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Abstract

Anubis is a dynamic malware analysis platform that
executes submitted binaries in a controlled environ-
ment. To perform the analysis, the system monitors
the invocation of important Windows API calls and
system services, it records the network traffic, and it
tracks data flows. For each submission, reports are
generated that provide comprehensive reports about
the activities of the binary under analysis. Anubis
receives malware samples through a public web in-
terface and a number of feeds from security orga-
nizations and anti-malware companies. Because the
samples are collected from a wide range of users, the
collected samples represent a comprehensive and di-
verse mix of malware found in the wild. In this paper,
we aim to shed light on common malware behaviors.
To this end, we evaluate the Anubis analysis results
for almost one million malware samples, study trends
and evolution of malicious behaviors over a period of
almost two years, and examine the influence of code
polymorphism on malware statistics.

1 Introduction

Malicious software (or malware) is one of the most
pressing and major security threats facing the Inter-
net today. Anti-virus companies typically have to
deal with tens of thousands of new malware sam-
ples every day. Because of the limitations of static
analysis, dynamic analysis tools are typically used to
analyze these samples, with the aim of understand-
ing how they behave and how they launch attacks.
This understanding is important to be able to de-
velop effective malware countermeasures and mitiga-
tion techniques.

In this paper, we set out to provide insights into
common malware behaviors. Our analysis and expe-
riences are based on the malicious code samples that
were collected by Anubis [1, 4], our dynamic mal-
ware analysis platform. When it receives a sample,

Anubis executes the binary and monitors the invo-
cation of important system and Windows API calls,
records the network traffic, and tracks data flows.
This provides a comprehensive view of malicious ac-
tivity that is typically not possible when monitoring
network traffic alone.

Anubis receives malware samples through a public
web interface and a number of feeds from security
organizations and anti-malware companies. These
samples are collected by honeypots, web crawlers,
spam traps, and by security analysts from infected
machines. Thus, they represent a comprehensive and
diverse mix of malware found in the wild. Our system
has been live for a period of about two years. Dur-
ing this time, Anubis has analyzed almost one mil-
lion unique binaries (based on their MD5 file hashes).
Given that processing each malware program is a
time consuming task that can take up to several min-
utes, this amounts to more than twelve CPU years
worth of analysis.

When compiling statistics about the behaviors of
malicious code, one has to consider that certain mal-
ware families make use of polymorphism. Since sam-
ples are identified based on their MD5 file hashes,
this means that any malware collection typically con-
tains more samples of polymorphic malware programs
than of non-polymorphic families. Unfortunately,
this might skew the results so that the behavior (or
certain actions) of a single, polymorphic family can
completely dominate the statistics. To compensate
for this, we analyze behaviors not only based on in-
dividual samples in our database but also based on
malware families (clusters).

For this paper, we performed an analysis of almost
one million malware samples. The main contribution
are statistics about and insights into malicious be-
haviors that are common among a diverse range of
malware programs. We also consider the influence
of code polymorphism on malware statistics. To this
end, we compare analysis results based on individual
samples to results based on malware families.
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2 Related Work

Researchers have extensively studied the malware
problem domain. One line of research has focused on
the extent to which certain classes of malware have
penetrated the Internet. For example, there have
been studies that quantify the size of botnets [17],
the number of executables infected with spyware [14],
and the number of malicious web sites that launch
drive-by downloads [16]. Another line of research
deals with tools to collect and study malware. Here,
researchers have introduced various forms of honey-
pots [3, 18], static analysis techniques [7], and dy-
namic monitoring tools [8, 19]. Finally, there are
proposals to detect and remove malware once it has
infected a machine, using either signature-based or
behavior-based approaches.

