Deception Techniques In Computer Security: A Research
Perspective

XIAO HAN, Orange Labs, France
NIZAR KHEIR, Thales, France
DAVIDE BALZAROTTI, Eurecom, France

A recent trend both in academia and industry is to explore the use of deception techniques to achieve
proactive attack detection and defense — to the point of marketing intrusion deception solutions as zero-false-
positive intrusion detection. However, there is still a general lack of understanding of deception techniques
from a research perspective and it is not clear how the effectiveness of these solutions can be measured
and compared with other security approaches. To shed light on this topic, we introduce a comprehensive
classification of existing solutions and survey the current application of deception techniques in computer
security. Furthermore, we discuss the limitations of existing solutions and we analyze several open research
directions, including the design of strategies to help defenders to design and integrate deception within a
target architecture, the study of automated ways to deploy deception in complex systems, the update and
re-deployment of deception, and most importantly, the design of new techniques and experiments to evaluate
the effectiveness of the existing deception techniques.

CCS Concepts: » Security and privacy — Intrusion detection systems; Systems security; Network
security; Software and application security;

Additional Key Words and Phrases: Deception

ACM Reference Format:
Xiao Han, Nizar Kheir, and Davide Balzarotti. 2019. Deception Techniques In Computer Security: A Research
Perspective. ACM Comput. Surv. 1, 1 (January 2019), 36 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years, we have witnessed a surge in advanced cyber attacks, that are rapidly increasing
both in number and in sophistication [Symantec 2016]. This threat affects both enterprises and
end-users alike and inflicts severe reputation, social, and financial damage to its victims [Trend
Micro 2015]. Unfortunately, despite the numerous efforts to raise awareness against cyber attacks,
attackers are still able to infiltrate their target systems, leveraging multiple attack vectors such
as zero-day vulnerabilities, flaws in software configuration, access control policies, or by social
engineering their target into installing or running malicious software.

To thwart this vicious trend, the security community has proposed and developed numerous
solutions to enhance the security of networks and information systems. Current solutions cover all
traditional aspects of security, including intrusion prevention [Scarfone and Mell 2007], system
hardening [Nguyen-Tuong et al. 2005], and advanced attack detection and mitigation [Ashfaq

Authors’ addresses: Xiao Han, xiao.han@orange.com, Orange Labs, 44 Avenue de la République, Chatillon, 92320, France;
Nizar Kheir, nizar.kheir@thalesgroup.com, Thales, 1 Avenue Augustin Fresnel, Palaiseau, 91767, France; Davide Balzarotti,
davide.balzarotti@eurecom.fr, Eurecom, 450 Route des Chappes, Biot, 06410, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0360-0300/2019/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Xiao Han, Nizar Kheir, and Davide Balzarotti

et al. 2017]. These traditional measures, although essential in any modern security arsenal, cannot
provide a comprehensive solution against Internet threats. Hence, complementary solutions have
been recently investigated, with the aim to be more proactive in anticipating threats and possibly
warn against attacks in their very early stages. In particular, deception techniques have attracted
a considerable amount of interest in the research community [Almeshekah and Spafford 2014a;
Anton 2016]. These techniques, initially inspired by the use of deception in the military domain,
consists of orchestrating a “planned set of actions taken to mislead attackers and to thereby cause
them to take (or not to take) specific actions that aid computer-security defenses” [Yuill 2006].

One of the first documents to mention the term deception as a way to enhance the security of
computer systems is “The Cuckoo’s Egg” book [1989], published by Cliff Stoll in 1989. The author
describes how he set up a fictitious system environment, including a user account populated with a
large number of fake documents to deliberately attract and delay an attacker while tracking his
incoming connections to reveal his origin and identity. Such fictitious environment, designed to
capture the interaction with an attacker, later became popular as a honeypot [Lance 2001]. In 1994, a
system called Tripwire [Kim and Spafford 1994a] offered a new approach for file integrity checking
by planting fictitious files and placing them under a file integrity monitor to detect intruders [Kim
and Spafford 1994b]. The concept of planted fictitious files have then evolved into a diversified set
of solutions including honeyfiles [Yuill et al. 2004] and decoy documents [Bowen et al. 2009].

In the following years, deception has been routinely used to protect computer systems and
networks. Honeypots became a popular solution for the monitoring, analysis, understanding, and
modeling of attackers’ behavior [Cohen 1998; Nawrocki et al. 2016; Provos et al. 2004; Spitzner
2003a]. In 2003, soon after the first computer honeypot was released, the concept of honeytoken
was proposed by Augusto Paes de Barros [2003]. Then Spitzner [2003c] broadened this concept
to cover “a digital or information system resource whose value lies in the unauthorized use of that
resource” and brought it to the attention of a larger public. Spitzner illustrated practical examples
of honeytokens, including bogus social security numbers and fake credentials, which have later
inspired many follow-up contributions including the use of honey passwords [Juels and Rivest
2013], honey URL parameters [Petruni¢ 2015], database honey tokens [Bercovitch et al. 2011; Cenys
et al. 2005], and honey permissions [Kaghazgaran and Takabi 2015].

The use of deception techniques for computer security has been widely driven by the analogy
with more conventional deceptive military tactics. In this scope, the concept has been broadened
towards intrusion detection (IDS) and prevention (IPS) systems. Instead of indicating to the intruder
a violation of a security policy, deception consists in responding to attackers with some pre-defined
decoy actions, such as fake protocol messages [Goh 2007], response delays [Julian 2002], and crafted
error messages [Michael et al. 2002]. For example, instead of blocking a detected intrusion on
the web server, Katsinis and Kumar [2012] examined the use of a deceptive module that analyzes
incoming HTTP requests and advises deceptive responses in case of an ongoing attack.

Most recently, during the French President election campaign, the digital team of Mr. Macron
created fake accounts with a large number of fake documents [Nossiter et al. 2017]. By leaking
these accounts to phishing attacks, they successfully delayed the advancement of the attackers and
confused them with a large quantity of fake information. Moreover, the attackers rushed to modify
some of the leaked documents, leaving some traces in their meta-data that provided information
about their identity.

Scope of this Document

During our efforts to summarize existing work on deception techniques, we observed that many
traditional security solutions already implement deception up to a certain level, as already observed
by Cohen [1998]. For example, widely known techniques such as software diversity [Larsen

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :3

et al. 2014], as well as anti-forensics techniques [Garfinkel 2007], are deceptive in nature, as
they aim to hide and conceal system information against unauthorized access. Similarly, security
scanners and crawlers mostly behave in a deceptive way in order to mimic normal users and hide
their real purposes. Malware analysis systems also try to deceive malicious binaries by executing
them in an instrumented sandbox as if they were running on a real victim terminal. To further
complicate this already multifaceted domain, the existing literature often adopts a confusing
terminology — interchangeably using terms such as concealment, fakes, baits, decoys, traps, and
honey[pots|tokens|files|accounts|...].

This makes the concept of deception too broad to cover in a single document — as it manifests in
different forms in almost all security domains. Therefore, in the rest of the document, we will only
cover the techniques that are used as a defense mechanism to deceive an attacker while he is
interacting with a target system. This definition (sometimes called Intrusion Deception) includes only
the solutions that can be applied to secure real systems. It rules out other loose forms of deception
adopted in the security field (such as faking the user agent of a web scanner) as well as standalone
deceptive systems used to observe generic attacks and to monitor the overall threat landscape (such
as conventional honeypots [Nazario 2009] or other tools developed by the Honeynet Project ! with
the goal of collecting information about attackers).

Moreover, we distinguish deception techniques from general moving-target defense techniques
that mainly consist of adding dynamics (or movements) to a static system to augment the adversary’s
workload and reduce the chance of its successful attacks. Typical moving-target defense techniques
include Address Space Layout Randomization (ASLR), software diversity, code obfuscation, and IP
address shuffling [Okhravi et al. 2013]. Even though both deception and moving-target defense
techniques may share common objectives, the way to achieve such objectives differ: one adds
randomness and the other seeks direct engagement with the attacker. Note that moving-target
defense techniques may also be applied for deception [Okhravi et al. 2014] and vice-versa [Han
et al. 2017]. However, in this survey, we do not consider general moving-target defense techniques
that merely increase the dynamics of a static system. This separation between moving-target
defense and deception techniques has also been observed in the literature. For example, Crouse
et al. [2015] compared the probabilistic performance of moving-target and deception techniques
and Cohen [2010] showed that moving-target defense techniques may be enhanced by adding
a deceptive cover to them. Readers interested in moving-target defense techniques may refer to
related work, such as [Jajodia et al. 2012, 2011].

Finally, note that deception may also be used as an evasion technique, like in the case of decoy
routing [Karlin et al. 2011; Nasr et al. 2017]. Decoy routing is designed to circumvent IP address-
based network filtering by leveraging a decoy destination. A decoy router that supports a covert
channel is implemented on the path between the user and the decoy destination. Therefore, the
user is able to require and access filtered content via the covert channel. Nonetheless, for the sake
of clarity and to narrow down the scope of this survey, we mainly focus on deception techniques
in the literature that have been used for defensive purposes.

