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Abstract—AFL is one of the most used and extended fuzzing
projects, adopted by industry and academic researchers alike.
While the community agrees on AFL’s effectiveness at discovering
new vulnerabilities and at its outstanding usability, many of
its internal design choices remain untested to date. Security
practitioners often clone the project “as-is” and use it as a starting
point to develop new techniques, usually taking everything under
the hood for granted. Instead, we believe that a careful analysis of
the different parameters could help modern fuzzers to improve
their performance and explain how each choice can affect the
outcome of security testing, either negatively or positively.

The goal of this paper is to provide a comprehensive un-
derstanding of the internal mechanisms of AFL by performing
experiments and comparing different metrics used to evaluate
fuzzers. This will prove the efficacy of some patterns and clarify
which aspects are instead outdated. To achieve this, we set up nine
unique experiments that we carried out on the popular Fuzzbench
platform. Each test focuses on a different aspect of AFL, ranging
from its mutation approach to the feedback encoding scheme and
the scheduling methodologies.

Our preliminary findings show that each design choice affects
different factors of AFL. While some of these are positively
correlated with the number of detected bugs or the target
coverage, other features are related to usability and reliability.
Most important, the outcome of our experiments will indicate
which parts of AFL we should preserve in modern fuzzers.

I. INTRODUCTION

Recent research in software vulnerability discovery has
identified fuzzing, or fuzz testing, as a key technology to effi-
ciently detect bugs in different types of applications, including
classical user-space programs [24], [27], OS kernels [42], [35]
and virtual machine hypervisors [34].

The high demand for more and more advanced fuzzers has
resulted in a large proliferation of new prototype implementa-
tions. Some of these solutions have become well-known and
largely adopted tools. Others have contributed to the research
process, by studying how some novel aspects can be beneficial
to unveil new vulnerable flaws. Although each new tool comes
with a new set of features that distinguish it from the other
variants, a considerable amount of the fuzzer functionalities is
usually inherited from the “parent” project, which is often a
well-established tool in the community.

Over the past five years, both industrial and academic
research on fuzz testing has reached a consensus into improv-
ing one single tool – the American Fuzzy Lop (AFL) [48]
released in 2013 by Michał Zalewski. Two main aspects can
explain AFL’s success. On the one hand, its usability allows
researchers to run the fuzzer out-of-the-box against several
programs without any specific domain knowledge of the target
itself. On the other hand, AFL excels at uncovering vulnera-
bilities with a relatively low effort for the security analyst.
While these two factors are essential to explain the large
success of this project, its development process passed through
many phases of implementation and optimization. Often, new
features are developed by multiple external contributors, with
the inherent consequence that many design choices are not
documented in a single and accessible resource.

Our paper provides an accurate analysis of many internal
mechanisms, parameters, and design choices that determine
the final behavior of the American Fuzzy Lop. In other
words, we shed light on the design choices that have been
implemented over the years and on their actual consequences.
In many cases, improvements came from contributions outside
the academic ecosystem, thus lacking experiments and clear
results to demonstrate why a specific design choice was needed
or was better than other options. As a result, today everybody
uses AFL without a complete understanding of its internals.
However, we found that even minor modifications of the inner
parameters can affect the results of a fuzzing experiment, both
positively or negatively.

More importantly, this lack of documentation prevents
researchers from identifying, in a rigorous way, what the root
causes behind the excellent performance of AFL are. We
believe that this deep understanding is a fundamental step to
guide future work in the field.

It is also important to understand that not all positive design
choices must be related to the effectiveness of the vulnerability
discovery process. Some may instead improve other aspects of
the fuzzing workflow, such as usability and reproducibility of
results. In this paper, we also study whether these features are
still beneficial in modern fuzzing campaigns or if they, and
should, be considered outdated.

Our work’s primary focus is on the algorithmic components
that AFL embeds and that we can still find in other modern
fuzzers (e.g., the scheduling, the mutation, the feedback). We
exclude instead other specific engineering decisions, such as
AFL’s original solution to scale over multiple cores and ma-
chines. To verify the impact of each component, we performed
a dedicated set of experiments in which we compare the vanilla
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AFL solution with a carefully-designed patched version of the
project that replaces the feature under analysis. For instance,
one of the mechanisms that captured our interest since the
beginning was AFL use of hitcounts to encode the feedback
in the coverage map. Therefore, in this case, we patched AFL
to include an alternative approach to measure the coverage,
namely plain edge coverage.

While we identified nine unique aspects to study, for our
preliminary evaluations we focused on two features that are
crucial in modern fuzzers: the coverage measurement and the
criteria used to establish if a particular testcase is interesting
or not. More specifically, for these two comparisons, we ran
a set of experiments on the popular FuzzBench benchmarking
service [27]. We plan to extend this evaluation to the remaining
seven features in an extended version of this work.