While previous research has shed light on many
aspects of malicious code, relatively little is known
about the behavior of malicious programs once they
infect a host. With behavior, we refer to the
interaction of a program with the host operating
system, other applications, or the network. Of
course, a few popular malware families are very well-
understood [13]. Also, folk wisdom associates with
malware behavior programs that read and copy their
own executables into the Windows system folder. Fi-
nally, network activity has been analyzed more thor-
oughly [11], possibly because it is more straightfor-
ward to collect and evaluate. However, there is lit-
tle knowledge about general, host-based interactions
that are characteristic for or common among a large
and diverse set of different malware families. For ex-
ample, we would like to know common mechanisms
that malware binaries use to propagate, to make their
programs persistent, and to evade detection. On one
hand, such information is valuable to better under-
stand the motives and goals of malware authors and
to see the ways in which malicious code evolves over
time. On the other hand, the information is crucial
for the development of better behavior-based detec-
tion techniques.

3 Dataset

In this section, we give a brief overview of the data
that Anubis collects. As mentioned previously, a bi-
nary under analysis is run in an emulated operating
system environment (a modified version of Qemu [6])
and its (security-relevant) actions are monitored. In
particular, we record the Windows native system calls
and Windows API functions that the program in-
vokes. One important feature of our system is that it
does not modify the program that it executes (e.g.,
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Figure 1: Anubis submission statistics.

through API call hooking or breakpoints), making it
more difficult to detect by malicious code. Also, our
tool runs binaries in an unmodified Windows environ-
ment, which leads to good emulation accuracy. Each
sample is run until all processes are terminated or
a timeout of four minutes expires. Once the analy-
sis is finished, the observed actions are compiled in a
report and saved to a database.

Our dataset covers the analysis reports of all files
that were submitted to Anubis in the period from
February 7th 2007 to December 31st 2008, and that
were subsequently analyzed by our dynamic analy-
sis system in the time period between February 7th
2007 and January 14th 2009. This dataset contains
901,294 unique samples (based on their MD5 hashes)
and covers a total of 1,167,542 submissions. Typi-
cally, a given sample is only analyzed once by our
analysis system. That is, when a sample is submitted
again, we return the already existing analysis report
without doing an actual analysis.

Figure 1 shows the number of total samples, the
number of new samples, and the number of actually
analyzed samples submitted to Anubis, grouped by
months. We consider a file as being new when, at
the time of its submission, we do not have a file with
the same MD5 hash in our repository. As one can
see, we have analyzed about fifty thousand samples
on average per month in the year 2008. When we
first launched the Anubis online analysis service, we
received only few samples. However, as the popular-
ity of Anubis increased, it was soon the computing
power that became the bottleneck. In fact, in July
and August 2008, we had to temporarily stop some
automatic batch processing to allow our system to
handle the backlog of samples.

Naturally, the Anubis tool has evolved over time.
We fixed bugs in later versions or added new fea-
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Figure 2: Number of distinct sources for each sample.

tures. Given that there is a constant stream of new
malware samples arriving and the analysis process is
costly, we typically do not rerun old samples with
each new Anubis version. Unfortunately, this makes
it a bit more difficult to combine analysis results that
were produced by different versions of Anubis into
consolidated statistics. In some cases, it is possible
to work around such differences. In other cases (in
particular, for the analysis of anti-sandbox techniques
presented Section 4.6), we had to confine ourselves to
results for a smaller subset of 330,088 analyzed PE
files. The reason is that necessary information was
not present in older reports.

3.1 Submissions

Figure 2 shows the number of different sources that
submit a particular sample to Anubis. The graph
illustrates that most of the samples we receive are
submitted by one source only. Even though the curve
decreases quickly, there is still a significant number
of samples that are submitted by 10 to 30 different
sources.

We have made the experience that measuring the
number of sources that submit a certain sample tends
to indicate how widespread a certain malware sam-
ple is in the wild. In fact, this premise is supported
by the results of the anti-virus scans that we run on
each sample that we receive. For example, if we con-
sider the samples submitted by one source, 73% of
the submissions are categorized by two out of five
anti-virus scanners as being malicious. In compari-
son, 81% of the submissions that are submitted by at
least 3 different sources are identified as being mali-
cious by anti-virus software. Furthermore, among the
samples that are submitted by 10 or more sources,
91% are identified as being malicious.