Survey Organization

In this paper, we survey the use of deception techniques in computer security as a defensive
measure, while narrowing the scope of this survey to our definition of deception as introduced
in Section 1. The first application of deception in the computer security field relates back to the
early 1990s, largely inspired by its use in the military domain. Different forms of deception have
been further explored in the cyber space, driving many efforts and leading to many technical

http://honeynet.org

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

http://honeynet.org

4 Xiao Han, Nizar Kheir, and Davide Balzarotti

contributions and solutions over the last two decades [Jajodia et al. 2016; Rowe and Rrushi 2016].
Nonetheless, from a research perspective, we still lack a common understanding about deception
techniques and their application in information and communication systems security. In particular,
there is not yet a wide consensus among the research community about what the main goals are and
technical challenges to achieve when using deception techniques as a defense mechanism. The real
benefits for such techniques are also not clearly emphasized, nor the way deception techniques may
complement other traditional security solutions. The modeling, deployment, update, and evaluation
of deception techniques are also scarcely addressed in the literature — often resorting to qualitative
statements and thus making it difficult to compare such techniques with other approaches.

Motivated by these key questions, this paper presents a systematic organization of previous
work on deception techniques and their application in the cyber security domain. It discusses the
main technical challenges that were addressed using these techniques and emphasizes the gaps
and the pieces of the puzzle we still miss in this complex field of research.

This paper is organized as follows. Section 2 introduces our motivations, together with the
proposed scheme and related work. Section 3 surveys the current and featured applications of
deception techniques for cyber defense. Section 4 discusses the existing deception modelling
approaches and the way they design and integrate deception techniques inside a target system.
Section 5 discusses the different deployment scenarios, as well as the enforcement and monitoring
of deception techniques. Section 6 overviews the different ways how deception techniques have
been evaluated in the literature. Finally, Section 7 provides insights for future work and Section 8
concludes.

2 SURVEY METHODOLOGY

The goal of this survey is to investigate the role of deception techniques in computer security
from a research perspective. To the best of our knowledge, there is no comprehensive survey that
summarizes and classifies deception techniques in this context, which would considerably help
to better structure and advance this field of research. Moreover, an increasing number of calls to
conduct “scientific” security research have emerged in the last few years [Herley and van Oorschot
2017]. Nevertheless, the authors in [Herley and van Oorschot 2017] found that “there is little clarity
on what scientific means in the context of computer security research”. Among other results, authors
pointed out that unfalsifiable justification such as “deception improves security” are frequent and
might result in pileup of (unnecessary) countermeasures. As some security scientific models failed
to compare their outcomes with observable (real-world) measurements, the authors recommended
that “calls for more science should specify desired attributes, specific sources of dis-satisfaction with
current research, and preferred types of research”. We will try to address some of these points in this
document.

2.1 Proposed Scheme

Motivated by the above factors, this paper discusses all these issues regarding deception techniques
and provides an overview of deception-based defenses in computer security. The emphasizes is on
the research gap, through focusing on open problems related to the modeling, deployment, and
evaluation of deception techniques:

1. Classification and Current Applications: A first question to address when referring to de-
ception techniques is why we should use such techniques and how they complement other
traditional security mechanisms [Almeshekah and Spafford 2014a,b]. Only two decades ago,
researchers were still wondering whether deception may be acceptable from a legal and ethi-
cal perspective [Cohen 1998]. Today, it is obvious that such questions are no longer an issue,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :5

opening the door to a large number of proprietary (e.g., TRAPX?, CANARY?, ThreatMatrix*) and
open source (e.g., DCEPT®, Canarytokens®) solutions that explicitly mention and use deception
for computer security defense. A main goal of this paper is thus to propose a comprehensive
classification, survey the current applications of deception in computer security, and shed light
on the key technical domains where deception has been implemented.

2. Modeling: Deception modeling refers to the set of rules and strategies that drive the defender

into designing and integrating deception within the architecture and workflow of a target system.
During our survey of scientific literature, we identified multiple deception strategies that leverage
different properties of the target system, and different assumptions about the attacker behavior.
For example, Cohen et al. [2002; 2001b] leveraged the use of attack graphs, which provide a
compact representation of known attack scenarios and the way attackers can break into a target
system. The authors integrated deception techniques in different positions of the graph, in order
to lure attackers and to drive them towards fake targets. In [Carroll and Grosu 2011], authors
proposed an alternative approach, leveraging models based on game theory, in order to describe
different interaction sequences between attackers and the target system, and to apply deception
while maximizing the defender’s gain.
In this paper, we survey existing deception modeling techniques and we discuss their main
benefits and limitations. In particular, we observe that most deception modeling techniques
either cover only specific attacks and use cases or they try to adapt and implement high-level
strategies whose applicability remains questionable.

3. Deployment: Another key aspect of deception is the way it is deployed inside a target envi-
ronment. The mode of deployment refers to the technical environment where the deception
is being implemented inside a target system [Rowe and Rrushi 2016]. In this scope, deception
may be either implemented as a standalone solution (e.g., honeypots) or fully integrated within
the target system (e.g., fake documents [Voris et al. 2015]). Moreover, deployment also includes
the placement strategies (either manual or automated) that place deception at specific locations
within the architecture and workflow of a target system. To be effective, deception elements
need to be generated to achieve perfect realism with regard to real data and system integration.
However, it is still unclear how the deployment and placement strategy affects the effectiveness
of the solution. Moreover, while the importance of re-training machine learning models or update
attack signatures is well known in the intrusion detection domain, the importance of updating
the deception element is still largely unexplored.

4. Evaluation: The last aspect that we cover in this survey is the experimental setup and the way
previous work evaluate the proposed deception techniques. We discuss the main challenges
researchers are faced with when evaluating deception and how these problems may drastically
limit the soundness of the obtained results (both regarding the efficiency and the accuracy of the
proposed solutions). Other solutions are typically evaluated by measuring their detection and
false alarm rates — both of which are difficult to assess in the deception domain.

We conclude by providing insights and discussing key features that should be taken into account
in the future when evaluating deception techniques.

Zhttps://trapx.com/

Shttps://canary.tools/
4https://attivonetworks.com/product/deception-technology/
Shttps://github.com/secureworks/dcept
®https://github.com/thinkst/canarytokens

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:6 Xiao Han, Nizar Kheir, and Davide Balzarotti

2.2 Previous surveys

In [2003b], Spitzner discussed the use of honeypot and honeytoken technologies as a way to protect
against the insider threat. In [2008], Rowe discussed different possibilities to integrate deception in
honeypot systems — such as decoy information, delays, and fake error messages — and compared
them to other opportunities for using deception in real computer systems. Voris et al. [2013]
discussed the multiple use cases where decoys may be relevant for computer security. Juels and
Tech [2014] discussed the use of honey objects (a generic term they used to refer to multiple types
of deception) to improve the security of information systems. Jogdand and Padiya [2016] also
analyzed IDS solutions and the way they may implement honey tokens, which are indeed a specific
type of deception. In [2001a], Cohen et al. overviewed multiple issues that arise when applying
deception in computer security, and further introduced their own framework for deception. The
authors also discussed the major challenges to perform practical deceptions using this framework
to defend information systems. Cohen also surveyed, in [2006], the historical and recent uses (until
2005) of honeypots and decoys for information protection, as well as the theory behind deceptions
and their limitations. Our work is different as it surveys the recent contributions, focusing on the
technical challenges and evaluations of deception, rather than studying the history of this concept
and how it found its way into computer security.

More recently, multiple studies advocated the use of deception techniques to protect informa-
tion systems and react against potential intruders [Almeshekah and Spafford 2014a; Jajodia et al.
2016; Rowe and Rrushi 2016; Virvilis et al. 2014]. These papers contributed to promote deception
techniques and to provide interesting applications and use cases. However, they mostly introduced
technical contributions and none of them aimed to classify and to provide a comprehensive survey
on deception techniques and their use in computer security.

3 CLASSIFICATION

In this section, we introduce a classification of deception techniques along four orthogonal di-
mensions, including the unit of deception, the layer where deception is applied, the goal of the
deception solution, and its mode of deployment.

3.1 Previous Classifications

Early deception classification schemes followed a traditional military deception classification
scheme. For example, Cohen [1998] examined deception techniques based on the nature of these
techniques, including the “concealment, camouflage, false and planted information, ruses, displays,
demonstrations, feints, lies and insight”. This historical examination revealed that deception was far
from being fully exploited in computer security. The same type of taxonomy has also been used in
later works [Rowe and Rothstein 2004; Rowe and Rrushi 2016].