Despite the restricted focus, our experiments already show
interesting findings. For instance, the fact that plain edge
coverage is capable in many cases to outperform hitcounts.
This finding suggests that a fuzzing campaign should integrate
both solutions to maximize the probabilities of success. We
also found that relying on a fitness function alone does not
positively impact the fuzzing session. In contrast, novelty
search, one of the major and often forgotten contributions of
AFL, remains to date the best alternative to evaluate whether
a testcase is interesting or not.

These are only two examples of the results we aim to
obtain with our methodology and experiments. We hope that
our preliminary evaluation case study can pave the way for
a more sound and complete set of experiments and therefore,
in the spirit of open-science, we plan to release our code and
artifacts upon publication.

II. FUZZ TESTING

Fuzz testing, or fuzzing, is a popular vulnerability discovery
technique that executes a target several times and, for each
run, mutates the input to trigger novel and potentially buggy
program points in the Software Under Test (SUT).

The first fuzzers appeared in the early ’90 [28], primarily
relying on some forms of blackbox testing. In this case, the
fuzzer provided the SUT with randomly generated inputs, with
crashes and error conditions as the only guidelines for the
fuzzing campaign. Early blackbox fuzzers were ready-to-use
tools, which did not require any specific domain knowledge of
the target applications [1].

More advanced examples of blackbox fuzzers are fun-
fuzz [2] and Peach [14], which take the structure information
about the testcases into account for their mutations. However,
limitations of such approaches are quite evident, e.g., even
simple conditional statements can become hard to bypass.
More importantly, even if a random mutation can bypass a
condition, the fuzzer remains unaware of this fact, unless if the
mutated input results in a crash immediatly, Thus, the fuzzer
cannot use this information to generate new inputs.

The lack of target introspection led researchers to seek
novel ways to reason about the internals of the programs.
Hence, two very distinct paradigms were introduced: white-
box and greybox fuzzing. Whitebox fuzzing [17] relies on
complex instrumentation and code analysis to produce more

“interesting” inputs at the price of introducing a non-negligible
performance slowdown [37]. On the other hand, methodologies
that aim to reach the performances of blackbox fuzzers and to
drive their exploration using lightweight code instrumentation
fall under the category of greybox approaches. In this case,
the code injected in the SUT typically only serves to produce
some form of feedback to the fuzzer. This information is
used to evaluate the quality of a testcase and, therefore, to
progressively mutate only the interesting inputs and discard
those that are not informative, according to the metric that the
feedback represents.

Initially, both whitebox and greybox fuzzers shared some
research directions, as in the case of the detection of bugs that
do not result in a crash. In this context, the introduction of
the so-called sanitizers incredibly augmented the precision of
the fuzzers to detect memory corruption bugs [36], undefined
behaviors like integer overflows [4] and other more specific
classes of bugs [18].

Despite the advances and improvements that made the
new generation whitebox fuzzers much more performant [32],
greybox approaches remain the leading technique to discover
vulnerabilities in modern codebases. For instance, the OSS-
Fuzz project by Google [3] makes use of greybox fuzzing
approaches to test and detect bugs in a large number of popular
open-source projects.

With the adoption of greybox fuzzing as the de-facto
standard for the industry, researchers started to propose sev-
eral methodologies to refine every single component of a
greybox fuzzer to improve the bug-finding capabilities and
performances. For instance, a key problem is how to perform
the mutation of the testcase content to increase the chances to
stress new behaviors. Traditional uninformed mutation strate-
gies [49] only work properly for some types of input and
some applications, as those that perform binary format parsing.
More recently, approaches like AFLSmart and Zest [31], [29]
suggested focusing the mutation on a higher-level structure
rather than on the raw bytes, for instance, by introducing AST-
like representations of the input. The community also intro-
duced the concept of grammar-awareness to indicate a fuzzer’s
capabilitiy to mutate an input according to certain grammar
rules [5], [38]. Always in the scope of testcases management,
another line of research focused on testcase scheduling by
trying to maximize the explored locations by optimizing the
selection of the inputs present in the corpus [44], [12].

Other research directions instead explored different instru-
mentation techniques to study better forms of feedback. A pop-
ular form of feedback, usually considered the de-facto standard
in the fuzzing community, is code coverage. This approach
rewards the fuzzer when a new target execution results in a
different coverage value, computed over the control flow graph
(CFG) of the target application. In general, we refer to this
family of approaches as coverage-guided fuzzing techniques.
Consequently, the community has proposed multiple ways to
measure the coverage that a certain input produces in the
SUT, such as block coverage, that rewards the fuzzer when it
hits a new basic block, and later, edge coverage, that instead
focuses the attention on newly discovered edges inside the
CFG. These mechanisms allow a fuzzer to keep only those
testcases that result in new code coverage, leading the fuzzing
campaign to go deeper in the code and eventually to reach



the buggy location. This simple idea is at the base of many
modern fuzz testing projects, such as AFL [48], AFL++ [16]
and libfuzzer [23], even though, as we will describe in this
paper, the actual implementation is project-specific and can
have a relevant impact on the performance of the fuzzer.