PE files (770,960) DLL files (75,505)
Drivers (4,298)
Executables (691,057)

Non PE files (130, 334) ZIP archives (17,059)
RAR archives (25,127)
HTML files (27,813)
Other (60,335)

Table 1: File types submitted to Anubis.
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Figure 3: Overview of used packers

One problem with running an online, public mal-
ware analysis service is that one can receive all sorts
of data, not only malware. In fact, users might even
try to submit applications such as Microsoft Word
or Microsoft Internet Explorer just to see how the
system reacts. Furthermore, unfortunately, not all
the submitted samples are valid Windows PE exe-
cutables [12] (around 14% are not). Table 1 shows
a breakdown of the different file types submitted
to Anubis. As can be seen from this table, fortu-
nately for us, most of the files that are sent to Anu-
bis can be analyzed. The category of non PE files
includes mostly different archive formats (ZIP and
RAR archives) and MS Office documents (such as
Word and Excel), but also a small number of shell
scripts and executables for different operating sys-
tems (such as DOS, Linux). According to SigBuster,
a signature-based scanner for packers, 40.64% of the
analyzed PE files are packed. Figure 3 provides an
overview of the most common packers.

3.3 Submission sources

Over the two-year time period that we have provided
the service, Anubis received samples from more than
120 different countries. Depending on the number of
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Observed Behavior Percentage of Percentage of
Samples Clusters

Installation of a Windows kernel driver: 3.34% 4.24%
Installation of a Windows service: 12.12% 7.96%
Modifying the hosts file: 1.97% 2.47%
Creating a file: 70.78% 69.90%
Deleting a file: 42.57% 43.43%
Modifying a file: 79.87% 75.62%
Installation of an IE BHO: 1.72% 1.75%
Installation of an IE Toolbar: 0.07% 0.18%
Display a GUI window: 33.26% 42.54%
Network Traffic: 55.18% 45.12%
Writing to stderr: 0.78% 0.37%
Writing to stdout: 1.09% 1.04%
Modifying a registry value: 74.59% 69.92%
Creating a registry key: 64.71% 52.25%
Creating a process: 52.19% 50.64%

Table 2: Overview of observed behavior.

Submitter Category % of total tasks
Category Members submitted

Large (1000-*) 20 89.1%
Medium (100-1000) 112 3.8%
Small (10-100) 1279 2.5%
Single (1-10) 30944 4.5%

Table 3: Submission sources.

samples submitted, we have grouped the Anubis sub-
mitters into four different categories: large, medium,
small, single. We define a large submitter as an entity
(i.e., a person, an organization) that has submitted
more than one thousand different (per MD5 hash)
samples. A medium submitter is an entity that has
submitted between 100 and 1,000 different samples.
A small submitter is an entity that has submitted
between 10 and 100 different samples, and finally, a
single submitter is an entity that has submitted less
than 10 samples. Table 3 summarizes our findings.

Note that there are 20 large submitters (with more
than one thousand different samples submitted) who
account for almost 90% of the Anubis submissions.
Interestingly, the number of single submitters is very
high. However, these users are only responsible for
about 5% of the total submissions. According to anti-
virus results that we run on every submitted sam-
ple, the medium submitters (probably represented
by malware analysts) are more reliable in submit-
ting malicious samples (i.e., 75% of their submissions
are flagged as being malicious). In comparison, only
50% of the samples submitted by single submitters

are identified as being malicious, suggesting that sin-
gle individuals are probably more likely to submit
random files, possibly to test the Anubis system.

