the
ACCESS_COARSE_LOCATION permission. By interacting with
this prompt, the user can decide whether to grant or deny the
permission to the app.

The second type of interaction, which does not rely on prompts,
is reserved for privileged permissions. These permissions might be
labeled as signature, system, signatureOrSystem, privileged, develop-
ment, appop, or retailDemo. An example of this category of permis-
sion are the PACKAGE_USAGE_STATS, SYSTEM_ALERT_-
WINDOW, and BIND_NOTIFICATION_LISTENER_SER-
VICE permissions. For example, the PACKAGE_USAGE_-
STATS permission is used to mainly protect the UsageStatsMan-
ager service [13]. With that being said, Android offers a mechanism
for third-party apps to obtain sensitive information accessible only
via these permissions, even without technically being granted such
permissions. The way it works is that a third-party application can
ask the user of the device to grant the permission through the System
Settings app, which updates some internal settings. The sensitive
system services that do have the signature permissions then check
such settings to determine whether a requesting app is entitled to
have access to such sensitive permission-protected information. We
also note that not only is it possible to access information protected
by these signature-level permissions, but that many real-world apps
(both benign and malicious) currently use them [20], [35], [5]. Thus,
since third-party applications may require some of these permissions,
we believe it is appropriate to consider them within our threat model.

We also assume the malicious app cannot obtain the
BIND_ACCESSIBILITY_SERVICE permission (a11y): this
permission alone allows an attacker to fully monitor all UI
events [12], making mounting phishing attacks trivial. Finally, we
do not consider the scenario where a malicious app can gain root
privileges: once again, these powerful attackers can easily steal
sensitive information without mounting phishing attacks.

IV. EXPLORING THE ATTACK SURFACE:
SYSTEM SERVICES

This paper aims at developing an automated approach to identify
vulnerable APIs that could be used to mount state inference attacks.
For the aforementioned reasons, we focus on considering the attack
surface exposed by System Services. This section discusses the inner
workings of system services and the known security-related pitfalls.

A. Android System Services

System Services are the key mechanisms for apps to interact with
low-level, security-sensitive operating system and hardware compo-
nents. The technical details of these mechanisms, and how third-party
apps can rely on them (by means of invoking Android APIs) are not
trivial, and it involves several sub-components, discussed next.
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Fig. 2: Interaction with ActivityManagerService, showing the
client-server structure of Android System Services.

Figure 2 gives an overview of how system services work. In
the example, the goal of an app is to interact with the ActivityMan-
agerService: to do so, it needs to first request a “client” — named
Manager ( 1 ) — to the SystemServiceRegistry class
to interact with the service. Once obtained, it can start invoking
the methods exposed by the Manager. Each method invocation
is then wrapped and forwarded to another component, named
Proxy ( 2 ), in charge of sending the data from the application
to the Binder component ( 3 ). This component “forwards”
the request to its associated Stub ( 4 ), which can be seen as
the counterpart of the Proxy, residing in the Service. Finally, Stub
forwards the request to the actual implementation of the Service
( 5 ). The response follows the same, but reversed, flow. Another
important technical aspect is represented by the Interface ( 6 ),
written in AIDL (Android Interface Definition Language). AIDL
is an Android-specific language used to define the methods exposed
in the Stub that can be reached from the Proxy.

B. Known Potential Pitfalls

The complexity of system services opens to many potential
vulnerabilities. One specific aspect that has been explored by
previous works relates to inconsistencies in the placement of security
checks like permission enforcing or identity control [37], [25], [14].
The common root cause is that the checks were performed only
in the Manager and not also in the Service counterpart. Thus, a
malicious app could use a lower-level Proxy to communicate directly
with the Service, bypassing the security checks. All these existing
vulnerabilities have been fixed by Google and do not pose a threat
in recent versions of Android. However, we show that this “layered”
architecture still leads to new challenges and that they play a key role
when looking for APIs vulnerable to state inference attacks. While
the layered architecture is known to create problems in terms of
placement of security checks, we believe we are the first ones to show
how this complex architecture affects other security aspects as well.

V. TECHNICAL CHALLENGES

One key contribution of this paper consists in the design and
implementation of an automatic framework to identify vulnerable
APIs leading to state inference attacks. This section discusses an
overview of the several technical challenges we faced while design-
ing this system, most of which have been overlooked by previous

works and were a direct cause of false negatives (see Section VI-F
and VII-E for a direct comparison with SCAnDroid [27]).

Enumerating the attack surface. The first key challenge is to
determine the effective attack surface available to a potential
attacker. Past works analyzed client- and server-side APIs and they
highlighted security-relevant differences [37], [25], [14]. However,
we show that there are server-side APIs (available to an attacker) that
do not have their associated client-side API. There is thus a “hidden”
layer of APIs that has not been considered by previous works. This
makes previous approaches that enumerate the attack surface by
only checking the client-side API significantly incomplete. In fact,
in an attempt to quantify how much attack surface is “missed” we
performed static code analysis on the Android framework itself and
found that, in the best case, only about 44% of the attack surface
is considered (see Section VII-E for the details).

Argument creation and validation. When directly invoking
server-side APIs, one has to determine how to create “valid”
arguments, otherwise the API may just return an error. We also note
that, by interacting with the server-side API, one has even more
flexibility in terms of argument creation since the client-side-only
sanitization routines (if any) are bypassed. However, creating a
successful object automatically is not so immediate and hides many
challenges. For example, even a single field of a complex object,
if not initialized correctly, can lead to the generation of exceptions
with the risk of completely blocking the automatic analysis process.

System stimulation. Another important challenge consists in
properly stimulating the system to induce the information leak. It
is important to give, or create, the chance to the vulnerable APIs
to actually leak sensitive data.

Systematic inspection of return values. One last overlooked
challenge relates to how properly inspect values returned by an API.
Previous works have relied on invoking every public (and private)
method of the returned object, hoping to access fields that could
be interesting for an attacker. However, this approach has several
problems. First, the proper order of the invocations is unknown
and may make a difference: for example, invoking a setter method
before a getter method may cause the field value to be overwritten
and permanently lost. Second, a client-side API may have access
to some security-sensitive information, but it may “sanitize” the
information before returning it to the caller. Even if the sanitization
is not present, there can be private fields that are not accessible via the
object’s methods — not even the private ones. We found that, if not
handled properly, this is yet another direct cause for false negatives.

VI. ANALYSIS FRAMEWORK

This section introduces our new analysis framework. We start by
presenting an overview, we then discuss the various analysis steps
and how we addressed various challenges, and we then offer a direct
comparison with the most recent related work, SCAnDroid [27].

A. Overview

Our analysis framework is constituted of several steps, each of
which tries to solve one of the challenges listed above. The first step
enumerates the attack surface and its APIs (see Section VI-B). Then,
we analyze each API to determine if it leaks sensitive information
about other apps. The framework starts invoking it several times
while keeping the system “at rest” (i.e., without performing any
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Fig. 3: This figure represents the framework and how the different
components interact with each other.

other operations). Then, it starts a victim app (the actual app used for
this part of the experiment is not relevant), while it keeps repeatedly
invoking the API under analysis — and logging every invocation
and every returned object. To conclude, we post-process these logs
to identify potential correlations between the returned value of a
given API and changes in the surrounding environment (e.g., the
moment in which the victim app has been started). The output of
the analysis system is the list of APIs that could be potentially used
to mount state inference attacks.

Analysis framework organization. The framework is composed
of six different modules. Figure 3 provides a detailed overview.
First, it enumerates the attack surface: this process involves three
modules: the Extractor ( 1 ), which extracts Android services;
the SecurityChecker ( 2 ), which removes “candidates”
(i.e., Services or Methods) that are causing any kind of Security
Violation when invoked; and the ClassFinder ( 3 ), which,
for each service, extracts from the device the name of the
classes implementing it (both Managers and Interface). Once the
services and classes have been enumerated, the Extractor
and SecurityChecker modules extract and analyze all
the methods implemented by these classes. All methods whose
invocations do not cause SecurityException are then
automatically invoked by the Stimulator module ( 4 ),
while, in the background, the UI-Interaction Automator
module ( 5 ) injects different types of UI events to simulate a user
starting a potentially sensitive app and her interaction. Finally, the
collected results are processed by the Data Analysis module
( 6 ). Note that this last analysis step is performed off-line, while
all the previous modules run on the device itself.

B. Enumerating the Attack Surface

The enumeration of the attack surface is perhaps the fundamental
component of our system. Its correct identification, however, is not as
easy as one might think and many challenges lie behind this complex
process. To begin with, Android offers multiple ways to register
and expose a service to applications. Moreover, there is not a single
central location to locate all the services inside the source code tree.
However, we note that all Android services should be exposed to
the system by using one of the following methods: addService,
publishBinderService, or registerService.