By extending from the concept of feedback-guided fuzzing,
researchers have proposed new forms of feedback over a target
execution, in the attempt to reveal different program locations
or states not easily reachable by traditional techniques [11],
[43]. Alternative forms of feedback may evaluate the quality
of a testcase independent on code coverage, but according to
different aspects of the execution [6], [30], [15], [25].

III. AMERICAN FUZZY LOP

American Fuzzy Lop is a mutational coverage-guided
fuzzer with a suite of additional tools. These include testcase-
and corpus-minimizers, a fault-triggering allocator, and a file
format analyzer. It’s lastest version is the 2.57b 1, released
in 2020, but the fuzzer is unmaintaned by the original author
since 2.52b 2, released in 2017.

In this section, we will discuss the inner working of the
fuzzer, afl-fuzz, and the design choices behind it.

A. General Design

As stated by Zalewski in a technical whitepaper [52] writ-
ten in 2016, the main design principles behind AFL are speed,
reliability, and ease of use. While important, these metrics are
no longer the predominant principles that drive recent research
on fuzz testing. Instead, researchers now predominantly focus
on the time required to uncover bugs and on the amount of
coverage reached. While some choices in AFL improve these
two metrics, the principle of ease of use is often forgotten,
despite the fact that it is the reason behind many aspects of
AFL. For instance, the corpus is represented as a queue for
ease of use: by making AFL mutate simpler testcases first,
shallow crashing testcases will have only minor changes with
respect to the original, “human-friendly” testcases. In addition,
the fuzzer keeps track of the parent testcases of each corpus
entry, allowing the user to reconstruct the genealogy of each
corpus entry or crashing testcase.

The actions of the fuzzer are divided into stages that
correspond to tasks on a single testcase taken from the queue.
Users may configure the behavior of these stages in different
ways, for instance by, disabling the deterministic stage with
the -d parameter [54]. The testcase delivery to the target
program is performed via standard input or via file. Finally,
the target execution is controlled by using a forkserver [50],
a mechanism that uses pipes to request copy-on-write clones
of the target programs with fork(2) for each execution to
avoid the overhead of execve(2).

B. Coverage Feedback

The main difference between AFL and previous solutions
is the code coverage of the target program used as feedback.
Although not the first to introduce this approach [40], [13],

1https://github.com/google/AFL/releases/tag/v2.57b
2https://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

AFL took coverage guidance to the next level with an effective
evolutionary algorithm based on this feedback.

However, the coverage metric AFL uses is not a classic path
coverage. In fact, like many symbolic executors [7], AFL aims
at a trade-off between precision and path explosion. Therefore,
instead of simple basic block coverage, it uses edge coverage
augmented with counters (hitcounts) that track the number of
times an edge was executed. According to Zalewski [52], the
use of hitcount buckets allows AFL to tackle path explosion
problem.

Implementation-wise, AFL keeps a shared bitmap between
the target and the fuzzer of 64kb (to match the L2 cache size
at the time AFL was developed) with each entry of one byte.
When an edge is executed, the corresponding entry is incre-
mented by 1, wrapping around the byte in case of overflow. The
instrumentation is at the level of basic blocks, so the ID used
for each edge is the result of a hash function that combines the
current block with the previous, introducing collisions in the
bitmap. Starting from version 2.37b (released in 2017), AFL
adopted the trace-pc-guard option of SanitizerCoverage
[22] for source-based instrumentation, an approximation of
edge coverage that uses precise block coverage after breaking
critical edges. After each traced execution, AFL post-processes
the map and buckets the entries, thus reducing the possible
values from 256 to 9. This mechanism is at the core of
many fuzzers derived from AFL, such as AFL++ [16] and
LIBFUZZER [23].

This coverage information is used in the fuzzer in different
algorithms. The most important is the procedure used to decide
if a testcase is interesting, and therefore whether it is worth
adding it to the corpus. For this, AFL uses a novelty search
algorithm that considers an input that uncovers a new entry in
the map, never seen so far, or a value reaching a previously
unseen bucket, as interesting.

The nature of the hitcounts allows AFL to encode each
possible bucket as a bit in a single byte. Thanks to this opti-
mization, AFL implements a very fast novelty search by using
only a loop of DWORD/QWORD bit-wise operations. The
choice of using 8 buckets was taken to avoid path explosion
and to increase speed thanks to the optimized processing of
the coverage map.