Rowe and Rothstein [2004] developed a theory of deception that is inspired from the computa-
tional linguistic theory of semantic cases. The semantic case roles include several dimensions such
as participant (agent, beneficiary), space (direction, location), time, causality (cause, purpose), and
quality (content, value). The authors explained a deception operation as an action that modifies the
values of the associated case role. Cohen [2006] proposed a model of computer deceptions that
groups deceptions by the hierarchical level of the computer at which they are applied, from the
lowest hardware level to the highest application level. Information and signals between different
levels can either be induced or inhibited in order to implement deception. Similarly, Almeshekah
and Spafford [2014b] classified deceptions based on the system state and components where de-
ception may be deployed. The top-level categories include the functionality of the system (system

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective ;7

decisions, software and services, internal data) and state of the system (activities, configurations,
and performance).

Gartner [2015] proposed a four layer deception stack including the network, endpoint, application,
and data layers. It further analyzed the deception techniques implemented by current commercial
products. Both Gartner [2015] and Almeshekah and Spafford [2014a] have examined the possibilities
to deploy deception techniques during the different phases of a cyber attack, without any systematic
classification.

3.2 Multi-Dimension Classification

Because of the wide spectrum of deception techniques and the different ways they may apply to
computer security, it is very difficult to classify all of them along a single dimension that successfully
incorporates the different research aspects. Traditional military deception classifications (such
as [Cohen 1998]) and semantic classifications (such as [Rowe and Rothstein 2004]) allowed us to
understand the use of deception techniques from different angles, which however are difficult to
match with the needs of computer security. Moreover, most previous classifications considered
only one dimension, such as the component, the granularity of each technique [Almeshekah and
Spafford 2014b], or the layer where deception is applied [Pingree 2015]. Unfortunately, these mono-
dimensional classifications miss other aspects of deception that are of equal importance, such as
the threats covered by each technique, and the way they can be integrated inside a target system.

To address these limitations, we introduce in this section a new classification system based on
four orthogonal dimensions. In our system, categories are mutually exclusive, which means that
each existing deception technique may be classified within only one single four-dimensional vector.
Our classification is also complete, so all existing deception techniques find a place in our schema.
The four dimensions that we use for our classification are defined as follows.

Goal of deception captures the main purpose a specific deception technique is trying to achieve.
This could be either to improve and complement attack detection, to enhance prevention,
or to mitigate successful attacks. The first category includes those solutions designed to
detect an attack, typically because it interacts with active traps or because it uses passive
decoy information that are intentionally left accessible to be discovered by the attacker (e.g.,
decoy documents [Ben Salem and Stolfo 2011]). The second category covers instead those
mechanisms that aim at confusing or distracting attackers from the real targets before an
attack occurs (e.g., the deployment of deceptive network topology [Trassare 2013]). Finally,
the last category targets on-going attacks and tries to reduce their damage, for instance by
replying in a delayed manner [Julian 2002] or by redirecting attackers to a safe copy of the
target system [Anagnostakis et al. 2005; Araujo et al. 2014].

Unit of deception refers to the granularity of the decoy asset that is used to implement deception.
We use the same definition of granularity introduced by Almeshkah et al. [2014b], which
includes the following units of deception: decision (e.g., by accepting a connection towards
an unused IP address [Borders et al. 2007; Liston 2001]), response (e.g., a forged network
response [Borders et al. 2007]), service (e.g., a decoy service [Cohen et al. 1998]), activity (e.g.,
a decoy computation activity [Kontaxis et al. 2014]), weakness (e.g., a simulated vulnerabil-
ity [Araujo et al. 2014]), performance (e.g., a delayed response [Julian 2002]), configuration
(e.g., a fake network topology [Trassare 2013]) and data.

We further refine the data unit into separate types, such as parameter (e.g., a honey URL param-
eter [Petruni¢ 2015] or a honey form field [Katsinis et al. 2013]), file (e.g., honeyfiles [Yuill et al.
2004] and decoy documents [Ben Salem and Stolfo 2011]), account (e.g., honey account [Bowen
et al. 2010a; Chakravarty et al. 2011]), user profile (e.g., honey profiles [Webb et al. 2008]),

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:8 Xiao Han, Nizar Kheir, and Davide Balzarotti

source code (e.g., decoy source code elements [Park and Stolfo 2012]) and database record (e.g.,
database honey token [Cenys et al. 2005]).

Layer of deception indicates the layer in which the deception element is applied. While there are
different ways to organize the layers of an information system, we use a standard classification
divided in network, system, application, and data layers. The network layer covers deception
techniques that are accessible over the network and that are not bound to any specific host
configuration. The system layer covers host-based deception techniques. The application
layer covers deception techniques that are linked to specific classes of applications, such
as web applications or databases. Finally, the data layer covers deception techniques that
leverage user-specific data, such as fake accounts or fake documents.

Deployment of deception characterizes the way a deception technique may be integrated
within a target system. Possible deployment modes include (1) built-in deception solutions
that are integrated in the system at the design phase (e.g., in the source code [Julian 2002]),
(2) deceptions that are added-to the system during operation (e.g., documents inserted in a
file system [Voris et al. 2015]), (3) deceptions that are set in-front of a target system (such as
a proxy or gateway [Brewer et al. 2010]), and finally (4) isolated solutions separated from the
target system (e.g., fake accounts of a decoy server [Bowen et al. 2010a; Chakravarty et al.
2011]).

Table 1 presents a survey of previous work on deception and classifies them over the four
aforementioned dimensions. Note that few studies that are referenced in Table 1 do not explicitly
mention deception in their core contributions. Moreover, since deception is a generic concept
that may apply to different aspects of security, certain studies introduce deception as an add-on
functionality within a more comprehensive security framework. Table 1 lists existing work as long
as their contribution fits with our definition of deception introduced in Section 1.

3.3 Overview of Intrusion Deception Techniques

During our survey, sometimes we found it particularly challenging to associate a given publication
to a specific deception category, since many techniques may have been presented in a single work.
Therefore, to keep a consistent classification of existing work on deception, we associate each
publication to its main deception technique or to the one that has not been introduced before in
case of multiple contributions.

For sake of clarity, since our classification leverages four distinct dimensions, we organize
this section based on the layer of deception. But we discuss all four dimensions as part of our
classification.

Layer I: Network

The network-based deception techniques we observed in the literature were mostly designed to
address three categories of threats: network fingerprinting, eavesdropping, and infiltration and attack
propagation.

Scanning & Fingerprinting. These typically occur during the early stage of an attack, in particular
the reconnaissance phase, and enable an attacker to acquire information about the network topology
and available assets by fingerprinting and scanning the network.

One of the first deception techniques that offered to interfere with the reconnaissance phase in
order to obfuscate its results relied on sinkholing attack traffic, by redirecting malicious traffic to a
set of fake machines that mimic the behavior of real terminals on the network [Borders et al. 2007].
Such decoy machines are commonly known as network tarpits [Liston 2001]. They create sticky
connections with the aim to slow or stall automated scanning and to confuse human adversaries.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :9
Reference Technique Unit Layer Goal Deployment
[Liston 2001] Network Tarpit Decision Network Mitigation Added-to
[Borders et al. 2007] Network Tarpit Decision Network ~ Mitigation In-front of
[Shing 2016] Network Tarpit Decision Network Mitigation Added-to
[Le Malécot 2009] Traffic forging Response Network Mitigation In-front of
[Trassare 2013] Deceptive topology ~ Configuration = Network Prevention In-front of
[Smart et al. 2000] OS obfuscation Response Network Mitigation In-front of
[Bowen et al. 2010a] Honey accounts Configuration ~ Network Detection Isolated
[Chakravarty et al. 2011] Honey accounts Configuration ~ Network Detection Isolated
[Cohen et al. 2001b] Deceptive attack graph Configuration = Network Prevention Added-to
[Cohen and Koike 2002] Deceptive attack graph Configuration = Network Prevention Added-to
[Cohen et al. 1998] Decoy services Service Network Prevention Added-to
[Provos et al. 2004] Decoy services Service Network Detection Added-to
[Rrushi 2011] Deceptive simulation Activity Network Prevention Added-to
[Kontaxis et al. 2014] Decoy computation Activity System Prevention In-front of
[Urias et al. 2016] Deceptive simulation Service System Mitigation ~ Added-to
[Wang et al. 2013] Multi-layer deception Multiple Multiple Detection ~ Added-to
[Murphy et al. 2010] OS obfuscation Parameter System Mitigation ~ Added-to
[Rowe et al. 2006] Fake honeypots Configuration System Mitigation ~ Added-to
[Kaghazgaran and Takabi 2015] Honey permissions Configuration System Detection Built-in
[Rrushi 2016] Decoy network device Service System Detection Added-to
[Michael et al. 2002] Software Decoys Response Application Detection In-front of
[Araujo et al. 2014] Honey patches Weakness Application Mitigation In-front of
[Crane et al. 2013] Software trap Weakness ~ Application Detection Added-to
[Julian 2002] Delayed response Performance Application Mitigation Built-in
[Anagnostakis et al. 2005] Shadow honeypots Service Application Mitigation In-front-of
[Brewer et al. 2010] Decoy hyperlinks Parameter Application Detection In-front of
[Gavrilis et al. 2007] Decoy hyperlinks Parameter ~ Application Detection Added-to
[McRae and Vaughn 2007] Honey URL Parameter Application Detection Added-to
[Petruni¢ 2015] Honey URL parameters =~ Parameter ~ Application Detection Built-in
[Katsinis et al. 2013] Decoy form field Parameter ~ Application Detection In-front of
[Virvilis et al. 2014] Honey accounts Configuration Application Detection Added-to
[Bojinov et al. 2010] Honey password Account Data Prevention Added-to
[Juels and Rivest 2013] Honey password Account Data Detection Added-to
[Juels and Ristenpart 2014] Honey encryption Account Data Prevention Built-in
[Bowen et al. 2010b] Honey accounts Account Data Detection Isolated
[Akiyama et al. 2013] Honey accounts Account Data Detection Isolated
[Onaolapo et al. 2016] Honey accounts Account Data Detection Isolated
[Yuill et al. 2004] Honeyfiles File Data Detection Added-to
[Lazarov et al. 2016] Honeyfiles File Data Detection Added-to
[Cenys et al. 2005] Database honey tokens Record Data Detection In-front of
[Bercovitch et al. 2011] Database honey tokens Record Data Detection Added-to
[Padayachee 2014] Database honey tokens Record Data Detection Built-in
[Park and Stolfo 2012] Decoy source code Code Data Detection Added-to
[Bowen et al. 2009] Honeyfiles File Data Detection Added-to
[Ben Salem and Stolfo 2011] Honeyfiles File Data Detection Added-to
[Voris et al. 2015] Honeyfiles File Data Detection Added-to
[Nikiforakis et al. 2011] Honeyfiles File Data Detection Added-to
[Liu et al. 2012] Honeyfiles File Data Detection Added-to
[Kapravelos et al. 2014] Honey web pages File Data Detection Added-to
[Webb et al. 2008] Honey profiles Profile Data Detection Added-to
[Stringhini et al. 2010] Honey profiles Profile Data Detection ~ Added-to
[De Cristofaro et al. 2014] Honey profiles Profile Data Detection Added-to