4 Observed Malicious Behavior

In this section, we present detailed discussions on
the file, registry, network, and botnet activity that
we observed when analyzing the Anubis submissions.
The goal is to provide insights into malicious be-
haviors that are common among a diverse range of
malware programs. An overview of interesting ac-
tivity is shown in Table 2. In this table, we show
the fraction of samples that perform certain high-
level activity. We also provide the behavioral infor-
mation with respect to the number of malware fam-
ilies, approximated as clusters of samples that ex-
hibit similar behaviors [5]. It is interesting to ob-
serve that the differences are often not very pro-
nounced. One reason is that the clustering process
was using a tight threshold. That is, samples are
only grouped when they exhibit very similar activity,
resulting in a large number of clusters. Another rea-
son is that the activity in Table 2 is quite generic,
and there is not much difference at this level be-
tween individual samples and families. The situation
changes when looking at activity at a level where in-
dividual resources (such as files, registry keys) are
considered. For example, 4.49% of all samples create
the file C:\WINDOWS\system32\urdvxc.exe, but this
is true for only 0.54% of all clusters. This file is cre-
ated by the well-known, polymorphic allaple worm,
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and many of its instances are grouped in a few clus-
ters. Another example can be seen in Table 4. Here,
17.53% of all samples use a specific registry key for
making the malware persistent. When looking at the
granularity of clusters (families), this number drops
to 11.67%. Again, the drop is due to the way in which
allaple operates. It also demonstrates that using
statistics based on malware clusters is more robust
when large clusters of polymorphic malware samples
are present in the dataset.

4.1 File system activity

Looking at Table 2, we can see that, unsurprisingly,
the execution of a large number of malware samples
(70.8% of all binaries) lead to changes on the file sys-
tem. That is, new files are created and existing files
are modified.

When analyzing the created files in more detail, we
observe that they mostly belong to two main groups:
One group contains executable files, typically because
the malware copies or moves its binary to a known lo-
cation (such as the Windows system folder). Often,
this binary is a new polymorphic variant. In total,
37.2% of all samples create at least one executable
file. Interestingly, however, only 23.2% of all samples
(or 62% of those that drop an executable) choose the
Windows directory or one of its sub-folders as the tar-
get. A large fraction – 15.1% – create the executable
in the user’s folder (under Document and Settings).
This is interesting, and might indicate that, increas-
ingly, malware is developed to run successfully with
the permissions of a normal user (and hence, cannot
modify the system folder).

The second group of files contains non-executables,
and 63.8% of all samples are responsible for creating
at least one. This group contains a diverse mix of
temporary data files, necessary libraries (DLLs), and
batch scripts. Most of the files are either in the Win-
dows directory (53% of all samples) or in the user
folder (61.3%1). One aspect that stands out is the
significant amount of temporary Internet files created
by Internet Explorer (in fact, the execution of 21.3%
of the samples resulted in at least one of such files).
These files are created when Internet Explorer (or,
more precisely, functions exported by iertutil.dll)
are used to download content from the Internet. This
is frequently used by malware to load additional com-
ponents. Most of the DLLs are dropped into the Win-
dows system folder.

The modifications to existing files are less interest-
ing. An overwhelming majority of this activity is due

1Note that the numbers exceed 100% as a sample can create

multiple files in different locations.

to Windows recording events in the system audit file
system32\config\SysEvent.Evt. In a small num-
ber of cases, the malware programs infect utilities in
the system folder or well-known programs (such as
Internet Explorer or the Windows media player).

In the next step, we examined the deleted files in
more detail. We found that most delete operations
target (temporary) files that the malware code has
created previously. Hence, we explicitly checked for
delete operations that target log files and Windows
event audit files. Interestingly, Windows malware
does not typically attempt to clear any records of its
activity from log data (maybe assuming that users
will not check these logs). More precisely, we find
that 0.26% of the samples delete a *log file, and only
0.0018% target *evt files.

We also checked for specific files or file types that
malware programs might look for on an infected ma-
chine. To this end, we analyzed the file parameter
to the NtQueryDirectoryFile system call, which al-
lows a user (or program) to specify file masks. We
found a number of interesting patterns. For example,
a few hundred samples queried for files with the end-
ing .pbk. These files store the dial-up phone books
and are typically accessed by dialers. Another group
of samples checked for files ending with .pbx, which
are Outlook Express message folder.