C. Scheduling

Like many other fuzzers, AFL makes use of multiple
scheduling policies for various components.

First it schedules which testcase in the corpus should be
selected next. As described before, the corpus is represented
as a queue and the base policy is FIFO. On top of that, AFL
uses heuristics to decide to skip a testcase for various reasons.
The first applies when there are some favored testcases in the
corpus. The fuzzer marks a subset of the corpus as favored in
the process of re-evaluating the queue and choosing a small
subset of testcases that cover all the coverage seen so far, the
so-called corpus culling. The main purpose of this operation
is to give priority to testcases that are smaller and faster to
execute. If there is at least one corpus entry in the favored set,
a non favored is skipped with a 99% probability, otherwise
the probability goes down to 95% in case of non-favored but
fuzzed before entry and 75% for never selected cases.



Another scheduling application is the so-called energy
assignment [9]. For each corpus entry, AFL calculates a
score that is used to compute how many executions must
be performed in each stage in which a mutator is used.
The policy employed in the fuzzer, implemented in the
calculate_score routine, is based on several parameters.
The first is the execution time of the testcase, which can alter
the score if slower of faster than the global average from 0.1x
up to 3x. The other metric is the number of filled entries in the
coverage map when executing the testcase, in this case using a
multiplier from 0.25x to 3x. The intuition is that testcases with
greater coverage trigger more interesting states. Additionally,
the score is increased for newly discovered entries to allow
the fuzzer to focus on novelties. Following the same spirit, the
depth of the entry in the genealogical tree is taken into account
as multiplier to fuzz for more time derived inputs that could
have been difficult to discover by blackbox approaches.

D. Mutators

AFL relies on generic, target-agnostic, byte-level muta-
tors [49]. These are used in several stages, many of which are
deterministic. The fuzzer sequentially bitflips the current input
starting from one to 32 bits at a time. During this process, as
optimization, AFL records the bits that does not contribute to
a change in coverage to avoid to mutating them in subsequents
deterministic stages. After that, the fuzzer walks each byte by
adding and subtracting integers in the range from -35 to +35.
The next stage is the replacement of each part of the input with
numbers from a set of interesting values, such as INT MAX,
0, and 1. This is done iteratively on the input first at the byte
level, and then by using 16 and 32 bits integers.

The last of the deterministic stages is about the dictio-
nary [51]. The dictionary is a set of tokens related to the
input format, for instance \x7fELF if the target is an an
ELF parser. The tokens can be user-specified (-x parameter in
AFL) to help the fuzzer to generate testcases that are otherwise
impossible to create using generic bit-level mutations or auto-
detected by the fuzzer during the bit flips stage looking for
groups of bits that, when changed, produce always the same
coverage hinting that they are part of a magic value. The
dictionary stages walk the input replacing and inserting each
item in the both dictionaries.

The first non-deterministic mutation stage is random havoc.
This applies several mutations such as the ones used during
the previous stages and some block-based mutations such as
overwriting and inserting blocks of inputs. The mutations are
applied at random locations of the input and are stacked. The
number of applied mutations is chosen at random between 2
and 128 and the iteration of the stage is regulated by using the
score of the testcase.

The last stage, splicing, by default is activated only after
a full cycle of the queue without any new finding, but it is
always enabled in FidgetyAFL [54]. It selects an entry from
the corpus and recombines it with the current testcase, then
it applies the havoc mutator to this child testcase. This is an
important stage that allows AFL to generate testcases derived
from two parents.

In AFL, for ease of use, each testcase saved in the corpus
or in the crashes folder keeps the information about the parent

testcases, that can be up to 2, and about the mutations that were
applied to them. This allows to reconstruct the entire process
of derivation of a testcase, an information that an analyst can
use during crash analysis.

E. Minimization

Some mutations can increase the size of a testcase and,
especially for inputs discovered later in a testing campaign,
can result in files with a very large size. These large, slow-to-
parse inputs, can decrease AFL speed and therefore the fuzzer
tries to minimize their impact by using a testcase minimization
algorithm.

After requesting a testcase from the corpus, AFL passes
it through its trimming stage. The key idea is to mutate the
testcase by trying to obtain a smaller testcase that still achieves
the very same coverage. The algorithm consists of removing
blocks from the inputs while checking if the coverage map
remains the same. If successful, the process is repeated several
times by increasing the size of the blocks to remove. While
this reduces the complexity of the items in the corpus, it also
requires some additional executions for each testcase that is
saved in the queue.