The parsing process is handled by the Extractor module
and it is built on top of JavaParser [30]. We parse the source code
and extract all the services that are statically included in the system
by looking at the methods listed above. To avoid missing any refer-
ence to a service, we extract the services running on our test device
using the “service” command-line utility. The two lists are then
merged together. Other works used the same approach to enumerate
and list the services available in the Android OS [25], [37], [14].

Note that a non-system app cannot interact with all services. Our
threat model assumes the attacker has control over a non-system
app that can request any non-system permissions: however, some
privileged services are protected by strict SELinux policies or by
some permissions that only system apps can request and any attempts
to access them cause a SecurityException to be thrown.

To enumerate the services that are accessible by an attacker,
we perform a dynamic analysis step: first, we grant all non-system
permissions to our test app, then communicate with a given service
while in the background we monitor for security exceptions and
violations like SELinux runtime violation or security exceptions
raised by missing permissions. For those services that we can interact
with, we enumerate the methods accessible to an attacker. To this end,
previous works [27] relied on the AOSP documentation. However,
this documentation only exposes public client-side methods: this
approach entirely miss the “hidden layer” of server-side methods
that do not have their respective client-side one. In our work, we
do consider client-side methods, but we extend this enumeration by
considering server-side methods as well. Server-side methods are im-
plemented starting from AIDL specifications. AIDL is an extension
of Java and introduces some meaningful keywords that are adding
information about the behavior of a given method. Since JavaParser
is not handling AIDL as language, we wrote our own parser.

We note that, for certain aspects, AIDL is more expressive than
Java. In fact, in AIDL, each method and arguments can be prefixed
by so-called keywords. Among the many AIDL keywords, two of
them are particularly important for our work. The first one is the
out keyword, which specifies that an input argument “can be
modified by the callee.” This helps us recognize this argument as
a potential output value. The second relevant keyword is oneway:
it indicates that the method returns immediately after having sent
the data, without “returning” a meaningful result. Thus, our analysis
proceeds in discarding a method if 1) its return value is void and
none of its arguments are marked with the keyword out, or 2)
its signature shows that the method is defined with the keyword
oneway. We note that previous works did not consider these
possibilities, leading to yet another venue for false negatives.

As an additional filtering step, we also discard methods that
have at least one argument of type IBinder since it is not
possible, to the best of our knowledge, to obtain a reference to a
valid IBinder token without relying on a permission granted
only to system applications.

For each of the potential candidate methods, we repeated the
dynamic analysis monitoring for security exceptions, and keeping
for further analysis only the ones not throwing any security violation.

C. Stimulation Strategies

Once we collect the candidate methods, we then proceed to
invoke them and analyze their returned values.
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Semantics-aware arguments generation. Understanding the
“semantics” of an argument can be very helpful to improve the
effectiveness of this step. This analysis step considers information
taken from source code type information and the argument names.
Our analysis extracts the following arguments’ semantics: 1) App
identifiers: this category contains all the arguments identifying a
specific app installed on the device, such as uid or packageName; 2)
Process identifiers: arguments identifying a specific process running
on the device, such as pid; 3) Filesystem locations: every storage
volume in the filesystem can be identified by a specific UUID such
as storageUuid or volumeUuid; 4) Time values: arguments related
to time and time-ranges, such as beginTime, startTime and endTime.

Identifying (and properly supporting) these values allows us to
maximize the likelihood that the target method will return something
relevant since we passed an expected value. During our analysis,
these arguments are initialized with specific values defined both
statically or dynamically. For example, for arguments like uid or
packageName we can statically define a value — such as the uid of
the application we want to target. Instead, for arguments like pid, we
need to retrieve them at runtime. Moreover, for time-related values,
we enforce a “logical-constraint” such that beginTime will always
be lower than endTime. For the rest of the arguments for which we
do not have a semantic, we automatically instantiate objects with
random content, as discussed next.

Generic argument creation. Even knowing the types of objects,
it is not always trivial to create valid instances. In fact, the objects
in the Android Framework can be very complex, and can contain
many references to other objects, each of which must be correctly
solved in order to correctly create the final object. To invoke a given
method, all the objects necessary to perform its invocation must be
properly created and instantiated: this is, of course, a process that,
if done manually, would be time-consuming. We decide to adopt an
automatic approach and instantiate all the objects using a recursive
algorithm that tries to instantiate an object by iterating through
all the available constructors and recursively tries to create a valid
sequence of object to match at least one of them. We repeat the
process for each nested object and for all objects belonging to the
method’s signature. All the primitive types and their corresponding
wrapper classes are filled with random values.

Since a recursive approach may incur in circular dependencies
and crashes due to the increasing size of the call-stack, we configure
our system with a maximum threshold of five recursive calls. In
cases of failure, we resorted to custom handlers. This was needed
for 105 objects (2.4% of a total of 4,390). We note that this is a
one-off effort (that does not need to be repeated for each version
of Android). To the benefit of the community and future works, we
will release all these custom handlers.

Argument generation strategies. The analysis runs in two con-
figurations. In the first one, a method is invoked multiple times
without changing the arguments. This means that, for every method,
the arguments are created only once. In the second one, instead,
arguments mutate at each invocation of the method. Having multiple
configurations is important since this allows us to analyze different
behavior. We identified situations where APIs were leaking sensitive
information over time only with some particular arguments. For
example, we found a vulnerable API leaking information only when
one of its arguments (related to “time”) was changing from the pre-
vious invocation to the new one. Testing this API without mutating
the arguments would end up in wrongly marking it as “safe.”

User-Interface interaction. Interesting APIs for an attacker are the
ones leaking the current “state” of a target app. An app can be in
background, in foreground, or transitioning from these states. In this
work, we analyze the following subsequent states: when the app
is not started yet, when the user opens it and interacts with it, when
she stops it, and when she resumes it. The goal of this module is
to inject multiple “events” while, in the background, the Stimulator
repeatedly invokes the API currently under test. The automatic
interaction with the UI tries to mimic the behavior of a real user. This
module is built on top of AndroidViewClient [9], a library
which helps the creation of “Android test automation” scripts [9].

D. Data Serialization

If the automatic creation of complex objects posed a challenge
to solve, so it is creating a generic serialization method that can
be applied to all objects returned the invoked APIs. To solve this
problem, we implemented a custom serialization algorithm to store
both arguments and return value collected by the Stimulator. The
serialization algorithm follows the process we used to instantiate
the different objects, but in a reverse order, following a depth-first
exploration strategy. For each object, we start by defining a “child
node” — represented by the actual object we want to serialize —
we recursively dump all its fields and store both their name and
value in a key-value format. For fields with “primitive” types,
we store their textual representation, otherwise, we recursively apply
the same algorithm to all its fields until we reach the “root” class,
java.lang.Object. This allows us to unfold complex object
in a flattened format — like HashMap. If we detect circularity,
we only store the reference of the object without recursively
analyzing it a second time — none of the known JSON serialization
libraries support it. This technique allows us to have a very detailed
representation of a given object, including all (possibly private)
objects that it encapsulates, no matter its complexity.

E. Data Analysis

The last component of our framework is in charge of results
analysis. Its main goal is to find which APIs can be used to mount
state inference attacks. More in general, we want to automatically
identify APIs whose return value is somehow influenced by the
surrounding context and leak a meaningful value when the target
application is going to be used by the victim.

Automatically identifying which APIs can potentially be used
by an attacker hides many challenges. In fact, applying a too
conservative approach may result in having a large number of false
positives to analyze manually. The opposite problem is the case in
which one adopts an overly restrictive approach, as there is the risk
of eliminating a valid API and thus incurring in false negatives.

Our analysis, divided into two stages, represents a tradeoff. As
part of the first stage, we start by considering all the collected API’s
return values. We consider the keys of these return values and we dis-
card all keys whose value is constant across all the API invocations. It
is safe to discard these keys because the attacker would not have any
chance to infer any state-change just by observing a constant value.

Then, we identify those keys whose value is particularly noisy,
i.e., the value has almost always a different value (e.g., out of 100
invocations, there are only a couple of repetitions). These values
are likely not providing a strong signal for the attacker, but we
opted to err on the safe side and we proceed to further inspection
before discarding them. In particular, we empirically found that the
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vast majority of these noisy values belong to one of the following
categories: timestamps, incremental values (relative timestamps and
auto-incremented sequential numbers), and pointers (i.e., memory
addresses). We developed a simple, entirely conservative heuristics
to identify whether a noisy value belongs to one of these categories,
in which case, given their non-security-relevant semantics, we can
safely discard them. We consider a key to be of a certain category
if these conditions apply: Timestamp if, when all the values are
converted in a “datetime” object, the dates are always compatible
with when we run the experiments; Incremental values if, when
we calculate the difference between each consecutive value, these
differences are always a small positive number; Pointers if all the
values, when interpreted as memory addresses, would point to
memory locations within valid, mapped memory pages.

We stress that, if we cannot recognize the semantics of a
noisy key, we do not discard it and we consider it as a potentially
interesting.