4.2 Registry activity

A significant number of samples (62.7%) create reg-
istry entries. In most cases (37.7 % of those samples),
the registry entries are related to control settings for
the network adapter. Another large fraction – 22.7%
of the samples – creates a registry key that is related
to the unique identifiers (CLSIDs) of COM objects
that are registered with Windows. These entries
are also benign. But since some malware programs
do not change the CLSIDs of their components,
these IDs are frequently used to detect the presence
of certain malware families. We did also find two
malicious behaviors that are related to the creation
of registry entries. More precisely, a fraction (1.59%)
of malware programs creates an entry under the key
SystemCertificates\TrustedPublisher\Certifi-
cates. Here, the malware installs its
own certificate as trusted. Another
group of samples (1.01 %) created the
Windows\CurrentVersion\Policies\System key,
which prevents users from invoking the task manager.

We also examined the registry entries that mal-
ware programs typically modify. Here, one of the
most-commonly-observed malicious behavior is the
disabling of the Windows firewall – in total, 33.7% of
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Autostart Location Percentage Percentage

of Samples of Clusters

HKLM\System\Currentcontrolset\Services\%\Imagepath 17.53% 11.67%

HKLM\Software\Microsoft\Windows\Currentversion\Run% 16.00% 17.80%

HKLM\Software\Microsoft\Active Setup\Installed Components% 2.50% 2.79%

HKLM\Software\Microsoft\Windows\Currentversion\Explorer\Browser Helper Objects% 1.72% 1.75%

HKLM\Software\Microsoft\Windows\Currentversion\Runonce% 1.60% 3.07%

HKLM\Software\Microsoft\Windows\Currentversion\Explorer\Shellexecutehooks% 1.30% 2.29 %

HKLM\Software\Microsoft\Windows NT\Currentversion\Windows\Appinit Dlls 1.09% 0.89%

HKLM\Software\Microsoft\Windows NT\Currentversion\Winlogon\Notify% 1.04% 1.89%

HKLM\Software\Microsoft\Windows\Currentversion\Policies\Explorer\Run% 0.67% 1.04%

C:\Documents and Settings\%\Start Menu\Programs\Startup\% 0.20% 0.95%

Table 4: Top 10 Autostart locations.

all samples, or almost half of those that modify Win-
dows keys, perform this action. Also, 8.97% of the
binaries tamper with the Windows security settings
(more precisely, the MSWindows\Security key). An-
other important set of registry keys is related to the
programs that are automatically launched at startup.
This allows the malware to survive a reboot. We
found that 35.8% of all samples modify registry keys
to get launched at startup. We list that Top 10
Autostart locations in Table 4. As can be seen,
the most common keys used for that purpose are
Currentversion\Run with 16.0% of all samples and
Services\Imagepath with 17.53%. The Services

registry key contains all configuration information re-
lated to Windows services. Programs that explicitly
create a Windows service via the Windows API im-
plicitly also modify the registry entries under this key.

4.3 Network activity

Table 5 provides an overview of the network activi-
ties that we observed during analysis. Figure 4 de-
picts the use of the HTTP, IRC, and SMTP pro-
tocols by individual samples over a one and a half
year period. In contrast, Figure 5 shows the usage
of the HTTP, IRC, and SMTP protocols once fami-
lies of malware samples are clustered together (using
our clustering approach presented in [5]). These two
graphs clearly demonstrate the usefulness of cluster-
ing in certain cases. That is, when the first graph is
observed, one would tend to think that there is an in-
crease in the number of samples that use the HTTP
protocol. However, after the samples are clustered,
one realizes that the use of the HTTP protocol re-
mains more or less constant. Hence, the belief that
there is an increase in HTTP usage is not justified,
and is probably caused by an increase in the number
of polymorphic samples. However, the graph in Fig-
ure 5 supports the assumption that IRC is becoming
less popular.
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Figure 4: Network protocols (by samples).

Moreover, we observed that 796 (i.e., 0.23%) of the
samples used SSL to protect the communication. Al-
most all use of SSL was associated to HTTPS con-
nections. However, 8 samples adopted SSL to encrypt
traffic targeting the non-standard SSL port (443). In-
terestingly, most of the time the client attempted to
initiate an SSL connection, it could not finish the
handshake.