F. Instrumentation

To get the coverage information from each execution of
the target, AFL employs several instrumentation options. First
of all, it can instrument the compiler on x86 by intercepting
the assembler and changing it to log each basic block using
functions in an injected runtime in assembly. In addition, AFL
also provides a LLVM pass [21] in which each block ID is
assigned randomly at compile-time and the instrumentation to
hash the blocks and write to the shared memory is inlined,
thus resulting in a more efficient instrumentation than the
one provided by the legacy x86-only solution. With LLVM,
the runtime is also more mature as it provides not only the
forkserver option, but also the so-called persistent mode to
avoid to fork when fuzzing stateless code, resulting in an
increased performance.

Alongside compiler-based approaches, AFL comes with a
binary-only mode: QEMU mode. QEMU mode uses a patched
QEMU 2.10 usermode to inject a forkserver at the guest
entrypoint, and to add instrumentation between each executed
basic block, through a logger routine executed after each basic
block.

IV. METHODOLOGY AND EXPERIMENTS DESIGN

By reviewing the implementation and the internals of AFL,
we identified nine characteristics to assess in our tests. For
each of them, we also looked for alternative solutions proposed
in other works to serve as a comparison in our experiments.
We have not selected the trivial comparison between AFL and
FidgetyAFL [54] as it is covered in the FuzzBench paper [27],
which highlights that FidgetyAFL always outperforms AFL in
terms of code coverage over time.

We propose to assess the contribution of each feature on
the performance of AFL in terms of uncovered bugs and code
coverage over 23h using FuzzBench [27]. When there is no
such contribution, we will provide a qualitative explanation



of the possible impact of that feature on usability. In case
of results that highly depends on the structure of the target
program, we will try to classify manually wich kind of program
is influenced by the tested feature.

We now introduce the nine aspects to be covered in our
study.

1) Hitcounts: Hitcounts are adopted by other fuzzers to-
day [23], [41], but AFL was the first to introduce this concept.
Despite its wide adoption, the impact of this optimization (over
plain edge coverage) has never been measured in isolation on
a large set of targets.

To fill this gap, we modified AFL not to increase each entry
in the coverage map while instrumenting the target. Instead,
we always set the value to 1. We expect hitcounts to improve
the coverage and especially the bug detection capabilities by
introducing additional information about the program state,
like loop counts. We want to quantify this improvement and
potentially discover target-specific corner cases.

2) Novelty search vs. maximization of a fitness: While AFL
considers every new discovered hitcount as interesting, both
other early fuzzing solutions [53] and more recent tools [33]
instead only consider testcases that maximize a given metric
as interesting. For instance, VUZZER uses the sum of all the
weights of the executed basic blocks [33].

We think that a big part of the success of AFL in terms of
performance is the novelty search-based approach to evaluate
interesting testcases. In order to evaluate this assumption, we
implemented 3 a simplified version of the VUZZER fitness
maximization without the need for static analysis, in which
each basic block has weight 1:

f(i) = |BB(i)|


∑

b∈BB(i) log2(freq(b))

log2(len(i)) if len(i) > 50000∑
b∈BB(i)

log2(freq(b)) otherwise

We chose to borrow the VUZZER fitness function as it is a
simple one based on just code coverage, avoiding introducing
a fitness from scratch as, to the best of our knowledge,
VUZZER is the only academic work proposing a simple fitness.
Other approaches in the literature using a fitness are coupled
with heavy static analysis or complex approaches using many
features, not just code coverage [26]. While it would be
interesting to benchmark them too, it is not fair to compare
such complex techniques with a fuzzer that only uses code
coverage like AFL. More complex novelty search solutions
are present in literature [45] that can be used as a competing
approach in future works.

In this experiment, we benchmark the AFL approach versus
a fitness maximization and the combination of the two ap-
proaches, as proposed by VUZZER [33]. We expect the novelty
search to outperforms both of the competing algorithms, as the
maximization saves testcases in the corpus that are not small
and fast (one of the key elements in the design of AFL) while

3Note that the input length is bound to 50,000 bytes (to address input
bloating) and the log base is taken from the VUZZER code.

a set of diverse testcase as the ones saved by AFL is better in
a corpus.

3) Corpus culling: The prioritization of the small and
fast testcases in the AFL corpus selection algorithm trades
speed with the fuzzing of more complex testcases that often
corresponds to complex program states. We want to benchmark
this feature because the set of favored testcases in AFL was
a major addition to the fuzzing algorithm, and it is used even
as a metric in following works such as Driller [39].

In this experiment, we want to assess the difference in using
the AFL corpus culling mechanism versus using the entire
corpus. We expect faster growth in coverage over time and,
potentially, more bugs triggered in the same time window. Pre-
liminary experimts suggest, however, that the fuzzer without
corpus culling may find bugs that AFL does not trigger.