Table 1. Detailed overview of deception techniques

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:10 Xiao Han, Nizar Kheir, and Davide Balzarotti

Shing [2016] further brought a few improvements to this idea by tuning the different options of the
sticky connections to conceal network tarpits and prevent them from being easily recognized.

Another way to lure attackers and to randomize the outcome of their fingerprinting attempts
was proposed by Le Malécot in [Le Malécot 2009]. They authors introduced a technique to skew
the topology of the target network through random connection dropping and traffic forging. For
example, Trassare [2013] defeated a particular type of scan, traceroute probes, by misleading an
attacker through constantly revealing a false network topology.

Another type of threat, OS Fingerprinting, allows an attacker to gain valuable information about
available Operating Systems (OS) and so to identify potential flaws and vulnerabilities. To conceal
OS-related information and prevent it from being fingerprinted by an attacker (e.g., using the
Nmap tool), multiple deception techniques have been proposed — that offer to mimic the network
behavior of fake operating systems [Murphy et al. 2010; Smart et al. 2000] in an effort to mislead
potential attackers. The use of deception techniques against this category of threat mainly aims at
confusing attackers and delaying their advancement.

Eavesdropping. Network eavesdropping is a challenging attack to detect using traditional de-
tection systems since the attacker usually remains silent on the network. Deception techniques
have been introduced as an alternative way to protect against such attacks. A deception technique
that is particularly relevant in this area is the use of honey accounts. These are usually dummy
credentials that are shared over the network in order to be captured and used by elusive attack-
ers, thus revealing their presence in specific networks such as wireless [Bowen et al. 2010a] and
Tor [Chakravarty et al. 2011] networks.

Infiltration & Propagation. Cohen et al. in [2002; 2001b] conducted red teaming experiments on
deception, through leveraging structured attack graph representations, in order to drive attack-
ers into following fake attack paths that would distract them from their real targets. Similarly,
HoneyD [Provos et al. 2004] and the Deception ToolKit [Cohen et al. 1998] offered to spawn
multiple fictitious services and network IP addresses in order to fool the attackers and make them
attack false targets. In addition to their application in traditional networks, deceptive simulation
techniques [Rrushi 2011] have also been applied in the context of industrial control systems. These
tools offer to monitor the network topology and to create fake but indistinguishable attack targets
that are aimed to fool attackers and conceal potential victims.

Layer II: System
Deception techniques that have been implemented at the system layer were mainly aimed at
addressing two categories of threats, namely external attacks and insider threats.

System Compromise. Wang et al. [2013] suggested the use of deception techniques in an effort
to enhance the detection of system compromise attempts by introducing a multi-layer decoy
framework that included decoys for user profiles, files, servers, and network / system activity.
These decoys were supposed to conceal the real assets of an organization and protect them against
targeted attacks. In a similar approach, Rrushi [2016] proposed the use of a decoy Network Interface
Controller (NIC) for Windows operating systems. This decoy interface was intentionally set in
order to lure and detect malicious software that may be running on the system. The idea is that
benign software is not expected to use the decoy interface, which is how the authors were able to
detect other malicious applications running on the system.

As opposed to the previous techniques that were mainly aimed at enhancing detection, Rowe
et al. [2006] adopted a proactive deception approach that aims at preventing system compromise
attempts. They suggested the use of fake honeypots that make ordinary but critical systems appear

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective 11

as real honeypots, which may confuse an attacker and turn him away from the compromised
system. Similarly, Urias et al. [2016] offered to clone and migrate machines that are suspected of
being compromised and to place them in a deceptive environment where network and system
configurations are duplicated to mimic the real network environment. Lastly, Kontaxis et al. [2014]
proposed to duplicate multiple times the entire application server to generate decoy computation
activities.

Insiders. To detect and mitigate insider threats, Kaghazgaran and Takabi [2015] offered to extend
role-based access control mechanisms with honey permissions. These are fake permissions in the
sense that they assign unintended access permissions to only fake versions of sensitive system
assets. By monitoring attempts to access or modify such fake assets, the authors are able to detect
insiders who triggered these malicious attempts. Note that many other techniques applied at the
data layer, such as decoy documents and fake source code, have also been proposed to deal with
insider threats, and we discuss them in the last part of this section.

Layer III: Application
State of the art deception techniques applied at the application layer mainly address two threat
categories, which are host-based software compromise and remote web-based attacks.

Software Compromise. Deception techniques have been extensively used in the literature as a
way to protect software from commonly known vulnerabilities. They usually consist of deceiving
attackers by either pretending fake (non-existent) vulnerabilities or by randomly responding to
common vulnerability scan attempts. For example, a straightforward deceptive response would
be to simulate system saturation by randomly adding delays in order to deceive potential adver-
saries [Julian 2002]. Michael et al. [2002] introduced the notion of intelligent software decoys that
detect and respond to patterns of suspicious behavior (e.g., the interaction between a worm and the
system component that it tries to infect), and maintain a repository of rules for behavior patterns
and decoying actions. Araujo et al. [2014] converted software patches into fake but valid-looking
vulnerabilities (also known as “honey-patches”) that drastically limit the attackers capability to
determine the successfulness of their attacks. In this scope, and upon detection of an attack ex-
ploiting the fake vulnerability, the system seamlessly forwards the attacker to a vulnerable decoy
version of the same software. The authors further extended their honey-patch system with an
instrumented compiler that automatically clean credentials in the un-patched version of the web
server [Araujo and Hamlen 2015]. In [2005], Anagnostakis et al. introduced shadow honeypots
that extend honeypots with anomaly-based buffer overflow detection. The shadow honeypot is
an instance of the target application and shares its context and internal state. It is used to process
anomalous traffic and to enhance the accuracy of anomaly detection.

Finally, Crane et al. introduced, in [2013], software traps that are dissimulated in the code as
gadgets, and detect return-oriented programming attacks. These traps detect and notify an ongoing
attack as soon as they are manipulated by the exploit.

Web Attacks. Brewer et al. [2010] proposed a web application that embeds decoy links. These
links are invisible to normal users, but are expected to be triggered by crawlers and web bots that
connect to the application. Similarly, Gavrilis et al. [2007] presented a deceptive method that detects
denial of service attacks on web services by using decoy hyperlinks embedded in the web page.

Another approach to deceive web-based attacks also consists of using fake information disguised
as web server configuration errors. Only malicious users are expected to manipulate or exploit
these errors, which expose them to detection by the system. In this scope, Virvilis et al. [2014]
introduced honey configuration files, such as robots. txt, including fake entries, invisible links,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

12 Xiao Han, Nizar Kheir, and Davide Balzarotti

and HTML comments that indicate honey accounts, in order to detect potential attackers. Other
studies proposed decoy forms [Katsinis et al. 2013] and honey URL parameters [Petruni¢ 2015] that
display fake configuration errors in an effort to mislead attackers and to protect the target system.

Layer IV: Data

This section discusses state of the art techniques that use fake or decoy data to deceive attackers.
They mainly protect against four categories of threats, namely identity theft, data leakage, privacy
violation, and impersonation.