At the end of this stage we obtain a set of candidate APIs for which
at least one key has not been discarded; that is, these APIs have a
chance to be useful for an attacker. We note that the APIs detected
as part of this stage could already be interesting for an attacker,
in the sense that these APIs are potentially returning a (changing)
value that may be correlated with the outside environment. We then
proceed to identify those APIs that can be used to determine state
transitions of other apps.

The second stage is conceptually straightforward: we focus on
identifying APIs that return the same value before the app has started,
and that suddenly start returning a different value just after the user
(in our case, the Stimulator module) has started the victim
app. The resulting APIs are the final output of the analysis pipeline.

F. Comparison with SCAnDroid

As we mentioned throughout the paper, we are not the first
ones to propose an analysis framework to pinpoint Android APIs
vulnerable to state inference attacks. This section offers a direct
comparison with a recent work with a similar goal, SCAnDroid [27],
and we show how it overlooked several of the challenges discussed
in Section V. Most of these shortcomings are not just implementation
issues, but they are about important aspects that were not considered.

The first group of shortcomings relate to how SCAnDroid
determines the set of potential APIs to test. First, they only consider
client-side APIs — the ones implemented in the Manager, by relying
on the AOSP documentation. Our analysis, instead, considers a
wider attack surface — the full list of methods exposed by client-
and server-side components. We determined the list of APIs to test
by relying on the source code of the AOSP project. Second, to limit
the number of APIs to analyze, SCAnDroid performs a filtering
step by only considering APIs whose name starts with a prefix such
as get, query, has or is, assuming that only similarly named methods
could constitute vulnerabilities. Our filtering process instead is
based on the internal functioning of the Android system.

Our evaluation shows that these strategies allow SCAnDroid to
potentially reach only∼44% of the available attack surface (see Sec-
tion VII-E for the detailed comparison on the final results). Last, we
note how SCAnDroid cannot be easily extended to identify and sup-
port the test of server-side APIs, the ones reachable only via AIDL.
These APIs are not accessible neither via reflection, nor are described
in the official documentation available to the developers. These two

Description Android 8.1.0 Android 9

Available Services 160 180

Proprietary Services 2 16

SELinux Denials 35 44

Runtime Permission error 2 1

Unreachable Services 9 14

Native Services 12 10

Attacker-Reachable Services 100 95

TABLE I: Extraction of attacker-reachable services.

techniques are the ones used by SCAnDroid to enumerate the attack
surface. Thus, it is conceptually and technically not possible for
SCAnDroid to cover and analyze this important portion of APIs.

One other conceptual limitation relates to the limited ability
to invoke APIs with proper arguments (e.g., pass a valid process
id when needed) and, more importantly, how it inspects the
return values. In fact, SCAnDroid recursively invokes all methods
implemented by the returned object through Reflection, leading to
two conceptual problems. First, the order these methods are invoked
with may permanently modify the return value and some data may be
lost. For example, invoking a setter method before the getter method
of a specific field overwrites the field’s value, potentially losing infor-
mation. Second, and more importantly, there is no guarantee that all
information stored in an object are accessible via its public or private
methods. Our approach, instead, relies on a custom serialization that
can recursively dump every field that is directly or indirectly stored
within a given object, thus solving the problems of the previous
approach. Our analysis found that these conceptual limitations are
the direct cause of false negatives for SCAnDroid. In fact, our
approach identified vulnerable APIs that were either not analyzed
or for which the analysis wrongly marked them as “not vulnerable.”

VII. EVALUATION

A. Experimental setup

We evaluate our framework’s efficacy on two versions of the
Android OS: Android 8.1, running on a Nexus 5X with the latest
available security patch (with security patch, December 2018),
Android 9, running on a Xiaomi MI A2 (August 2019). Finally, we
also tested our system on the latest version available at the time of
writing, Android 10. However, we noticed that our system was not
able to identify any new vulnerability on this latest version, despite
the fact that the attack surface had been correctly identified and
several APIs had been tested. Moreover, we have also manually
verified and confirmed that all bugs we identified affecting Android
8.1 and 9 have been correctly fixed on Android 10. Thus, since
no additional vulnerabilities were found on Android 10, in the rest
of the section we will focus the discussion and the analysis of the
results obtained on Android 8.1 and 9 versions.

B. Attack Surface Enumeration

Attacker-reachable services. Our system extracted a total of 160
services for Android 8.1. After having applied the filtering steps
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# Methods Client-side Server-side
v. 8.1.0 v. 9 v. 8.1.0 v. 9

Total 3,536 4,092 2,683 2,887

After static analysis 1,080 1,324 1,384 1,472

TABLE II: The table summarizes the filtering process applied on
the APIs extracted from the AOSP source code, as described in
Section VI-B.

# APIs Fixed Args Mutated Args
v. 8.1.0 v. 9 v. 8.1.0 v. 9

Total 2,464 2,796 2,464 2,796

Accessible by an attacker 1,616 1,931 1,614 1,929

By removing constant APIs 813 1,127 816 1,141

By removing noisy APIs 48 35 51 52

Unique Methods 66
Potentially vulnerable 24

TABLE III: The table summarizes the filtering process based on
the two stages described in Section VI-E.

described in Section VI-B, it identified how a non-system app can
interact and reach 100 of them (∼62%).

For what concerns Android 9 instead, we identified 180 services,
but only 95 reachable (∼52%) from an unprivileged app.

As it is possible to see, for both versions of Android, the majority
of the services not reachable by a third-party application is due to
security violation. By monitoring these denials, in fact, our system
identified how more than the 23% of the services for Android
8.1, and 25% for Android 9.0, were not reachable by a third-party
application due to missing permissions or SELinux violations. This
first filtering procedure applied to services has allowed our system to
extract only those services that can actually be used by an attacker.

Table I shows how many services were not reachable and for
what reason.

API enumeration. Starting from the extracted services, we then
proceed by identifying and extract first the Manager and the
server-side services implementation, and then the candidate APIs.

On Android 8.1, the 100 services define a total of 157 classes.
These classes are divided in 71 Client classes (∼45%) and 86 Server
(∼ 55%). From these 157 classes, we identified a total of 6,219
invocable methods. These are all the methods that can be potentially
used by an attacker to mount state inference attacks. We then
proceed by applying the filtering rules, as described in Section VI-B.
This process allowed us to obtain, from the initial bucket of 6,219
methods, 2,464 candidates to test on Android 8.1. Out of these 2,464
methods, 1,080 are exposed through the Client while the remaining
1,384 are available from the Server. We then dynamically tested all
these methods looking for security violations. These methods have
to be discarded since a third-party application cannot invoke them.
This stage identified how only 1,616 of them is effectively reachable
by a third-party application. Thus, the combination of both static
and dynamic analysis reduced the candidates from 6,219 to 1,616.

We then applied the same identification and filtering process to
Android 9. For what concerns this version, from the 95 initial ser-
vices, we extracted a total of 157 classes: 76 acting as Client (∼48%)
and the remaining 81 as Servers (∼52%). From these classes, we
then extracted a total of 6,979 invocable methods. The first static
filtering allowed our system to extract, from the 6,979 methods,
2,796 candidates (1,324 methods declared in the Client, while 1,472
defined in the Server). Instead, by removing the methods raising a
security violation at runtime when invoked, our system pinpointed
1,931 methods effectively reachable by a potential malicious appli-
cation. Thus, the combination of these pruning strategies allowed us
to lower the number of methods to test from 6,979 to 2,796.

Table II and Table III summarize the results obtained during
these pruning stages.

C. Method Testing

We analyzed each method for an average of 70 seconds (60
seconds plus time used for booting with both the configurations of
the Stimulator). The overall execution time to run all the experiments
is of 63 hours for Android 8.1, while it took 68 hours for Android 9.

D. Analysis Results

We then proceed to analyze the data collected during the tests.
We start by discarding APIs not leaking any sensitive information
due to their values remaining constant, as well as very noisy APIs,
as described in Section VI-E. This process drastically reduces the
number of APIs to analyze in the second stage. For Android 8.1, we
reduced the number of APIs from 1,616 to 51 — discarding∼96.6%:
for Android 9, we started from 1,931 APIs and we ended up with 52
candidates — discarding∼97.5% of APIs. In total, we obtained 66
unique APIs whose return value change appears to be conditioned
by the surrounding context. Out of the 66 APIs, the second stage of
the algorithm identified 24 potentially leaking APIs that can be used
to determine whether a target app went to “foreground.” Table III
summarizes all the intermediate results of these filtering stages.

Out of these 24 APIs, 18 are indeed vulnerable: 4 APIs
require no permission at all, 2 require a permission marked
as Normal, while the remaining APIs are protected with the
PACKAGE_USAGE_STATS permission, which allows an app to
collect the usage statistics of other apps, including the application
in foreground. This information, as discussed in Section II-B, is of
essence when mounting phishing attacks. Table IV, reports more
detailed information about these APIs.