4) Score calculation: The performance score used to cal-
culate how many times to mutate and execute the input in
the havoc, and splice stages are derived from many variables,
mainly testcase size and execution time. This score is the focus
on many derived works (e.g. [9], [47], [8]) as, therefore, it is
an essential piece of AFL.

In this experiment, we want to measure the delta between
the AFL solution and the baseline, represented by a constant
and a random score. As picking a constant is a sensitive
operation, we opted to create two AFL variants, one with the
minimum score possible for AFL, 25, and another with the
maximum, 1600. The random variant will select a random
number between this boundary. In addition, we include in
the experiment a version of calculate_score that does
not prioritize novel corpus entries as this was a significant
optimization in the AFL history. We expect that the major
contribution is the prioritization of the novelties. So we foresee
a small delta between the baselines and the patched AFL with
the naive score calculation.

5) Corpus scheduling: The FIFO policy used by AFL is
only one of the possible policies that a fuzzer can adopt to
select the next testcase. However, derived works tend to take
the corpus structure as a queue for granted.

While we know that this feature has its root in usability,
in this experiment, we want to assess if it also contributes
to the performance of the fuzzer. Thus, we evaluate AFL
versus a modified version that implements the baseline, random
selection, and the opposite approach, a LIFO scheduler. We
expect that the random performs equal or even better than the
original embodiment of AFL, while the LIFO approach may
help in gaining coverage faster on some targets.

6) Splicing as stage vs. splicing as mutation: Splicing
refers to the operation that merges two different testcases into a
new one. There are two possible ways to apply this mechanism.
The first, adopted by AFL, considers splicing as a stage. In
this case, the actual merge happens only once at some point
of the execution of a specific testcase, when it is joined with
a randomly chosen input among the other ones present in
the queue. However, other fuzzers (e.g., Libfuzzer [23]) often
implement splicing as a mutation rather than a stage, thus
applying it many more times for each testcase during their
havoc stage.



We modified the AFL codebase to implement splicing
as a mutation operator to compare the two. We hypothesize
that this choice can have some consequences on the usability
of the fuzzer. Indeed, we expect that a major adoption of
splicing as mutation can increase the exploration of the fuzzer
while reducing the simplicity of the testcases and, therefore,
complicating the a-posteriori triaging phase.

7) Trimming: Trimming the testcases allows the fuzzer
to reduce the size of the input files and consequently give
priority to small inputs, under the assumptions that large inputs
introduce a slowdown in the execution and the mutations
would be less likely to modify an important portion of the
binary structure. In AFL, the component in charge of this task
tries to discard blocks of data with variable length and stepover.
When the removal results in the same checksum of the original
trace map, the new shrunk testcase is stored.

Despite the fact that this algorithm can bring the two
important benefits described above, we argue that reducing
the size of the testcases could lead to lose state coverage.
Additionally, the trimming phase could become a bottleneck
for slow targets. Therefore, in our evaluation we plan to
compare the default version of AFL against a modified one,
where we disabled trimming. Our hypothesis is that trimming
can be either beneficial or detrimental depending on the type
of target program and the structure of its input.

8) Timeouts: The timeout regulates the maximum amount
of time the target program runs for. This greatly influence
the execution time of the target and in turns the number of
executions per second. While the user can specify an arbitrary
value by passing a command line option (-t), in the average
case AFL can automatically compute a timeout value for
the program under test. More specifically, as a first step,
AFL calibrates the execution speed during an initial phase by
running the target several times and computing an average of
the execution times. After that, the default heuristic applies a
constant factor (x5) to this average value and rounds it up to
20 ms. In our experiments, we try to modify the multiplicative
factor to measure its affect on the fuzzing session. We expect
that a higher timeout can lead to a better coverage, but also
degrade the performance of the fuzzer. This trade-off might
deserve a more careful study to properly tune this parameter
depending on the target.

9) Collisions: As explained in section III-F the AFL ap-
proach to instrument the source code of the target programs
consists of assigning an identifier for each basic block at
compile-time. When using SanitizerCoverage [22]’s pcguard,
critical edges are split into basic blocks and thus AFL assigns
a random identifier to each edge. Unlike the classic instrumen-
tation that combines the IDs of the current and the previous
block, however, this technique is unable to track edges related
to indirect jumps. For both variants, since identifiers are chosen
at random, this causes collisions between two different edges
in the bitmap, that in turn can affect the novelty of a testcase.
Although the number of collisions depends on the number of
instrumented locations, for an average size program the actual
collisions are typically between 750 and 18,000 [19].