In the samples that we analyzed, only half of the
samples (47.3%) that show some network activity
also query the DNS server to resolve a domain name.
These queries were successful most of the time. How-
ever, in 9.2% of the cases, no result was returned.
Also, 19% of the samples that we observed engaged
in scanning activity. These scans were mostly initi-
ated by worms that scan specific Windows ports (e.g.,
139, 445) or ports related to backdoors (e.g., 9988 –
Trojan Dropper Agent). Finally, 8.9% of the sam-
ples connected to a remote site to download another
executable. Figure 6 shows the file sizes of these sec-
ond stage malware programs, compared with the size
of the executable samples submitted to Anubis. As
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Observed Behavior Percentage of Percentage of
Samples Clusters

Listen on a port: 1.88% 4.39%
TCP traffic: 45.74% 41.84%
UDP traffic: 27.34 % 25.40%
DNS requests: 24.53% 28.42%
ICMP-traffic: 7.58% 8.19%
HTTP-traffic: 20.75% 16.28%
IRC-traffic: 1.72% 4.37%
SMTP-traffic: 0.89% 1.57%
SSL: 0.23% 0.18%
Address scan: 19.08% 16.32%
Port scan: 0.01% 0.15%

Table 5: Overview of network activities.
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Figure 5: Network protocols (by families/clusters).

one may expect, the second stage executables are in
average smaller than the first stage malware.

Note that over 70% of the samples that downloaded
an executable actually downloaded more than one.
In fact, we observed one sample that downloaded the
same file 178 times during the analysis time of four
minutes (i.e., the download was corrupted with each
download, so the sample immediately attempted an-
other download).

4.4 GUI windows

Table 2 shows that a surprising fraction of samples
(33.26%) display a GUI window. Closer analysis re-
veals that only a small set (2.2%) is due to program
crashes. The largest fraction (4.47%) is due to GUI
windows that come without the usual window title
and contain no window text. Although we were able
to extract window titles or window text in the remain-
ing cases, it is difficult to discover similarities. Win-
dow names and texts are quite diverse, as a manual
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analysis of several dozens of reports confirmed. The
majority of GUI windows are in fact simple message
boxes, often pretending to convey an error of some
kind. We believe that their main purpose lies in min-
imizing user suspicion. An error message draws less
attention than a file that does not react at all when
being double clicked. For example, 1.7% of the sam-
ples show a fabricated message box that claims that
a required DLL was not found. However, if this error
message was authentic, it would be created on behalf
of the csrss.exe process.

4.5 Botnet activity

Although a relative recent phenomenon, botnets have
quickly become one of the most significant threats
to the security of the Internet. Recent research ef-
forts have led to mechanisms to detect and disrupt
botnets [10]. To determine how prevalent bots are
among our submissions, we analyzed the network
traffic dumps that Anubis has recorded. For this, we

7



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Mar
07

May
07

Jul
07

Sep
07

Nov
07

Jan
08

Mar
08

May
08

Jul
08

Sep
08

S
am

pl
es

 [%
]

IRC
HTTP
Storm

Storm (Encrypted)

Figure 7: Botnet submissions (by samples).

were interested in detecting three bot families: IRC,
HTTP, and P2P.

The first step in identifying a bot based on an anal-
ysis report is to determine the network protocol that
is being used. Of course, the protocol detection needs
to be done in a port-independent fashion, as a bot
often communicates over a non-standard port. To
this end, we implemented detectors for IRC, HTTP,
and the following P2P protocols: BitTorrent, Di-
rectConnect, EDonkey, EmuleExtension, FastTrack,
Gnutella, and Overnet.

In the next step, we need to define traffic pro-
files that capture expected, bot-like behaviors. Such
profiles are based on the observation that bots are
usually used to perform distributed denial-of-service
(DDoS) attacks, send out many spam e-mails, or
download malicious executables. Hence, if we see
signs for any such known activity in a report (e.g.,
address scans, port scans, DNS MX queries, a high
number of SMTP connections, etc.), we consider this
sample a bot candidate. In addition, we use some
heuristics to detect known malicious bot conversa-
tions such as typical NICKNAME, PRIVMSG, and
TOPIC patterns used in IRC communication, or com-
mon HTTP bot patterns used in URL requests. The
bot analysis is also used to create a blacklist of iden-
tified command and control servers. This blacklist is
constantly updated and is also used to identify and
verify new bot samples.