We now discuss the 6 false positives. Interestingly, two APIs
actually leak some information about the surrounding system:
getInputMethodWindowVisibleHeight, which returns
the size of the keyboard on the screen, and getPendingApp-
Transition, which tells the attacker that an application “is going
to be moved on foreground.” The attacker can reliably infer that
an app is about to change its state, but she cannot determine which
app. However, since this scenario could lead to a more generic
phishing attack, we conservatively consider these as false positives.
For example, with the getPendingAppTransition API
the attacker can evince that the user is about to interact with an
app: Thus, she can simply display a pop-up a message informing
the user that an update is available (without the need of specifying
the name of the app). Since the timing is perfect, the user might
be lured into clicking it. The same attack can be mounted with the
getInputMethodWindowVisibleHeight API. In fact,
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Classname Method Permission Hidden Affected versions Fixed?

IActivityManager isAppForeground None Yes Both CVE-2019-9292
IActivityManager getProcessPss None Yes Both CVE-2020-0087
ActivityManager getProcessMemoryInfo None No Both CVE-2020-0372
IUsageStatsManager isAppInactive None No Both CVE-2020-0317
INetworkStatsService getUidStats ACCESS_NETWORK_STATS Yes Only 9 CVE-2020-0327
INetworkStatsService getDataLayerSnapshotForUid ACCESS_NETWORK_STATS Yes Both CVE-2020-0343
StorageStatsManager getFreeBytes None No Both Duplicate
StorageManager getAllocatableBytes None No Both Duplicate
IActivityManager isUidActive PACKAGE_USAGE_STATS Yes Only 9 Won’t fix
NetworkStatsManager querySummary PACKAGE_USAGE_STATS No Both Won’t fix
NetworkStatsManager queryDetailsForUidTagState PACKAGE_USAGE_STATS No Only 9 Won’t fix
IActivityManager getUidProcessState PACKAGE_USAGE_STATS Yes Both Won’t fix
IActivityManager getPackageProcessState PACKAGE_USAGE_STATS Yes Both Won’t fix
NetworkStatsManager queryDetailsForUidTag PACKAGE_USAGE_STATS No Both Won’t fix
UsageStatsManager queryEvents PACKAGE_USAGE_STATS No Both Won’t fix
UsageStatsManager queryUsageStats PACKAGE_USAGE_STATS No Both Won’t fix
UsageStatsManager queryAndAggregateUsageStats PACKAGE_USAGE_STATS No Both Won’t fix
IStorageStatsManager queryStatsForUid PACKAGE_USAGE_STATS No Both Won’t fix
IStorageStatsManager queryStatsForPackage PACKAGE_USAGE_STATS No Both Won’t fix
NetworkStatsManager queryDetailsForUid PACKAGE_USAGE_STATS No Both Won’t fix

TABLE IV: Systematization of the vulnerable APIs. For each API, we report the vulnerable service, the type of permission protecting it, if
the API was present in the Manager or only in the Proxy component, which version contains the vulnerable API and if the bug has been fixed.

the attacker can infer when the user is going to use the keyboard,
giving her the chance to show a popup informing the user that a
keyboard update is available.

Two other APIs (createAppSpecificSmsToken and
DownloadManager.Query) return very noisy values, which
change at every invocation. We note how the filtering step described
in Section VI-E does not discard these APIs because the noisy
values are not belonging to one of the categories known to not leak
information (e.g., timestamps). In fact, a deeper analysis of these
two APIs allowed us to confirm that their return value is either a
pseudo-random token (for the first API) or an object identifiers (for
the latter). Neither of the API, thus, return a value correlated with
the current state of the system.

The last two APIs are launchLegacyAssist and getAllCellInfo.
Their values changed after the start of the target application but it
does not appear to be correlated to the target app’s state transition.

For completeness, we manually inspected the remaining 42
APIs out of the 66 that have been filtered out by the second stage.
We identified how 7 APIs leak “system state” information, such
as the total amount of bytes written by apps, or aggregate statistics
about the disk usage. 15 APIs, instead, leak sensitive network
information, like the overall network usage. We found that the
remaining APIs do not seem to leak any relevant information.

An interesting observation comes from the vulnerable 3
APIs affecting only Android 9. In fact, they are all new features
introduced in existing services, which were also available in Android
8.1. This continuous evolution underlines the importance of having
an automatic analysis tool to flag these potential problems.

Disclosure. We disclosed our findings to the Android security team.

Six APIs have been acknowledged and fixed by Google and a CVE
was assigned. Table IV provides a detailed list of the APIs fixed and
the assigned CVE. We believe this confirms how seriously Google
is considering this class of vulnerabilities. For what concerns
the remaining APIs, the Android security team considered them
as “won’t fix” due to the type of permission protecting the API.
However, it is important to highlight how these APIs are exposing to
the attacker sensitive information about the state of the apps running
on the phone. Moreover, we note how real-world malware already
abuse similar APIs that require the same permission, as documented
by recent findings by security companies [15], [20]. We believe it
would be possible to secure these APIs by adjusting the granularity
of the information returned.

E. Results Comparison with SCAnDroid

To further illustrate the performance of our system, and to show
how our contributions play a key role on the automatic identification
of state inference vulnerabilities, we compare our results against
those obtained by SCAnDroid on the same Android version —
Android 8.1.

Overall, our system was able to correctly detect all the
vulnerable APIs identified by SCAnDroid. However, we note that
most of the vulnerable APIs identified by SCAnDroid belong to
bugs that, in this paper, we categorized as leaking information
related to the system (like the total amount of bytes written by apps,
or aggregate statistics about the disk usage) and network states (like
the overall network usage), as described in Section VII-D. While
these bugs are interesting and they can be exploited with template
attacks, as showed in [27], it is not trivial to weaponize them.

Our approach focuses on finding vulnerable APIs—and this is
one first difference with SCAnDroid—such as those ones that allow
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an attacker to pinpoint which app the user is currently interacting
with, or that at least do not require building “templates” for each
target victim app. As presented in Table IV, only two of the bugs
we found were marked as Duplicate, while all the other ones were
previously unknown. All the APIs identified by our system are
generic and are not related to a specific feature or configuration of a
specific application, making our findings more generic and scalable.

Extending the attack surface allows us to examine components
and methods that were not even taken into account by SCAnDroid.
To determine how many methods SCAnDroid missed, we identified
the server-side methods that are not reachable from the Managers.
To collect this number, we first extracted all the server-side
methods defined in the Android OS, version 8.1, obtaining
5216 methods. Then, we extracted “interesting candidates,” as
described in Section VI-B: we identified that only 1,384 of them
are actually potentially reachable by an attacker and thus represent
the attack surface analyzed by SCAnDroid. Since SCAnDroid
uses as entrypoints only a subset of “client-side” methods, we then
determined how many of the 1,384 methods are effectively reachable
from the Managers. To this end, we computed a forward callgraph
for each of the methods defined in the Managers. If one considers
only client-side methods, only 835 methods, out of the 1,384,
are potentially reachable (∼60% of the attack surface). However,
SCAnDroid does not take into account all client-side methods, but it
applies a filtering process based on the method’s name. We applied
the same filtering process on the client-side methods and found that
SCAnDroid would be able to reach only 616 server-side methods,
which is only about the 44% of the attack surface. We also note how,
for what concerns Android 8.1, the 33% of the bugs we identified
(5 out of 15) resides in the server-side component. This shows, once
again, that the server-side attack surface should not be overlooked.

To conclude, our analysis correctly detected 10 vulnerable
APIs that satisfied SCAnDroid’s filtering. Thus, these APIs have
been tested, but were not marked as vulnerable. All 10 APIs are
present in Android 8.1, are exposed in a Manager and match
the prefixes constraints that would pass SCAnDroid’s filter (e.g.,
getProcessMemoryInfo, queryUsageStats, or queryAndAggrega-
teUsageStats). We believe that a possible explanation relates to how
SCAnDroid stimulates the APIs or how it processes the return value.
An emblematic case is getProcessMemoryInfo(int[] pid). This API
leaks statistics about the memory usage of running applications.
However, to detect this leak, the API needs to be invoked with a
list of valid “process id,” otherwise a set of NULL is returned. We
believe SCAnDroid might have misclassified this API due to not
passing proper arguments. Since our system identified “pid” as a
meaningful argument, our analysis handles this case and spots the
vulnerable API. This is another important result that shows how the
argument generation we applied, described in Section VI, improves
the effectiveness of the identification of vulnerable APIs.