In our evaluation, we want to compare the AFL instru-
mentations approach against a collision-free one. As San-
itizerCoverage traces each block calling a function with a

guard parameter, and this guard is contained in a per-module
table initialized in a constructor, we can easily patch AFL
to assign values to the guards by using a global incremental
counter in the constructor instead of random values. This
allows the instrumentation to generate edge encodings that do
not incur into collisions during the fuzzing session as many
implementations indeed make use of the guard_var as the
index to access the fuzzer bitmap.

We want to benchmark this feature as the collision-free
variant is simpler than the original implementation with pc-
guard, raising the question why random identifiers are used
in AFL. In addition, it is unclear if the lack of feedback
from the indirect jumps affects the performance more than
the collisions, so we include the classic approach too in order
to benchmark this impact.

Please note that in this experiment, unlike the collision-free
coverage based on pcguard present in AFL++ (since 2.66c),
we do not adapt the size of the map to the detected number of
blocks – a feature that improves a lot the speed of the fuzzer –
as we want to evaluate the impact of the collisions in isolation.

V. PRELIMINARY EVALUATION

As a preliminary evaluation, in this section, we present the
results of the first two sets of experiments, conducted by using
the FuzzBench service [27]. We mainly use the bug benchmark
of FuzzBench, which consists of 25 targets known to contain
bugs, as we believe that uncovered bugs is the ultimate metric
in fuzzing evaluation [20]. In addition, we also report the
coverage over time as another important metric to understand
the performance of each variant of AFL. Each program was
executed for 23 hours. The reported results are median values
over 20 trials to mitigate the effects of randomness in fuzzing
and the Mann-Whitney U test is used to verify the statistical
significance of the results by comparing differences between
two independent groups that in our case are the original AFL
and its variants. The aggregation of the results is done using
an average normalized score [27]. All the variants run using
the trace-pc-guard instrumentation and persistent mode
to mitigate the well-known impact [46] of fork(2).

For each set of experiments, we also highlight in gray our
discovered insights. We hope this can help users to better
understand AFL and improve the design of new fuzzing
approaches.

Note that, for the purpose of the workshop, we carried out
only the first two proposed experiments as a case study of the
entire proposed evaluation.

A. Hitcounts

In this first set of experiments, we compare vanilla AFL
against a modified version that does not use hitcounts. Ta-
ble I reports the average normalized score of the number
of uncovered bugs in our experiments 4. Quite surprisingly,
the AFL variant without hitcounts discovered more bugs than
the unmodified AFL, a counter-intuitive result as hitcounts
enable AFL to bypass coverage roadblocks that depend on
loop counts.

4https://www.fuzzbench.com/reports/experimental/2021-12-17-afl-edges-
bug/index.html



Fuzzer Average normalized score

AFL edge coverage 88.09
AFL 74.36

TABLE I: Hitcounts vs. plain edge coverage bug-based
experiment score

Fig. 1: Median bug coverage growth on grok (Hitcounts vs.
plain edge coverage experiment)

In particular, AFL performed better on 6/25 benchmarks
in terms of median discovered bugs, of which only two are
statistically significant for the Mann-Whitney U test. The
variant with only edge coverage is better on 5/25 benchmarks,
of which four are statistically significant.

It is interesting to note how for some targets edge coverage
clearly outperformed vanilla AFL, as in the case of the
grok and the PHP benchmarks. For instance, in the case of
grok_grk_decompress_fuzzer we can clearly observe
that the graphs reporting bugs uncovered over time (Fig. 1) and
coverage over time (Fig. 2) are correlated. This might suggest
that the use of hitcounts prevents the fuzzer from discovering
new code paths, a behavior that can be explained by the
augmented sensitivity, up to 8x as the hitcounts introduce 8
different states for each edge.

As shown by previous studies [43], [44], [15], the increase
of sensitivity introduces testcases in the saved corpus that
are too similar to one another, causing internal wastage of
the exploration of the program. AFL is therefore focusing on
fuzzing testcases that are not frontiers in terms of unexplored
coverage areas. This behavior is, of course, highly target
dependant, as the states that AFL can reach by using the
hitcounts in its feedback may contain bugs that otherwise
cannot be easily discovered with edge coverage only.

Fuzzer Average normalized score

AFL 99.63
AFL edge coverage 97.99

TABLE II: Hitcounts vs. plain edge coverage code
coverage-based experiment score

To further confirm our intuition that hitcounts introduce a
benefit only on some targets, we run another set of experiments

Fig. 2: Median code coverage growth on grok (Hitcounts vs.
plain edge coverage experiment)

on FuzzBench on a different set of 22 benchmarks that
FuzzBench uses to evaluate fuzzers using only code coverage
as a metric5. The score reported in Table II shows that on this
set of different subjects classic AFL outperforms the variant
with only edge coverage, confirming that hitcounts can either
increase or decrease the effectiveness of the fuzzer depending
on the target application.