Our analysis identified 36,500 samples (i.e., 5.8%)
as being bots (i.e., 30,059 IRC bots, 4,722 HTTP
bots, and 1,719 P2P bots). Out of the identified sam-
ples, 97.5% were later correctly recognized by at least
two anti-virus as malware. However, it was often the
case that anti-virus programs misclassified the sam-
ple, e.g. by flagging a storm worm variation as an
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HTTP Trojan. Also, all P2P bots we detected were
variations of the Storm worm.

Figure 7 and 8 show the bot submission (grouped
by type) based on unique samples and unique clus-
ters, respectively. By comparing the IRC botnet sub-
missions in the two graphs, we can observe that, in
2007, most of IRC botnets were belonging to differ-
ent clusters. In 2008 instead, we still received an
high number of IRC bots, but they were mostly poly-
morphic variations of the same family. As an ex-
ample, the peak that we observed in May 2008 is
due to a large number of polymorphic variations of
W32.Virut.

Interestingly, we are able to identify samples that,
months after their first appearance, are still not rec-
ognized by any anti-virus software. This is probably
due to the polymorphism and metamorphism tech-
niques used in the malware code. We also verified
how many samples were identified by one anti-virus
vendor as being a bot and cross-checked these sam-
ples with our detection technique. We missed 105
samples that the anti-virus software was able to de-
tect. One reason for this could be the four-minute
maximum runtime limit for the samples emulated in
the Anubis system.

The Storm worm began infecting thousands of
computers in Europe and the United States on Friday,
January 19, 2007. However, Anubis received the first
storm collection (96 samples) in April 2007. Note
that most of the submitted samples of Storm after
October 1st are dominated by variants with the en-
cryption capability (i.e., 93%). We obtained the first
sample using encrypted communication in October
2007.

When IRC bots are analyzed in more detail, one
observes that the channel topic is base64-encoded
13% of the time. During the time in which the sam-
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ples were executed in Anubis, we also collected over
13,000 real commands that the bot master sent to
malware under analysis. In 88% of the cases, the
commands were instructing the client to download
some file (e.g., get and download commands). Some
other interesting commands that we observed were
ipscan, login, keylog, scan, msn, and visit.

We also analyzed how many samples tried to dis-
guise their activities by using standard protocols on
non-standard ports. For the HTTP bots, 99.5% of the
samples connected to the ports 80 and 8080. Only 62
samples were using non-standard ports. However, for
the IRC bots, the picture is quite different. 92% of
the samples were connecting to an IRC server run-
ning on a non-standard port. For example, the ports
80 and 1863 (i.e., Microsoft Messenger) are very com-
mon alternatives, often used to bypass firewalls.

Finally, we can classify the 1,719 Storm samples
that have been submitted to Anubis into two classes:
variants that use encrypted communication channels,
and those that do not support encryption. As far
as the decryption key is concerned, we only observe
one symmetric key consistently being used to encrypt
Storm traffic.

4.6 Sandbox detection

Another interesting aspect of malware behavior is its
capability to detect the presence of an analysis envi-
ronment such as Anubis. Dynamic analysis systems
are a popular means to gather data about malicious
code, and it is not surprising that malware is using
techniques to thwart such analysis. When a malware
program detects a sandbox, it typically alters its be-
havior - most of the time, it just quits. In this section,
we attempt to estimate the number of samples that
use (general and Anubis specific) anti-sandbox tech-
niques.

Sandbox detection techniques fall into two main
classes: One class is comprised of instruction-level
detection techniques, which are techniques that de-
termine the difference between a real CPU and an
emulated one by only making use of CPU instruc-
tions. The second class are API-level detection meth-
ods, which query the environment by calling one or
several (Windows) API functions.