VIII. CASE STUDIES

This section discusses three case studies to demonstrate how the
vulnerable APIs we identified can be used to mount phishing attacks.
We opted to discuss specific instances of vulnerabilities highlighting
three different categories of problematic APIs. For the interested
reader, Appendix XII-A reports concrete proof-of-concepts on how
these APIs can be exploited in a real attack scenario. Note that
to prove the feasibility of exploitation of all the vulnerable APIs
identified by our system and listed in Table IV, we provided to
Google, during the disclosure process, a Proof-Of-Concept for each

API to show how it can be used to infer which application is going
to be used by the victim.

isAppForeground - CVE-2019-9292. This API is implemented by
the ActivityManager system service: it takes as argument
a Linux user id (UID) and it returns a boolean indicating if the app
run, by this user, is in foreground. Since in Android each installed
app is assigned a different UID, and since the UID→mapping can
be easily obtained, an attacker can invoke multiple times the API
to check when the target app goes to foreground (the proper time
to spoof its UI). This API thus represents the “ideal” case for an
attacker, as she can monitor the state of any app installed on the
device. This API does not require any permission.

getDataLayerSnapshotForUid - CVE-2020-0343. This API is
implemented by the NetworkStats system service, and it is only
available through the AIDL interface. This API takes the UID of
a target app and it returns a NetworkStats object encapsulating
network statistics for said app. Our framework identified multiple
fields leaking sensitive information; two of them — namely set
and txPackets — can be used in combination to successfully mount
a state inference attack. The txPackets field indicates how many
packets the app transmitted since the boot, while the set field
indicates whether the packets are sent while in foreground. When
the malware notices an increment of txPackets, in conjunction with
a change in the set field, it can infer that the target application is
performing, for example, a login, and can react accordingly. This
API requires the ACCESS_NETWORK_STATE permission: since
this permission is “normal,” it is silently granted at installation time.

queryEvents. This API is implemented as part of the UsageStats
system service. It takes as input a range of time and returns a
UsageEvents object, which embeds information about all the events
triggered by the apps running during that time span. Our framework
identified a number fields leaking information about the state of
an app, which, if combined together, can be used to mount a state
inference attack. In particular, an attacker can combine mPackage,
that indicates the package name of the app performing the “event,”
and mEventType, that specifies the type of the event. Note that
other combinations are effective as well. In this case the attacker
is interested in monitoring for a MOVE_TO_FOREGROUND
event, which indicates that the app moved to foreground, the
ideal moment to show the spoofed UI. This API requires the
PACKAGE_USAGE_STATS permission, which the user needs to
manually approve. Nonetheless, real-world malware has been found
in the wild that had the same exact requirements, showing that this
request is legitimate [20], [28], [15].

IX. DETECTING STATE INFERENCE ATTACKS

We believe that automatically identifying APIs that make the
system vulnerable to state inference attacks is a good first step
forward to eradicate this problem. However, all existing techniques
combine static and dynamic analysis, which potentially open these
approaches to false negatives. To protect users from unknown
vulnerabilities, we studied the feasibility of an additional component,
which aims to be a runtime defense and detection system to identify
state inference attacks at the moment they occur. The design of this
component is based on the following two intuitions.

The first one, which is somehow well known, is that all existing
state inference attacks need to implement polling behaviors. With
this term, we refer to an application invoking multiple times a set
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of APIs within a short time window. Malware exploiting vulnerable
APIs to mount state inference attacks need to use polling to ensure
they can race the target app and make their spoofed UI appear on
top at the right time.

The second intuition, which, to the best of our knowledge, has
not been explored before, is based on the following key hypothesis:
benign apps rarely rely on polling and, when they do, the nature of
their behaviors is different than those of malicious apps. Our hypoth-
esis, if verified, would consequently imply that the polling behavior
could be used as a strong indicator to distinguish between malicious
and benign apps, where with “strong indicator” we refer to a signal
that would not lead to an unacceptable amount of false positives.

This section is organized as follows: 1) We present and discuss
the results of the analysis on a dataset of malicious apps. The aim of
this analysis is to identify peculiarities in terms of APIs invocation
frequencies adopted by phishing apps (§IX-A); 2) we perform an
analysis on a dataset of about 2K benign apps: this acts as our
“training set” to verify the hypothesis mentioned above (§IX-B); 3)
We used the collected insights to guide the design of an on-device
detection system (§IX-C); 4) We discuss the implementation of
the system, and an evaluation on a different dataset of 8K benign
apps (which acts as our “testing set”), and its performance (§IX-D);
5) we compare our work with the most closely related work,
LeaveMeAlone [38] (§IX-E).

A. Peculiarity of Phishing Applications

To verify the validity of our hypothesis, we first perform an
empirical study on malicious applications. For this study, we selected
a dataset of 50 samples from all the families of Android malware
that 1) were discovered in the last four years and 2) are known to
mount state inference attacks. In particular, we analyzed samples
and variants from: Anubis, LokiBot, ExoBot, BankBot,
RedAlert, MisteryBot, BianLian, Asacub, and
Gustuff [15], [28], [32], [21], [17], [20], [29], [16], [31]. For
each family, we analyzed both “malware-only apps” — apps
containing only the malicious code — as well as “repackaged apps.”
Analyzing sophisticated malware is not always an easy task: we
encountered different situations that made the (automatic) dynamic
analysis very challenging. In these specific cases, for example,
we found apps performing integrity checks on the device or anti-
hooking techniques, as well as starting the malicious behavior only
after some time or after certain actions, probably to avoid Google
Bouncer analysis. Moreover, many samples tried to communicate
first with a remote C&C server: since most of these servers were
“unreachable” at the time of test, the malware did not start any activity.
To overcome these difficulties, we decided to manually analyze
the samples looking for the code in charge of performing the state
inference attack. For each family, we extracted the methods used to
perform this task. Our analysis highlighted different techniques used
to mount this attack. To perform polling, malware authors are using
different mechanisms like registering a repeated-delayed task with
postDelayed() or AlarmManager. Another technique
relies on anonymous Thread or IntentService to invoke
the vulnerable API every second. Lastly, an even more aggressive
technique consists in executing all the “monitoring logic” inside a
while loop, without any delay between invocations. It is possible
to model and define a common behavior shared among all the fam-
ilies we analyzed: we found that all malware poll with a maximum
delay that spans from 600ms to one second (i.e., a frequency of at

least 1Hz) and that a malware never stops this behavior once it is
started (i.e., polling is performed for a “sustained” amount of time).

During the years, malware evolved and changed frequently
the set of vulnerable APIs and techniques used to identify the
starting of a sensitive application to target with a phishing attack.
The techniques used by a malware highly depend on the API
level the device of the victim is targeting. For example, if the
device targets an Android lower than 5.0, the malware will
adopt a combination of both getRunningTasks(int) and
getRunningAppProcesses(). Instead, if the device targets
a version between 5.0 and 6.0, then the malware can still rely on
the information exposed by the proc filesystem (/proc).

However, as discussed in Section II-C, Google fixed all the
known components leading to a leak of sensitive information like
the state of an application. Hence, the only available attack vector
for the malware is to rely on the APIs protected by the well known
BIND_ACCESSIBILITY_SERVICE permission (a11y) [12].
As it is possible to see, some sophisticated malware like Bankosy,
Cepsohord, and MysteryBot started moving from the
a11y towards exploiting vulnerable APIs protected by the
PACKAGE_USAGE_STATS [20], [35], [5]. This transition might
also be forced by the fact that Google is going to remove all the
applications using the BIND_ACCESSIBILITY_SERVICE
permission for anything except helping disabled users [8].

Moreover, [35] highlighted how the adoption of the
PACKAGE_USAGE_STATS permission amongst malicious
applications published on the official Google PlayStore is growing.
This is an important result showing that, even if Google is not going
to fix the vulnerable APIs we identified in Section VII, they are
used by malware developers in real-world attacks [20], [35].

The PACKAGE_USAGE_STATS permission, like BIND_-
ACCESSIBILITY_SERVICE, can only be granted through the
Settings application: this means that a malware cannot ask at
runtime this permission. However, as for the attacks based on a11y,
the malware can directly display the Settings application and lure the
user through social engineering to grant the permission. As presented
in [5], malware uses social engineering while masquerading as
Google Chrome by mimicking the application’s icon and name. This
technique tricks the victim into thinking she is granting the PACK-
AGE_USAGE_STATS permission to the Google Chrome app,
while instead, she is granting the permission to the malicious app.

B. Peculiarity of Benign Applications

As the next step, we characterize whether and how benign apps
perform polling-like behavior, and whether there are some features
that can be used to distinguish them from malicious attempts.
To this end, we built a dataset of 10,108 benign apps. To select
a representative dataset, we consulted AndroidRank [3] to find
popular apps, which we then crawled from the Play Store. The
resulting dataset is constituted as follows: 9,066 “top apps” with
at least 50M installations, while the remaining 1,042 were chosen
randomly from apps with a number of installations ranging from
10M to 50M. From this dataset, we built two different datasets: a
“training set” of 2,042 apps (roughly 20% of the dataset), and a
“testing set” with the remaining 80% of it.

The rationale behind this choice is the following: we first inves-
tigate how benign apps perform polling by only considering apps
within the training set. Based on the insights of this step, we then 1)
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enumerate a number of observations that can be used to distinguish
between benign and malicious samples and we use them to build a
detection system; 2) we evaluate the performance of the proposed
system (in terms of miss detections) by analyzing the apps in the
testing set — which are not considered during the design/training
phase. We believe this two-step approach helps addressing concerns
related to how our evaluation would generalize to a bigger dataset.