Our conclusion after this experiment is that AFL, and
follow-ups fuzzers like AFL++, should provide an option
to disable hitcounts. AFL++ provides many different op-
tions, and the users are suggested to run an instance of
each variant when doing parallel fuzzing, a common use-
case in real-world setups. The fact that in our experiments,
hitcounts have shown a highly variadic behavior suggests
that users should include a variant without hitcounts when
doing parallel or ensemble fuzzing like OSS-Fuzz [3].

B. Novelty search vs. maximization of a fitness

In this second experiment, we compare three fuzzers:
vanilla AFL (that uses a novelty search), a variant with only
fitness maximization, and a hybrid variant with both maxi-
mization and novelty search. We ran a bug-based benchmark6

and found that, in average, vanilla AFL is the best performer –
this time matching our expectation. In Table III we report the
average normalized score of the number of uncovered bugs.

Fuzzer Average normalized score

AFL 83.32
AFL fitness 83.08
AFL fitness only 70.17

TABLE III: Novelty search vs. maximization of a fitness
bug-based experiment score

The usage of the fitness only is clearly detrimental and
the combination of both techniques does not introduce a

5https://www.fuzzbench.com/reports/experimental/2021-12-17-afl-edges/
index.html

6https://www.fuzzbench.com/reports/experimental/2021-12-16-afl-fitness-
bug/index.html



Fig. 3: Median bug coverage growth on PHP (Novelty search
vs. maximization of a fitness)

Fig. 4: Median code coverage growth on PHP (Novelty
search vs. maximization of a fitness)

valuable increment in bug-discovery. AFL and the combined
variant perform almost the same, with the exception of
libhtp_fuzz_htp in which the fitness variant is better
and poppler_pdf_fuzzer, in which AFL is best. While
this result was expected, there are some surprising results on
specific targets such as php_php-fuzz-execute, placing
the variant with only the fitness maximization as best fuzzer
on 4/25 benchmarks, all statistically significant.

Unlike in the previous experiment, this time there is no
correlation between uncovered code and bugs (Fig. 3 and 4).
On this target, while the others two coverage-guided fuzzers
start to explore the program (Fig. 4), a very large one with
thousand of edges, the code coverage growth for the fitness
only variant is negligible. The saved testcases in the corpus
cover the same regions of the initial testcases so we can
observe that, on this target, the fuzzer is behaving like a
blackbox fuzzer without any coverage tracking capability.

This hints that the novelty search fuzzers are spending
time exploring more program behaviors, while the bugs are
in the initial code regions behind constraints that cannot
be solved immediately. On large programs, this is a well-
known behaviour [10] which explains why random testing can
outperform more complex solutions.

The conclusion we can draw from this experiment is
that it would be a mistake to underestimate the impact

of the novelty search. In particular, researchers proposing
new approaches that also modify this aspect should care-
fully evaluate – in isolation – the benefit of a different
mechanism to decide if an input is interesting, as AFL’s
novelty search provides a strong baseline.

C. Discussion

Our preliminary studies showed that even core contribu-
tions of AFL, like hitcounts, have never been benchmarked
fully and that the community still has much to learn about it.
What is given as “common sense” in the fuzzing community
about AFL can be true or false because observed only on
specific targets, and, on the contrary, some specific targets can
highlight how an almost always good feature can be outper-
formed in special cases, as we showed with the experiment
about the novelty search.

We propose to the academic community and to practi-
tioners an evaluation of the relevant features of AFL on a
large dataset that is FuzzBench, in isolation, and with an
understanding about what is working and what does not.

VI. CONCLUDING REMARKS

This paper dissects the popular fuzzing project American
Fuzzy Lop. We studied its implementation, analyzed each
individual component, and demonstrated how their details
impact the overall functionality. We provide a case study
evaluating features of AFL over 25 applications from the
Fuzzbench dataset.

Our preliminary experiments suggest that future fuzzers
and fuzzing experiments need to be aware of crucial aspects of
AFL that affect every run significantly. We confirm the positive
effects of AFL’s novelty search algorithm in Sect. V-B. While
our experiments in Sect. V-A prove the overall positive impact
of hitcounts, we also show that they are target-dependent,
and other forms of edge-coverage can yield better results in
some instances. AFL’s prior decisions affect evaluations of
new research based on AFL. Researchers need to take the
observation into account that AFL’s implementation details
will impact their new research ideas when they simply clone
and patch AFL.

We hope that our study provides base knowledge for
researchers and practitioners who, in the future, will have to
work on the unevaluated aspects of AFL. This paper, and the
future experiments we discuss, serve as an accessible resource
and present a variety of insights about the internal, previously
not yet sufficiently tested, design choices.
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