Unfortunately, we have currently no good way to
detect instruction-level detection attempts. While it
is theoretically possible to monitor single instructions
in a full system emulator, for performance reasons,
Anubis essentially works at the API (and system call)
level. Since Anubis leverages Qemu for its full sys-
tem emulation, it is susceptible to the same detec-
tion methods as Qemu is. In particular, several of

the detection strategies (all of them are instruction-
level detections) outlined in [9] and [15] also work for
Anubis.

Since we do monitor Windows API calls, we are
in a better position to check for possible API-level
detection methods. At the time of writing this pa-
per, several Anubis-specific detections have been pub-
lished [2] on the Internet. All of them work by com-
paring the return value of a Windows API function
such as GetComputerName to a a hard-coded value
that is known to identify Anubis. Our system in-
cludes a data tainting component that allows us to
detect when the output of an interesting function
is subsequently used as an operand in a compari-
son operation [5]. Thus, we were able to analyze
our sample set for specific comparisons that represent
known Anubis checks published in forum postings or
blogs. Table 6 summarizes our findings. A couple of
checks deserve more discussion. Our system names
each analyzed sample sample.exe. Thus, a well-
known Anubis detection routine compares the return
value of the Windows API function GetCommandLine

with that string. Similarly, in the past, every sam-
ple was executed as a Windows user with the name
“user.” Consequently, it was possible to compare the
result of NtQuerySystemInformationwith the string
“user” to detect Anubis (as a side note, we have since
changed this username to “Administrator”).

In total, we have found that only 0.03% of the sam-
ples (99 distinct malware programs) contain a known
Anubis check. Most of these samples perform the
check in the beginning of their execution, and imme-
diately exit if they detect the presence of our sand-
box. Of course, it is possible that malware samples
perform a wide range of other checks. Moreover, as
mentioned previously, we have no good way to iden-
tify instruction-level detections or timing-based de-
tection attempts. Thus, the reported numbers are a
clear lower bound.

Under the assumption that a sample that detects
Anubis (or a sandbox) does not perform much ac-
tivity, we can also provide an upper bound for the
samples that do sandbox detection. Based on our ex-
perience with Anubis, we consider a behavioral report
(a profile [5]) to contain “not much activity” when it
contains less than 150 features. For comparison, the
average profile has 1,465 features. Using this defini-
tion, we found that 12.45 % of the executable samples
(13.57 % of the clusters) show not much activity.

Of course, not of all these samples really contain
anti-sandbox routines, as there are multiple reasons
why Anubis might not be able to produce a good
report. For example, GUI programs that require
user input (such as installers) cannot be analyzed

9



Observed Comparison with Number of Number of
Samples Clusters

Windows Product Id of Anubis: 55 28
Windows Product Id of CWSandbox: 32 14
Windows Product Id of Joebox: 32 14
Executable name of sample.exe: 35 17
Computer name of Anubis: 4 4
Qemu’s HD name: 2 2
VMWare’s HD name: 1 1
Windows user name of ’user’: 2 2
Any Anti-Anubis comparison: 99 54
Any Anti-Sandbox comparison: 100 55

Table 6: Overview of observed comparisons.

sufficiently. Anubis only has a very limited user in-
put simulation, which simply closes opened windows.
Moreover, some programs require non-existing com-
ponents at runtime (note, though, that programs that
fail because of unsatisfied, static DLL dependencies
are not included in the 12.45 %). In addition, at
least 0.51% of the reports with not much activity can
be attributed to samples that are protected with a
packer that is known to be not correctly emulated
in Qemu (such as Telock and specific packer versions
of Armadillo and PE Compact). Last but not least,
bugs in Anubis and Qemu are also a possible cause.

5 Conclusion

Malware is one of the most important problems on
the Internet today. Although much research has been
conducted on many aspects of malicious code, little
has been reported in literature on the (host-based) ac-
tivity of malicious programs once they have infected
a machine.

In this paper, we aim to shed light on common mal-
ware behaviors. We perform a comprehensive analy-
sis of almost one million malware samples and deter-
mine the influence of code polymorphism on malware
statistics. Understanding common malware behav-
iors is important to enable the development of effec-
tive malware countermeasures and mitigation tech-
niques.
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