Testing Environment. To study the runtime behavior of benign
apps, we instrumented the Android OS (Android 9 running on a Pixel
3A) to log all binder communications and filesystem activities for a
given application. This log contains information such as the service
and the API invoked by the app, and the correspondent timestamp.

Analysis System. To identify a “polling-like behavior,” we tuned
the analysis to flag all the syscalls and APIs invoked at a rate of
at least once every two seconds (i.e., 0.5Hz), for at least 60 seconds.
We believe these thresholds are a “safe assumption,” since 1) the
threshold frequency is twice as low as the minimum frequency
rate at which malware performs polling activities (i.e., 1Hz) and
the phishing attack would necessarily incur a delay of 2 seconds,
making it visible to the victim; and 2) the malware does not stop
polling activities after it has started it (see Section IX-A).

A very important aspect of the proposed system is that it does
not look for polling by just considering a single API, but it considers
the overall number of invocations. That is, instead of monitoring
whether a specific API A is invoked more frequently than once
every two seconds, the system monitors if the app has cumulatively
invoked any API more frequently than our threshold. This design
choice introduces the concern of false positives (which we fully
address in the remaining of this section), but prevents an attacker
to bypass our detection by simply alternating the invocation of two
(or more) different APIs, thus lowering the per-API frequency.

We now report the results of this analysis. We also note that this
analysis system, configured with the thresholds we mentioned, is
able to detect all the malware samples in our dataset.

Results and Observations. We now discuss the results and the
observations after the execution of each of the 2,042 apps of the
training set within our instrumented environment. We executed each
app for five minutes. We post-processed the execution traces on our
analysis system to identify if also benign apps perform polling, and,
if so, on which component and at which frequency rate. From the
results of the analysis, we draw the following two observations:

1) Benign apps do perform polling. We found a significant number
of apps that were flagged by our system. More interestingly, we
analyzed the traces to identify which APIs were being flagged and
we identify frequent patterns belonging to the following categories:
a) Graphical User Interface: to draw the content of the app’s view,
the system relies on polling to design the various component forming
the UI of the app; b) Audio and Video: similar to the GUI, multimedia
components also rely on polling. In fact, to reproduce the audio and
video stream, the multimedia services needs to refresh, for each
frame, the video and audio buffer. c) DRM: when playing rights-
protected content, the DRM service first decodes and then forwards
to the multimedia service each chunk of the file to play. d) System
Services Internals: operations that are performed each time a system
service is used by an app. For example, when an application interacts
with a system service that operates on global data, a new Thread
is started and multiple acquireWakeLock and release-
WakeLock APIs are invoked to handle tasks synchronization. In

all these cases polling is performed by system services “on behalf
of the app.” That is, even though the polling logic is implemented
in the system service, it is still related to the context of the app since
the service uses the app’s identity for the subsequent invocations.

We investigated each of these behaviors in detail, and we found
that none of these APIs can lead to abuse or state inference attacks,
and we thus believe that they can easily and safely whitelisted.
Table V (in Appendix) provides a very detailed list of our insights.
We also note that the four groups above capture polling behavior for
all apps in our training dataset except for six of them: these six apps
were found to be App Lockers, which we discuss in Section IX-D.

2) Bootstrap phase. Another interesting observation is that we
have noticed how apps often show a spike of activity during their
“bootstrap time.” This, intuitively, makes sense: when the app is
started, it needs to perform a number of one-off setup operations,
e.g., querying system information, setting up in-memory data
structures, requesting permissions. However, we also noted how
the level of activity (measured as the frequency of API invocations)
decreases as the application transitions from its “bootstrap” to its “at
rest” phase. We note how this characteristic is profoundly different
from state inference attack malware behavior: once the polling
behavior is started, it is never terminated.

C. Proposed Detection System

Based on the results of the previous empirical study, we
implemented a system for the detection of polling behaviors on top
of Android 9, by modifying the execTransact method of the Binder
class, which is invoked any time a system service receives a request.
This design choice prevents malicious applications to circumvent our
detection system, since our modifications affect only the (privileged)
server side of the Binder subsystem. Our system is setup to raise
alerts for apps performing API invocations at a rate of at least x
invocations per y seconds (with x=1 and y=2, i.e., a threshold
minimum frequency of 0.5Hz), for at least z seconds (with z=60, as
previously discussed). Our system is also setup to not consider API
invocations during a “bootstrap phase” of a given app, where with
“bootstrap phase” we indicate the first k seconds from the app’s start
up. For our system, we empirically selected k=90, but, for the sake
of completeness, the evaluation section discusses how the accuracy
of the system changes when k varies (between 0 and 5*60 seconds),
and we show that this threshold affects the results in a minimal way.

Implementation-wise, the system creates a circular buffer for
each running uid in the system. The length of each circular buffer
depends on the number of invocations allowed in a given timeslot (x).
We start the monitoring phase after the bootstrap time k, and we do
not consider APIs that have been whitelisted (i.e., the “benign” and
not-possible-to-abuse APIs discussed above belonging to one of the
four categories). For each service invocation, our system stores the
current timestamp in the circular buffer associated to the appropriate
uid. When the circular buffer is full, the system checks whether the
elapsed time from the first invocation in the buffer is lower than y
seconds. Due to the properties of circular buffers, this is the case if
and only if we have recorded x services invocations in less than y
seconds. This means that the caller app has exceeded the invocations
rate that we are interested in detecting. If the threshold is exceeded,
our system enters a so-called “alert mode” and stores the time at
which the polling behavior started in an additional variable (one for
each uid). When handling the following invocations of the service
while in alert mode, our system checks whether the polling behavior
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is sustained for at least z seconds, and it does so by comparing the
content of this additional variable with the current time. If the differ-
ence is greater than z, our system raises an exception (preventing the
service’s request to be completed) and it raises a warning to the user.

Note that if subsequent invocations do not meet the minimum
threshold for polling, the system leaves the “alert mode” and it resets
the internal state. We note how this system allows for the detection
malicious apps performing state inference attacks polling on a single
API, but, more importantly, it would also detect situations for which
the malware uses multiple (different) vulnerable APIs to infer the
state of the target application. This is possible due to using a “single
bucket” for all APIs invoked by the same app (identified by their
Linux uid).

To err on the safe side and to avoid false negatives, for our
defense mechanism we set a very conservative detection threshold to
half the frequency of all real-world malware samples. This allows us
to detect all current malware samples analyzed in Section IX-A, and
even if these malware samples would cut their polling frequency in
half, our system would still detect them. In principle, a malware that
reduces even more its polling frequency might bypass our detection
system. However, to mount a successful phishing attack, timing is
a fundamental component. Thus, lowering down even more than
half the polling frequency, would make the malware and the attack
ineffective, since there would be a very visible delay between the
launch of the legitimate app and the spoofed one. For example, a
situation where the user clicks on the legitimate banking app icon,
and she starts to interact with the application, and only then, say
after two seconds, the malware displays its spoofed banking app UI
asking again for credentials, would certainly raise some warnings
to the victim and the attack would be noticed.

D. Evaluation

We evaluated our on-device detection system on the testing
set, composed by 8,066 apps. We stress that we did not access
and/or inspect these apps before having finished developing the
entire system. In other words, we believe this represents a realistic
and fair evaluation on how our system would fair in practice. Our
results show that the system would flag only 30 apps as potentially
problematic, which represents only the 0.37% of the entire dataset.
We note that this result was obtained by setting a threshold for
k = 90 to identify the bootstrap phase. To evaluate the impact
of this threshold over the results, we varied it from zero seconds
(i.e., we start monitoring the application as soon as it starts) to 240
seconds (i.e., we start monitoring the app 4 minutes after it starts):
the number of false positives is not significantly affected — it varies
from 39 to 25. Figure 4 shows a graph depicting how this number
changes while varying the bootstrap phase threshold. We also note
that this threshold does not affect the detection of malicious apps,
since all malware samples never stop polling after they have started.

We now present a detailed analysis of the apps detected as
problematic by our system. For this step, we consider out “worst
case” — we consider the configuration that raised the highest
number of false positives (k=0, 39 false positives). The goal is to
analyze the polling behavior exposed by these apps and determine
the nature of their behavior. We identified three groups of apps with
similar patterns, which we discuss next.

The first group is composed by 10 apps polling only one of the
vulnerable APIs we identified, getProcessMemoryInfo. In
these apps, the code performing the polling belongs to a third-party
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Fig. 4: The following plot shows the impact of the bootstrap phase
in relation to the number of false positives identified by our system.
As it is possible to see, when the bootstrap time is none, the number
reaches 39 and it decreases as the application execution time
increases. The lowest number of false positives is reached if the
bootstrap phase is greater or equals to 210 seconds.

library for crash analytics that constantly traces the usage of the
app’s memory. However, this API is invoked to only monitors its
own memory. We note that Google has now fixed this API, and it
would allow an app to only monitor its own memory — making
the usage of this API safely whitelistable.