Identity Theft. Honey accounts have been used in the literature to track phishers [McRae and
Vaughn 2007], detect malware [Akiyama et al. 2013; Bowen et al. 2010b], and also provide possibili-
ties for researchers to study the malicious activities performed on stolen webmail accounts [Onao-
lapo et al. 2016]. In the same vein, Lazarov et al. [2016] created five fake Google spreadsheets
containing decoy banking information and wire transfer details in order to shed light on the way
that cyber-criminals use these fake spreadsheets. There are also other approaches that applied
deception techniques to protect stolen user passwords. For example, to protect against situations
where hashed user passwords have been leaked, Juels et al. introduced in [2013] honeywords
(false passwords) in order to conceal true authentic passwords. Bojinov et al. [2010] introduced
instead the concept of a theft-resistant password manager that executes on the client side and ran-
domly generates new password instances. Finally, Juels et al. [2014] proposed “honey encryption”,
which creates a ciphertext that, when decrypted with an incorrect key or password, results in a
valid-looking decoy message.

Data Leakage and Insiders. To mitigate or report a data leakage, multiple studies [Ben Salem and
Stolfo 2011; Bowen et al. 2009; Voris et al. 2015] suggested the use of decoy documents that imple-
ment honeytokens, and beacon alerts that call home when they are opened. Alternatively, honey
tokens that mimic sensitive information have also been integrated within databases (e.g., [Bercov-
itch et al. 2011; Cenys et al. 2005]) — mainly as a way to detect insiders who scan the database to
obtain an unauthorized access to data. In the same vein, Park et Stolfo [2012] generated fake but
believable Java source code to detect the exflitration of proprietary source code.

Privacy Violation. Honeyfiles that raise an alert when accessed or modified have been used in the
literature in order to detect privacy violations for documents shared on web hosting providers [Niki-
forakis et al. 2011] and Peer-to-Peer networks [Liu et al. 2012].

More recently, Kapravelos et al. [2014] proposed honey web pages that adapt the page structure
and content according to a browser extension’s expectations. These honey web pages allowed the
authors to identify malicious behavior in the form of privacy violation in browser extensions.

Impersonation. Impersonation attacks on social networks have been first discussed by Bilge et
al. [2009]. Deception techniques have been used to detect similar cases of impersonation and fake
accounts. For instance, De Cristofaro et al. [2014] created and promoted 13 honey Facebook pages
to study the fake likes that they would receive. Honey profiles have also been deployed on social
networks in order to identify accounts that are operated by spammers [Stringhini et al. 2010; Webb
et al. 2008].

4 MODELING

In this section, we look at theoretical models that have been proposed for deception techniques in
computer security. In particular, we have identified two main axes of deception modeling in the
literature. First, many contributions have proposed models to support planning and integration
of deception in a target infrastructure or system. These models mainly propose some sort of

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :13

methodology (that can either be a process, a probabilistic model, a practical model based on attack
graphs, or a game theoretical model) to design where, when, and how deception may be integrated
in computer security. In few cases, the authors have tried to understand the affects of deception in
computer security by modeling the interaction between attackers and deception-enabled defenders,
mostly based on game theory.

4.1 Deception Planning

We group the proposed models to plan deception into four categories by the modeling method
that are 1) process model that defines the desired process and how it should be performed, 2)
probabilistic model that uses probability to evaluate the benefits and cost of deception, 3) practical
model that uses attack graphs to build deception, and 4) game theoretical model that computes an
optimal defense strategy.

4.1.1 Process Model. Yuill [2006] presented a process model covering four major steps: 1)
deception-operation development, 2) deployment, 3) target engaged, and 4) continuation decision
and termination. The first step involves the planning of goals, the identification of possible targets,
the creation of the deceptive element, and the preparation of the mechanism to engage the target.
The next step consists of deploying the deception scenario at a location that is visible to the
potential target. The target is engaged once he perceives and believes the deception scenario, and
subsequently takes the planned action, which may be reported by properly designed feedback
channels. Finally, a decision on whether to continue or terminate the deception is taken based on
the results and the efficiency of the deception operation.

Similarly, Almeshekah and Spafford [2014b] proposed a model that includes three general phases:
design, implementation and integration, and monitoring and evaluation. The first phase consists of
specifying the strategic goals, defining the way that the target may interact with deception, creating
the deception story, and identifying the feedback channels. Then defenders should integrate
deception within a real environment, instead of being a separate disjoint component. Finally,
the previously established feedback channels should be carefully monitored in order to enhance
deception. Heckman et al. [2015] presented a similar but iterative deception life cycle management
process, while De Faveri and Moreira [2016] proposed a similar but adaptive process model. Hassan
and Guha [2016] proposed an abstract model based on a state machine with four states (default,
ready, production, and determine) to provide a basic elementary view of the aforementioned models.

De Faveri et al. [2016] designed a goal-based approach to incorporate deception in the software
development process in three separate phases. The first phase consists of modeling the system
architecture and its goal in a specific domain of application. Then the security requirements are
identified and a threat model is produced. The last step requires the application of the deceptive
solution based on previously built models. The applied deception model is actually similar to the
aforementioned process models.

Finally, Yuill et al. [2006] proposed a model that describes deceptive methods by the way that
defenders may use to disable the attackers to discover a hidden asset. More precisely, the process
model affects the attackers ability or behavior, by altering the results of their direct observation,
the findings of their investigation, and the information they learned from other users.

4.1.2 Probabilistic Model. Rowe [2004] provided a probabilistic model of the attacker’s belief in
false excuses such as system crush, communication breakdown, and also the attacker’s suspicious-
ness about whether he is being deceived. This model is helpful for defenders to plan when and how
to deceive, while monitoring the attacker’s belief in the proffered excuses. Rowe [2007] also pro-
posed a cost-effective probabilistic model to assess the cost and benefits while planning deception.
Wang et al. [2013] modeled the design of the multilayered deception system including decoys of

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:14 Xiao Han, Nizar Kheir, and Davide Balzarotti

user profile, files, servers, and network or system activity as a problem of optimization which aims
to reduce the cost of deception deployment and the loss in case of a successful compromise. Using
an urn model, Crouse et al. [2015] modeled the probability of an attacker successfully discovering a
vulnerable computer in a network configured with honeypots under different scenarios.

4.1.3 Practical Model. Cohen et al. [2002; 2001b] modeled the process and path that attackers
might use to compromise a computer using attack graphs. By introducing false targets in the attack
graph, they modeled how to drive the attackers away from real targets.

4.1.4 Game Theoretic Model. Pibil et al. [2012] proposed a honeypot selection game that lever-
aged the network configuration for a target, the latter including multiple servers with different
levels of criticality. The authors further accounted for the attackers’ probes in their model in order
to compute the optimal strategy for the defender. There also exists multiple contributions that
offered to combine game theoretical approaches with attack graphs (or attack graph games) in
order to enhance network security. Durkota et al. [2015b] first modeled an attacker who is perfectly
informed about the number and type of honeypot that are being deployed in the network. Later on,
the same authors proposed in [2015a] an approximate solution that accounts for attackers who
only have a partial knowledge of the system in order to find a balanced defense strategy. Finally,
the same authors illustrated in [2016] the attack graph game in a concrete case study.

In [2012], Clark et al. modeled the effects of deceptive routing in a wireless relay networks using
a two-stage game in order to compute a solution for mitigating jamming attacks.

4.2 Interactions between Attackers and Deception Techniques

The last few years have witnessed an increasing effort towards applying game theory models in
the computer security field, including also many contributions that were published in the GameSec
conference ’. In this survey, we mainly focus on studies that use game theory models to characterize
the way deception may affect attackers.

First of all, few contributions in this area modeled honeypots as a defense mechanism using a
game of incomplete information. Garg and Grosu [2007] characterized deception using a honeynet
system where defenders may have the choice to conceal a regular host as a honeypot (or inversely)
in response to the attackers’ probe. Similarly, Carroll and Grosu [2011] modeled the way deception
affects the attack—defense interactions based on a game theory where the players (defenders
and attackers) have incomplete knowledge of each other. In this game, defender can deploy two
deception defenses by either concealing a legitimate server as a honeypot or by making a honeypot
look like a legitimate server. Ceker et al. [2016] modeled a similar approach, using game theory,
that offers to disguise a real system as a honeypot (or vice-versa) in an attempt to mitigate Denial
of Service (DoS) attacks.

To counter Operating System (OS) fingerprinting, Rahman et al. [2013] analyzed the interactions
between a fingerprinter and the target system. The authors used a signaling-game which aims to
find an efficient deceptive solution that disrupts the results of fingerprinting. Clark et al. [2015]
further modeled the delay upon which a fingerprinter is able to identify real and decoy nodes. Using
this delay, authors proposed another game model that characterized the IP address randomization
in order to calculate an optimal strategy.

Gutierrez et al. [2015] presented a way of modeling the interaction between adversaries and
system defenders using hypergames. Using this approach, the authors were able to model mis-
perceptions resulting from the use of deception. Recently, Horak et al. [2017] presented a game

"http://www.gamesec-conf.org/

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

http://www.gamesec-conf.org/

Deception Techniques In Computer Security: A Research Perspective :15

theoretical framework that modeled the attacker’s belief while deception is deployed in a three-layer
network.