The second group is composed of 10 apps, which embed ads
libraries that aggressively poll several APIs to monitor the status
of the network, probably to collect information related to nearby
networks, with the goal of tracking the user [1]. We believe that users
would be pleased to suppress this privacy-invasive functionality.

The third group of 9 benign apps is constituted by “App Lockers.”
These apps work by monitoring which app the user is interacting
with, and by “locking” the device if the user is interacting with an
app she should not interact with (e.g., the Settings app). These apps
were initially popular as a way to protect the user phone, but they
became less popular with time, and they are now considered “grey
area.” Google also introduced additional security features that make
these apps of dubious utility. With that being said, these apps are
problematic for our system as they do rely on polling (in this case,
the queryEvents API), making this behavior indistinguishable
from malware. Our system, as is, would block these apps — and
rightfully so. If a user truly wants to use these apps, she can of
course whitelist them. But given their declining popularity over
time, we argue this is acceptable.

The last group is formed by 10 apps whose polling behavior is
caused by bad coding practices: as a representative example, we iden-
tified an app continuously invoking the getRunningServices
API with no sleep between two invocations.

For what concerns the malware detection, we evaluated our
system over synthetic apps configured as real malicious applications.
The techniques used to mimic the malicious behaviour of the apps
are described in Section IX-A. For these apps, our system was able
to correctly pinpoint the malicious behaviour of all the samples and
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thus, in a real scenario, it would have been able to detect and stop
the attacks.
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Fig. 5: Plot comparing the time needed to complete the benchmark
for an unmodified AOSP system and one powered with our
polling-detection system. The highlighted points are the arithmetic
means computed over 100 runs of the benchmark. The red boxes
represent their standard deviations, while the black lines indicate the
minimum and the maximum times recorded for both systems. Our
polling detection system is accountable for an overhead of ∼98.2 ms
per benchmark run (1.98%) in average, corresponding to ∼9.82 µs
per service API invocation.

Performance Consideration. The design of our detection system
relies on optimized data structures and a fast algorithm. This allows
our system to handle each service invocation in constant time (i.e.,
O(1)), independently from the number of services in the system,
the number of running apps, and the rate at which system services
are invoked. An approximation of the required memory is given by
napps×(x+1)×8bytes, where napps is the number of running
apps and x the entries in the circular buffers. In an hypothetical
scenario of 50 apps invoking multiple services, we estimate that
our system needs in total less than 10KB of memory. We measured
the performance overhead of our detection system over the vanilla
version of AOSP by performing a micro benchmark, consisting in
invoking multiple times the same system service and measuring the
time needed for the system to handle all the requests. More in details,
we invoked ActivityManager service’s getAppTasks API for 10,000
times. We repeated the test 100 times for both our modified version
and a vanilla version of AOSP. For the purposes of this benchmark,
we modified our system to prevent it from raising exceptions when
the polling threshold is surpassed: we do this to not invalidate the
results of the benchmark, since returning an exception to the caller is
much faster than actually invoking the API. Figure 5 (in Appendix)
shows the results of the benchmark in terms of the average and
the standard deviation of the time needed to serve 10,000 requests.
In average, our detection system is responsible for an overhead of
only the 1.98% with respect to the AOSP baseline. We believe that
such a low overhead is acceptable. Additionally, from a usability
perspective, we did not notice any difference while using either a
device running the baseline AOSP or our detection system.

E. Comparison with LeaveMeAlone

LeaveMeAlone [38] is a recent work whose main goal is to
detect and block malicious applications performing a runtime
information gathering attack on Android, and it is thus related to
our work. This section discusses LeaveMeAlone in detail and it
offers a direct comparison showing how it is affected by significant
limitations when tasks to deal with phishing attacks.

A runtime information gathering attack consists in a malicious
app stealing or inferring sensitive information about the runtime data
computed in the context of a target application by analyzing the us-
age of shared resources. The core component of [38] is named “App-
Guardian,” which runs as an unprivileged application. It is in charge
of monitoring the runtime behavior of the running apps and of detect-
ing which are manifesting a suspicious behavior. To identify these
apps, the system relies on collecting static information of the installed
apps like suspicious permissions. For these suspicious apps, the sys-
tem collects runtime behavior when they are running in background
(e.g., thread names, CPU scheduling, kernel time). These behavioral
information are collected by accessing the procfs subsystem.
The identification of these suspicious apps plays a key role when
a target app — protected by the Guardian — is started by the user:
when this situation occurs, the system stops all the suspicious back-
ground processes by creating a “safe execution environment” for the
target app: By not letting the suspicious apps running in background,
the “runtime information gathering” attack is not feasible anymore.

Since our main focus is on detecting polling to prevent phishing
attacks, one may think that LeaveMeAlone could be a good candi-
date to address the same problem. However, while LeaveMeAlone is
certainly valuable in many situations, we argue it would be affected
by many limitations when tasked to prevent phishing attacks.

First, AppGuardian relies on previously known vulnerabilities
to collect runtime information regarding a specific app. Since it
is designed to run as a non-privileged application, all (present and
future) vulnerabilities of this kind will be eventually patched by
Google [18], preventing this approach to work. As a case in point:
all sources of side channels mentioned in the LeaveMeAlone paper
have been fixed in recent versions of Android.

Second, we note that several of the vulnerable APIs found by
our framework do not require any sensitive permission, making
malicious apps using these bugs challenging to be detected by
automatic vetting processes. Our approach, instead, only relies on
the presence of polling-like behaviors and would detect these cases,
independently from the requested permissions.

Third, AppGuardian heavily relies on whitelisting to make
their approach work. Quoting the paper, “Overall, among all the
popular apps, Guardian only needs to suspend 19.3% of the apps”
when referring to a dataset of 475 apps, which is 92 apps. To avoid
creating usability problems, the paper states that they rely on a
whitelist: “The whitelist here includes a set of popular apps that pass
a vetting process the server performs to detect malicious content
or behaviors. In our implementation, we built the list using the top
apps from Google Play, in all 27 categories.” Our approach, instead,
would only be affecting about 40 apps on a dataset of 10K dataset,
which is 20x bigger than what used in previous work.

Last, AppGuardian is vulnerable to race conditions when tasked
to detect on-going phishing attacks. In fact, both the malicious app
and the Guardian are relying on the same side channels: if the
malicious app wins the race (and detects a victim app has been
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started), it can go to foreground before Guardian has a chance to kill
it. However, once the malicious app is in foreground, Guardian does
not have a chance to suspend it — third-party apps are not allowed
to do so (they can only suspend apps that are in background). Our
approach is not affected by this limitation. We reached out to the au-
thors of [38], they acknowledged the presence of the race conditions,
and they confirmed that, in this scenario, the Guardian is not able to
stop the malicious app but only to inform the user with a notification.

We acknowledge that this comparison is a high-level one, but we
argue that it is the best we could make, for multiple reasons. First, all
the side-channels used are now fixed, and any evaluation would con-
sequently show negative results. Second, a significant component of
the LeaveMeAlone design is to rely on an off-market vetting system
based on the detection of dangerous permissions. There are no details
about this aspect in the paper and it would be very challenging to
reproduce. Moreover, as shown in Table IV, we found several APIs
that do not require any permission. Thus, once again, this would lead
to obvious bypasses of the system. The last challenge that would
limit any “more direct” comparison is due to the fact that the source
code for neither the app nor the vetting system is available.

X. LIMITATIONS

We believe our work represents a step forward in the detection
of vulnerable API leading to a state inference and to detect malicious
applications exploiting these vulnerabilities to perform phishing
attacks. However, we acknowledge that our approach is affected
by the following limitations.

Reliance on availability of source code: Currently, our tool
requires access to the source code of the Android framework.
From the source code, it is possible to extract the semantics of the
arguments, which is a fundamental step when creating argument
values to invoke a given method. This, therefore, limits our tool
to be used only in AOSP. Thus, our framework cannot be used to
test systems from other vendors whose source code is not available,
such as Samsung or Huawei. Note that, however, our system could
be extended to bring the analysis at the bytecode level, and therefore
would not require access to the source code. At the same time, we
would lose important information such as the name of the arguments,
which are used to generate meaningful values. To solve this last
problem, our system could implement a more deterministic model in
constructing and filling in arguments required for the polling APIs,
making the system working on closed-source non-AOSP systems.

Challenges in detecting new phishing variants: At the moment,
our on-device detection system can detect and stop the most classic
of phishing attacks, the one in which the attacker infer which is the
application that will be used by the victim and, at the right time,
shows the spoofed and malicious activity to steal credentials. This
is the most used phishing variant and its effectiveness is well known.
However, we recognize that other interesting variants of this attack
are possible. For example, the attacker could execute her attack while
the victim application is running, showing a generic error message
and luring the victim to re-enter his credentials. Or, the attacker may
show an error message to the victim, even when the application is
not in use, in the hope that the victim enters the credentials. At the
moment, our system is not able to identify and block these variants
because these attack configurations are not necessarily based on
polling. We note that, to date, the effectiveness of these new variants
is unknown, and that it would be interesting to perform a user study.