5 DEPLOYMENT

Most deception techniques take advantage of their interactions with the remote attacker. Hence, the
efficiency of such techniques hinges largely on their credibility, their coverage, and the location in
which the deceptive elements are placed inside the target environment. In this section, we discuss
these fundamental properties and we survey how these requirements were fulfilled in previous
work.

In particular, the rest of the section focuses on the following four aspects: 1) how deception is
deployed and integrated into a target environment, 2) how previous work approached the problem
of optimal placement of deception elements, 3) how to achieve realistic and plausible deception,
and finally 4) how to monitor, update, and replace deceptive elements already deployed on the field.

5.1 Mode of Deployment

We start our deployment study by looking at how deception techniques are positioned with respect
to the target environment under protection. The techniques that we introduced in the previous
section often adopt different deployment strategies, based on their granularity and on the objectives
the defender wants to achieve when adopting a given deception technique. According to the
taxonomy we presented in Section 3, we classify the different modes of deployment into four
categories, depending on whether the deception is built inside the target system, placed in front
of the system, later added to the system, or finally deployed as an isolated, standalone solution.
Unfortunately, not all existing deception techniques come with a clear or unique deployment
strategy. Therefore, this section covers only those techniques whose deployment may be clearly
identified with respect to the target system.

Built-In. Only few studies in the literature suggest integrating deception already at the system
design phase. In this scope, honey encryptions [Juels and Ristenpart 2014] offered to protect mes-
sages by creating dummy honey tokens and including them in the system by design. Similarly,
Kaghazgaran [2015] proposed to embed, during the policy setup phase, honey permissions inside
role-based access control models. In the same category, some other deception techniques have been
integrated directly in the source code of an application. Examples include the injection of random
delays in order to modify the normal behavior of a web-based search engine [Julian 2002], honeyto-
kens added during the creation of a new database using aspect-oriented programming [Padayachee
2014], and setting honey HTTP request parameters in a web application in order to lure attackers
by exposing dummy URL attributes [Petruni¢ 2015].

In-Front of. Deception techniques that are implemented in-front of a target system mainly consist
of interposing the deception elements between the attacker and the system. This can be achieved
by multiple ways, depending on whether the deception is integrated at the network, at the system,
or at application layer. For instance, at the system layer, the deployment requires intercepting the
execution flow of a process or an application, while at the network layer, it is necessary to intercept
the traffic, often using reverse proxies and trusted certificates (in case of encrypted connections).

We identified two distinct methods in the literature that offer to modify the execution flow of
an application in order to deploy deception. First, Michael et al. [2002] instrumented the software
component to implement decoy actions. Other work leveraged specific application features. In
particular, Cenys et al. [2005] used the Oracle database to intercept insert, select, and update
operations and to integrate honeytokens. Similarly, the modular design of the Apache web server

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:16 Xiao Han, Nizar Kheir, and Davide Balzarotti

enables to register a hooking module that can implement deception techniques [Almeshekah 2015;
Brewer et al. 2010; Katsinis et al. 2013].

At the network layer, deception is often used to mitigate network scanning and fingerprinting.
These solutions are usually deployed on specific network devices, such as routers [Trassare 2013],
gateways [Borders et al. 2007; Kontaxis et al. 2014; Smart et al. 2000], firewalls [Le Malécot 2009],
or on dedicated monitoring modules (anomaly detection [Anagnostakis et al. 2005]). Note that it
may also be possible to achieve similar results without intercepting the traffic. For example, the
authors of [Liston 2001; Shing 2016] proposed techniques to monitor and reply to unanswered
address resolution protocol (ARP) requests in order to produce false network topologies and to
reduce the attacker’s ability to scan the network.

Deception for web applications are usually implemented in a proxy [Han et al. 2017] or as a
web server module [Brewer et al. 2010] in front of a web application, mostly for the purpose of
detecting malicious users who trigger the injected decoys.

Added-To. This category includes techniques that are added or integrated into the system at
runtime. Many existing approaches leverage this mode of deployment and use deception as a way
to complement other traditional security mechanisms. In particular, decoy assets (IPs, services,
applications, vulnerability, or data) are usually integrated in the infrastructure in order to mislead
attackers and turn them away from other sensitive assets. To build such decoy assets, previous
work adopted different approaches, such as the use of honey patches that simulate fake vulnerabili-
ties [Araujo et al. 2014], simulation [Rrushi 2011], or by duplicating legitimate services [Urias et al.
2016]. Another interesting trend consists of adding artifacts to a real benign service in order to
make it appear for attackers as a honeypot [Rowe et al. 2006].

Previous studies have also suggested to use honeyfiles to detect privacy violations, by placing
them on online sharing platforms and cloud hosting services [Liu et al. 2012; Nikiforakis et al. 2011].
In the same vein, other studies suggested to use the same concept of honeyfiles in order to detect
data leakage within corporate or private networks [Ben Salem and Stolfo 2011; Bowen et al. 2009;
Voris et al. 2015; Wang et al. 2013].

The concept of (honey-)assets has also been extended to honey passwords [Bojinov et al. 2010;
Juels and Rivest 2013], honey profiles [De Cristofaro et al. 2014; Stringhini et al. 2010; Webb et al.
2008], and even honey hyperlinks in the context of web applications [Gavrilis et al. 2007], in order
to detect malicious usages and abuses of sensitive applications and data.

Standalone. This category includes deception techniques that are isolated from the target system.
While honeypots are the most common type of isolated deception system, other methods have
also been explored in the literature, such as the use of honey accounts to drive attackers into
connecting to a decoy service that is isolated from the real authentic service [Bowen et al. 2010a;
Chakravarty et al. 2011]. For example, Onaolapo et al. performed a real world experiment in which
they (deliberately) leaked fake webmail accounts that are isolated from any other benign accounts
on a webmail service [2016]. During their experiments, the authors had been able to monitor abuses
of leaked webmail accounts and to learn more about the tactics used by attackers.

5.2 Placement

We now look at different strategies that have been proposed to support the placement of deceptive
components. This covers the way existing deception techniques are deployed inside a target system
(either manually or automatically) and the way these techniques are displayed to attract and deceive
attackers. We organize this section into three parts, based on the ultimate objective of deception:
attack prevention, detection, or mitigation.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective 17

5.2.1 Attack Prevention. The application of deception techniques for intrusion prevention cur-
rently takes two different aspects. On the one hand, it deters an attacker by displaying, for example,
false targets among the path that attackers may go through [Cohen and Koike 2002]. In this case,
the placement of false targets is guided by the knowledge of existing attack graphs. Multiple
contributions leverage this knowledge to compute an optimal strategy to deploy honeypots in a
specific network configuration based on a game-theoretical approach [Durkota et al. 2015a,b, 2016].

On the other hand, deceptive techniques may also be used as chaff, to confuse an attacker by
hiding important information in a large amount of data. For example, to protect real user passwords
Bojinov et al. [2010] offered to conceal them through dissimulating a large number of other decoy
passwords. Similarly, Kontaxis et al. generated decoy computing activities [2014], and Rrushi et al.
generated decoy network traffic [2011], in order to dissimulate sensitive applications and network
connections respectively, so they may be less likely to be identified and compromised by an attacker.
In this case, decoys are usually placed alongside the valuable assets.

5.2.2 Attack Detection. Many deception placement strategies have been previously explored
in order to enhance attack detection. We classify these strategies into two different categories,
depending on whether deception is being integrated inside the target system, or whether it is
publicly exposed in order to enhance threat intelligence and to anticipate unknown attacks.

Integrated deception placement. In the first category, Gavrilis et al. [2007] used decoy hyperlinks
in order to protect a website against flash crowds. The authors developed a placement strategy
where they represent the target website as an undirected graph. The graph nodes represent the
individual pages of the website, and the edges represent the hyper links between the pages. The
attacker is modeled as a random walker, and the strategy consists of finding the optimal subset of
decoy hyperlinks that minimizes the survival probability of the random walker in the graph.

Another example includes the placement of honeyfiles inside a target file system. First, Bowen
et al. [2009] manually placed the honeyfiles at selected locations in the file system. Alternatively,
Voris et al. [2013] developed an automated placement strategy that first searches the target file
system to locate folders that have been recently used, as well as the folders of large number of files
sharing similar features such as extensions. These folders are further selected as favorite locations
to place honeyfiles. The same authors further distinguished two modes of automatic deployment:
integrated and separated [Voris et al. 2015]. In an integrated deployment, decoy documents are
co-located with real documents, while in a separated placement, decoy documents are deployed
in isolated subfolders within the same root directory. Finally, Whitham [2013] suggested a more
aggressive placement strategy, offering to place honeyfiles in all directories of the file system.