XI. RELATED WORK

Detecting Side-Channel on Android. Several previous works
focused on finding vulnerable APIs leading to state inference attacks.
One such example is by Chen et al. [6], which found an information
leakage exploiting the shared-memory information present in the
/proc/$PID/statm file. Bianchi et al. [4] also found multiple
leaks in the “procfs” filesystem as well as vulnerable APIs that can be
used to mount state inference attacks, like getRunningTasks.
Two more recent proposals are [12], which exploited a11y infor-
mation leaks to also mount phishing attacks, and [11] which used
the transaction_log of the Binder component to list the
transactions occurring between processes. These works were mostly
based on manual analysis and inspired the community to work on
automatic detection of such vulnerabilities: ProcHarverster [26],
SCAnDroid [27] (already discussed),and our own work.

Phishing Attack and Defense. Phishing on Android is a form of
User Interface attack [10]. This paper focuses on the configuration
known as “task hijacking” and it has been subject of different works.
Several of them tried to identify new techniques to mount this attack,
like [12] [24] and [2]. Ren et al. [23] show how it is possible to mount
“task hijacking” attacks by exploiting vulnerabilities of the Android
multitasking and the Activity Manager Service design. However,
task hijacking is not the only available configuration: Xu et al. [34]
identified how it is possible to abuse fake notifications and fake
icons to lure the user into interacting with a malicious application
without exploiting side-channels. Yang et al. [36], instead, exploited
“Differential Context Vulnerabilies,” a class of vulnerabilities and
design flaws afflicting WebView, to mount phishing attack. On
the defensive side, several works tried to eradicate the phishing
problem on Android. Longfei et al. [33] combine several OCR
techniques to detect spoofed UI and verify if the activity shown
to the user is authentic or spoofed. A similar approach is shown
in [19]: they introduce the “Visual Similarity Perception” technique
to identify forged UI. Another work in the same category is [22]: it
designs the Android Window Integrity policy system which makes
sure that a sensitive activity cannot be obscured by other activities.
Cooley et al. [7] instead, introduces the concept of Trusted Activity
Chains to protect apps from phishing attacks by defining a sequences
of activities that should not be interrupted. This sequence cannot be
hijacked, otherwise a security warning will be raised. One last related
work is “LeaveMeAlone” [38], already discussed in Section IX-E.

XII. CONCLUSION

In this work, we show how the Android platform is still
affected by state inference attacks. We systematically extended the
attack surface, and we designed a new automatic framework that
discovered 18 new vulnerable APIs that leak sensitive information,
affecting both Android 8.1 and 9. As a second contribution, we
characterized polling behaviors in malicious and, more importantly,
benign apps, uncovering differences that allow their proper
classification. We leverage these findings to design and implement
a new on-device detection mechanism that blocks state inference
attacks at their root, even when exploiting unknown vulnerable
APIs, with a negligible overhead, and without sacrificing usability.
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APPENDIX

A. Case-Study

(a) This code can be used to exploit isAppForeground API: the
attacker only needs to provide the target UID. This API does not
require permission to be invoked

1 void attack(int uid) {
2 final Handler handler = new Handler();
3 handler.postDelayed(new Runnable() {
4 /* Executed every second */
5 public void run() {
6 try {
7 /* Obtain a reference to IActivityManager */
8 if (iam.isAppForeground(uid)) {
9 /* Hijack the original activity */

10 }
11 handler.postDelayed(this, 1000);
12 } catch (Exception e) {
13 /* Handle the exception */
14 }
15 }, 1000);
16 }

(b) Pseudo-code to exploit getDataLayerSnapshotForUid API

1 /* First measure of txPackets */
2 public long prevTxPackets;
3 void attack(int uid) {
4 final Handler handler = new Handler();
5 handler.postDelayed(new Runnable() {
6 /* Executed every second */
7 public void run() {
8 try {
9 /* Obtain

a reference to INetworkStatsManager */
10 NetworkStats

ns = inss.getDataLayerSnapshotForUid(uid);
11 /* 1 is for foreground data
12 Check if the application is sending

data and if is trasmitting in foreground
13 */
14 if (ns.set

== 1 && ns.txPackets > prevTxPackets) {
15 /* Hijack the original activity */
16 }
17 prevTxPackets = ns.txPackets;
18 handler.postDelayed(this, 1000);
19 } catch (Exception e) {
20 /* Handle the exception */
21 }
22 }, 1000);
23 }

(c) Pseudo-code to exploit queryEvents API

1 public long prevTime = System.currentTimeMillis();
2 public String TARGET_APP_PACKAGE_NAME = "com.bank"
3 void attack() {
4 final Handler handler = new Handler();
5 handler.postDelayed(new Runnable() {
6 /* Executed every second */
7 public void run() {
8 try {
9 UsageStatsManager usm

= (UsageStatsManager)getSystemService(Context.USAGE_STATS_SERVICE);
10 UsageEvents ue = usm.queryEvents(prevTime, System.currentTimeMillis());
11 prevTime = System.currentTimeMillis();
12 while (ue.hasNextEvent()) {
13 UsageEvents.Event e = new UsageEvents.Event();
14 ue.getNextEvent(e);
15 if (e.getPackageName().equalsIgnoreCase(TARGET_APP_PACKAGE_NAME)) {
16 if (e.getEventType() == 1) {
17 /* Hijack the original activity */
18 }
19 }
20 }
21 handler.postDelayed(this, 1000);
22 } catch (Exception e) {
23 /* Handle the exception */
24 }
25 }, 1000);
26 }
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B. API Whitelisting
Category API Example
Graphical User Interface (GUI) For this category, we whitelist APIs from the following classes:

• android.ui.ISurfaceComposer
• android.gui.DisplayEventConnection
• android.gui.IGraphicBufferProducer
• android.gui.SensorEventConnection
• android.view.IWindowSession
• android.hardware.display.IDisplayManager

The GUI system handles all the operations that allows the system
to display and render the UI of a given app. The application is in
charge, for instance, of declaring all the supported screen sizes
and pixel densities, but it does not have to handle the interaction
with the actual frame buffer. The GUI framework will handle,
behind the scene all the rendering operations and the rescaling,
if needed.

Audio and Video For this category, we whitelist mostly APIs from the android.media package. This
package, provides classes that manage various media interfaces in audio and video. For
instance, we whitelist:

• android.media.IMediaAnalyticsService
• android.media.IMediaCodecService
• android.media.IMediaExtractorService
• android.media.IMediaMetadataRetriever
• android.media.IMediaRouterService
• android.media.IMediaPlayerService
• android.media.IAudioService
• android.media.IAudioPolicyService

The Audio and Video services on Android is a complex
ecosystem formed of different components. Every component
is in charge of a specific task. For instance, when an application
wants to play an audio, it normally relies on the “MediaPlayer”
component, and performs operations like “start, stop, and pause.”
However, behind the scenes, all the whitelisted components
performs the tasks of handling the Audio, using the correct
Decoder and Coded, forward the audio to the proper hardware
interface and handle the refresh of the audio buffer.

Digital Rights Management (DRM) For this category, the whitelist contains the classes of the drm package, which handles
all the DRM framework.

DRM is a complex framework: it relies on plugins and it is strictly
connected with the “Media” system. In fact, DRM content are
normally audio and video file, protected with digital rights, that
are played by the system player’s. For example, every time the
app starts the DRM, a series of operations are done behind the
scenes, like loading different DRM Plugins, setup the connec-
tions with MediaPlayer and the Media System, to finally decodes
and then forwards to the player each chunk of the file to play.

System Services Internals This categories contains a variety of API that are used by the system, behind the scenes,
when dealing with different system components. For instance, the system automatically
handles from the “synchronization” operations for what concerns the access to shared
structures to the “reference counting” when dealing with Content Providers. We whitelist
APIs for the following services:

• ContentProvider
• PowerManager
• PermissionManager
• AlarmManager

As mentioned before, when an application use a system services
shared accross multiple apps, it does not have to handle all the
operation to acquire and release the lock. In fact, we noticed
these operations are handled directly by the service on behalf of
the app. It is possible to see the same behavior when dealing with
reference counting, for example when interacting with Content-
Providers or other components that can be shared across multiple
apps. Some of the APIs that we identified are used by the system
services to achieve these tasks are acquireWakeLock,
releaseWakeLock, or refContentProvider

TABLE V: The table summarizes and shows the different categories of APIs we whitelist on our on-device defense system. For each
category, we describe the classes, services, APIs, or packages we whitelist and we provide a detailed description with concrete example. We
manually investigated each of the APIs in our whitelist and none of these APIs can abused by malicious apps to mount state inference attacks.
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