Finally, researchers have also studied the placement of decoy permissions within role-based access
control policies [2015]. The placement strategy consists first in identifying high risk permissions.
These are further duplicated as honey permissions, and their corresponding objects are duplicated
as decoy objects. The authors select the sensitive roles in the policy whose risk exceeds a predefined
threshold and assign the honey permissions to these roles for monitoring and detection.

Apart from honeyfiles, the placement strategy has been however under-studied for the majority
of deception techniques. For instance, previous work has discussed how to implement honey tokens
in a database [Cenys et al. 2005], but it is still unclear how these tokens should be placed — e.g., in
a separated fake table or alongside legitimate data. A similar problem exists for honey parameters
placed in a web application to enhance attack detection. Honey parameters can be added in many
HTTP header fields and in the HTML source code, which results in a large number of placements.
Moreover, a web application usually consists of multiple and various services. Currently, there
is no systematic approach to place honey parameters to achieve optimal attack detection. The

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:18 Xiao Han, Nizar Kheir, and Davide Balzarotti

fundamental difficulty in achieving this is the lack of methods to describe the web application logic.
As Li and Xue [2014] have pointed out, there is actually “an absence of a general and automatic
mechanism for characterizing the web application logic”, which is however a prerequisite to achieve
an effective deception placement.

Isolated deception placement. Isolated deception techniques follow different placement strategies,
which may also depend on the defender’s objectives and the monitored attacks. In particular, honey
profiles are being commonly created on social networks and used in order to monitor and detect
spam and infection campaigns [Stringhini et al. 2010; Webb et al. 2008]. Different strategies can
be used to advertise and share these decoy profiles, including the use of dedicated advertisement
services, and other underground services [De Cristofaro et al. 2014].

On the other hand, honeyfiles have been manually leaked on public hosting services [Nikiforakis
et al. 2011] and file sharing networks [Liu et al. 2012]. This approach is commonly used to attract
potential attackers and as early warning system in case of unauthorized access to personal user
data. Moreover, honey accounts are actively provided to be collected and exfiltrated by malware, to
study the goals of the attackers [Akiyama et al. 2013; Bowen et al. 2010b]. Similar information has
been also deliberately distributed on malicious hacking forums to attract attackers and infiltrate
criminal groups [Onaolapo et al. 2016]. Finally, honey URLs are used when testing and connecting
to phishing sites in order to track the activities of the attacker [McRae and Vaughn 2007].

5.2.3 Attack Mitigation. When deception techniques are used for the purpose of attack miti-
gation, the placement strategy is generally in line with the type of attack whose damage needs
to be reduced. For instance, upon the detection of a network scan, mitigation techniques such
as network tarpits [Liston 2001; Shing 2016] and traffic forging [Le Malécot 2009] can be put in
place. To mitigate software exploits, the safe duplication of target application enables to redirect
attackers [Anagnostakis et al. 2005; Araujo et al. 2014] and even contain them [Urias et al. 2016].
Note that some techniques, such as chaff, can be deployed both for attack prevention and mitigation.
For instance, if an attacker is able to steal the password file, populating it with a large number
of fake entries [Bojinov et al. 2010] could somehow mitigate the password theft attack. Clark et
al. [2012] modeled indirectly the placement of deceptive traffic in a wireless relay networks based
on game theory in order to reduce the impact of jamming attacks.

5.24 Summary. During our survey of literature, we came to the conclusion that previous work
on deception have mostly focused on the introduction of new deceptive techniques and elements,
but it rarely discussed where (and how) such elements should be placed in the system to protect.
Recent efforts that model deception using game theory [Durkota et al. 2015a,b, 2016] propose to
find optimal defense strategies under certain assumptions about the network configuration and the
attackers. Game-theoretical approaches may prove that such an optimal strategy exists under these
assumptions. However, the gap between the optimal strategy and the real-world deployment is
still unclear. In fact, without a clear methodology to test and measure the accuracy of deception
techniques, a problem we discuss in Section 6.1, it is difficult to compare different placement
strategies and decide which is better among several options.

5.3 Realistic Generation

A key property of any deception element is that it should be able to deceive an attacker into
believing that it is real. Therefore, we now look at different approaches that have been proposed in
the literature to create plausible and realistic deception elements. We divide again this section into
four parts, based on the layer where deception is applied.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :19

5.3.1 Network Layer. A common approach to generate fake network activity is to load and replay
real network traffic, after replacing confidential information with decoy data. For example, Bowen
et al. [2010a] suggested to simulate decoy network communication by recording real network traffic
and inject into it decoy information such as fake IP addresses and payloads. Kontaxis et al. [2014]
also discussed the generation of decoy HTTP traffic. In this case, the authors introduced templates
to describe protocol messages and their parameters and then generated random permutations and
modification of these parameters in order to create decoy HTTP connections. Shing [2016] tuned
the parameters of sticky connections to produce more realistic traffic in order to evade the detection
proposed by Alt et al. [2014].

5.3.2 System Layer. In general, there are two approaches to reproduce realistic system behaviors,
either by duplication or by simulation. The first approach consists of duplicating a legitimate
server [Kontaxis et al. 2014; Urias et al. 2016] or a target application [Anagnostakis et al. 2005;
Araujo and Hamlen 2015] while removing possible sensitive information. The second solution
relies instead in simulating the appearance, the exact behaviors, and the overall activity of an entire
process and equipment [Rrushi 2011].

5.3.3 Application Layer. Different mechanisms have been proposed in the literature to generate
realistic deception at the application layer. We classify these mechanisms into three categories,
based on the goal of deception.

First, deception may consist of purposely modifying the behavior of an application in response
to specific requests or attacks. In this scope, Julian [2002] proposed to alter the response time of an
application to confuse an attacker by adding artificial delays proportionate to the average time the
same application would take to process that specific user request.

The second category consists of altering the structure of an application in order to showcase a
fake attack surface. For example, to render a decoy server less suspicious, Rowe [2006] generated
fake, yet realistic file systems, using pieces extracted from a real file system. The author added
random modifications, such as changes to the folder tree, creation of fake directories, or generation
of fake files by combing pieces of real files. In the same category, Whitham [2013] described the
generation of honey files by combining statistics (such as file names, sizes, access control attributes,
and modification dates) from public files accessible on the Internet with statistics of usage behavior
for the target system.

The third category includes techniques that consist of creating fake content in order to attract
and detect attackers. To generate such realistic honeyfile content, Bowen et al. [2009] instrumented
genuine and common financial documents such as invoices and tax forms by adding honey accounts,
realistic (but fake) names, addresses, and other user familiar information. Whitham et al. [2017]
proposed a more elaborated approach that consists of using natural language processing to generate
realistic honey-text content. The authors first selected a median size file from the target directory to
generate the template using language processing tags. They then collected characteristics from the
target file system that are used to redistribute the original words. Finally, they placed the honeyfile
into selected places inside the target directory.

5.3.4 Data Layer. The generation of realistic fake data mostly overlaps with the generation and
simulation of artificial data (see for instance [Houkjeer et al. 2006] for an overview of this area).
Given the large scope of these techniques, we limit ourselves in this survey to those methods that
have been previously used to generate honey tokens for deception.

In [White 2010], the authors introduced a method to create honey tokens that represent fake
US citizens. They first observed the statistic features, values, frequencies, and dependencies of
representative samples. Then they generated fake personal information according to previously

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:20 Xiao Han, Nizar Kheir, and Davide Balzarotti

obtained characteristics. Moreover, to generate decoy passwords, authors in [Bojinov et al. 2010]
converted real user passwords into a set of semantic rules. For example, the following rule “I3d;s,”
refers to a password that includes a word of three letters, one digits, and two special characters.
The authors further used a dictionary to generate similar passwords that match the previously
obtained rules. Another approach by Juels and Rivest [2013] offered either to randomly change the
last few characters, digits, or to use a probabilistic model that characterize real passwords.

Bercovitch et al. [2011] presented instead a method to automatically generate honey tokens
in a database. First, the authors built various rules to characterize the database structure and
relationships. Then, they generated fake, but realistic tokens that satisfied the previously-generated
rules. Finally, they assigned a confidence score and ranked the honey-tokens based on their similarity
with the real database content. Alternatively, Alese et al. [2014] offered to simply shuffle the records
of a real database in order to generate fake honey tokens.

5.3.5 Summary. As discussed above, the realistic generation of honey-tokens is relatively well
studied for few traditional domains — such as network traffic, files and file systems, passwords, and
database environments. However, the application of deception techniques has recently broadened
in scope to cover many other areas, such as web applications and cloud images, where a proper
generation strategy has not yet been discussed.

5.4 Monitoring

A successful deployment of deception techniques drives attackers to interact with them, thus
revealing their malicious activities. To collect and analyze such activities, a monitoring mechanism
is indispensable. We discuss in this section whether and how the deception is monitored and
whether the deception can be maintained and updated over the time.

Monitoring is more relevant to deception techniques that are used to enhance attack detection
rather than for those aiming at prevention and mitigation. We group existing work that have clearly
defined their monitoring approach into two categories, based on whether the system that raises
the alerts is integrated into the technique itself or is instead implemented as a separate component.
Also note that there are two distinguishable phases of attack detection, namely the triggering and
monitoring of the alerts.

5.4.1 Integrated Alert. In this category, Bowen et al. [2009] proposed to insert a uniquely
identifiable token hidden in the decoy document, which will be sent silently toward a remote server
to trigger an alert. Two examples have been presented: a remote image embedded in MS Word
document and a snippet of JavaScript code included in a PDF file [Nikiforakis et al. 2011].

Another example is the use of decoy URLs or hyperlinks that, when they are included in a web
page, automatically fetch some content from a backend server. The use of such links always require
a web server that these links point to, which can be the same as the legitimate server if decoy URLs
are integrated within the target web application [Brewer et al. 2010; Gavrilis et al. 2007]. Otherwise,
a separate web server is necessary [McRae and Vaughn 2007] to handle the deception elements. In
any case, the monitoring is usually performed off-line by parsing the access log of the web server.

Finally, a software trap [Crane et al. 2013] triggers an alert when is exploited by an attacker. It
also needs an extra handler to detect and respond to the attackers. However, no details of the way
that the handler monitors the software trap were provided by the authors. Likewise, deception
techniques such as honey URL parameters can be implemented in the source code together with
the monitoring mechanism [Petruni¢ 2015]. Authors proposed to use centralized log management
systems to identify and prevent attackers.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective 21

5.4.2 Separated Alert. The first version of honeyfiles proposed by Yuill et al. [2004] relied on a
centralized monitoring approach. Honeyfiles were deployed on a file server where all file access
operations werer monitored. In case of an access to a honeyfile, an alert is sent from the file server.
In the same vein, Wang et al. [2013] implemented a system service on Microsoft Windows operating
system that registers and monitors honey files and triggers an alert when an access to a honeyfile
is detected.

Bowen et al. [2009] proposed another type of honeyfiles that contain honey accounts from
prevalent web services, in particular Gmail. The authors then adopted a set of custom scripts to
monitor and gather information about the account activity to detect attackers. A similar solution
of including honey accounts in honeyfiles also been reused in other works [Lazarov et al. 2016; Liu
et al. 2012]. Honey accounts usually require a dedicated module to monitor and detect attackers
that use them. Chakravarty et al. [2011] manually created honey accounts on their decoy servers
where they monitored the unauthorized accesses. Honey encryption [Juels and Ristenpart 2014]
and honey passwords [Juels and Rivest 2013] enforced the generation of honey passwords at the
moment of user account creation. In order to detect the misuse of generated fake passwords, they
require online monitoring at the server side. Finally, honey permissions [Kaghazgaran and Takabi
2015] also require an extra module to monitor their use.

Lastly, to detect the selection of a particular honey token in a database, Cenys et al. [2005] also
suggested the use of a specific handler module.

Summary. Independently from the way the actual alert is triggered, most deception techniques
require an extra module or even a dedicated server to monitor and detect attacks. However, there is
not yet a comprehensive monitoring system that incorporates all the different deception techniques
to build a multi-layer proactive deception-based threat detection system. Moreover, it’s still unclear
for the users how they should integrate such system with respect to traditional defense mechanisms,
and in particular with other existing monitoring systems.

Finally, a very important aspect to consider is the update and re-deployment of deception elements.
After a deception technique has been deployed, if its not constantly modified, attackers can learn
its nature and location and simply avoid it in their future attempts to break into a system. This sets
intrusion deception apart from other detection mechanisms, where the knowledge of the defense
solution does not necessarily undermine its effectiveness. Despite its fundamental importance and
the fact that the re-deployment problem has already been mentioned by other studies [Katsinis et al.
2013; Wang et al. 2013], this aspect has been mostly ignored by the research community. In fact, if
we know well how to update signature-based solutions or re-train model-based approaches, we
know almost nothing on when, how, and how often a set of deceptive elements should be replaced
with new ones. We do not even know what is the actual impact, in terms of reduced effectiveness,
of not updating a deception deployment for long periods of time.

To the best of our knowledge, only one work exists in this space, in which Whitham [2013]
implemented a form of continuous management in the case of honeyfiles. The system was designed
to randomly retire honeyfiles, update their timestamp attributes, and create new honey files to
maintain a desired ratio in the system.

6 MEASUREMENT & EVALUATION

This section covers the different techniques and existing experiments that have been used to
evaluate the efficiency and coverage of intrusion deception. In 2006, Cohen discussed the existing
experiments that attempted to evaluate deception, and came to the conclusion that most of them
did not cover all the relevant aspects [2006]. In particular, the author stressed the fact that more
elaborated experiments were required to better understand the issues behind the application of

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:22 Xiao Han, Nizar Kheir, and Davide Balzarotti

deception for cyber-defense. In this section, we review the previous experiments that offer to
measure and evaluate deception techniques, with an emphasis on recent contributions that were
not covered by Cohen’s book [2006].

Note that during our effort to summarize existing experiments, we observed different objectives
for the evaluation process itself, depending on the design criteria and the main properties the
authors wanted to achieve by using deception. For example, Yuill et al. discussed properties such as
the “plausibility, receivability, verifiability, efficiency, and implementation” [2006]. Three years later,
Bowen et al. introduced a new set of properties for deception, including “believability, enticement,
conspicuousness, detectability, variability, non-interference and differentiability” [2009]. In 2014, Juels
et al. [2014] added two additional properties, namely the “indistinguishability” and “secrecy” of
deception techniques, and suggested to use them to tune the decisions of an access control system
against potential attackers.

While all these properties play an important role to achieve an efficient deception, most of them
are difficult to formalize and measure, which makes their evaluation very challenging. We discuss,
in this section, how previous work managed to evaluate these properties and the main lessons that
we learned from those experiments.

The rest of the section is organized into four distinct categories, that respectively cover the
following aspects: 1) the way previous works evaluated deception placement strategies, 2) the way
they evaluated the plausibility and realism of deception, 3) the way they measured the efficiency
and effectiveness of deception, and finally 4) the way they evaluated the accuracy of deception and
its false positive rate.

6.1 Evaluation of Deception Placement

Only few contributions have been dedicated to evaluate and measure different deception placement
strategies. In particular, we are aware of only three related studies that we discuss in this section,
as summarized in Table 2. Note that many other studies evaluated implicitly this property as they
were evaluating the effectiveness of deception. We discuss these specific studies later in Section 6.3.

To the best of our knowledge, there is not yet a structured approach in the literature to evaluate
a deception placement strategy. Previous work mainly evaluated the additional effort introduced by
the presence of deception, and the attacker’s extra effort to compromise the target system [Bojinov
et al. 2010]. Nonetheless, we observed two alternative approaches in the literature to evaluate the
placement of deception techniques and their impact.

On the one hand, Garvilis et al. [2007] introduced a theoretical approach to embed decoy
hyperlinks in a web site in order to detect Denial of Service (DoS) attacks. To evaluate the placement
strategy for those hyperlinks, the authors introduced a probabilistic method that leverages a graph-
based representation of the target web site. The nodes in the graph capture the individual web
pages, and the edges capture the hyperlinks between the pages. Attackers are treated as random
walkers in the graph, and the evaluation model computes the probability to detect an attacker with
respect to the number and placement of decoy hyperlinks in the graph. Using their theoretical
evaluation model, the authors were also able to compare their approach to other decoy placement
strategies, such as the one based on genetic algorithms. Note that other theoretical approaches
including game theory may evaluate implicitly the placement problem while searching for an
optimal defense strategy. Such contributions [Clark et al. 2012; Durkota et al. 2016] usually evaluate
the global deception-based defense strategy using a model specific utility function, which implies
the deployment of deception under a particular configuration.

As opposed to this theoretical approach, other contributions in the literature experimentally
evaluated the effect of deception placement strategies, mostly using groups of students or volunteers.
For instance, Ben Salem and Stolfo [2011] set up an experiment that involved four groups of 13

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :23

Reference Experiment subject Metric

[Gavrilis et al. 2007] [none] detection probability

[Ben Salem and Stolfo 2011] 52 students number of alerts

[Voris et al. 2015] Students comparison with manual placement

Table 2. Evaluation of deception placement

Reference Layer Experiment subject Metric

[Bowen et al. 2010a] Network 15 students accuracy
[Shing 2016] Network tarpit detector rate of detection
[Trassare 2013] Network traceroute response of scan
[Rrushi 2011] Network students signal detection theory
[Kontaxis et al. 2014] System [none] control flow graph similarity
[Rowe 2006] System [none] statistic similarity
[Julian 2002] Application 4 students, 4 colleagues evaluator reaction
[Whitham 2017] Application [none] file content similarity
[White 2010] Data 100 testers number of detection
[Bercovitch et al. 2011] Data 109 students and researchers honeytokens quality

Table 3. Evaluation of deception generation

computer science students. The authors deployed a system that includes honeyfiles, and ran the
system during one week to observe how students interacted with the system and whether they
were able to unveil the decoy files. They observed that the location of a honeyfile in the system
drastically impacts the number of users who will be tricked into accessing and opening the decoy
document. Similarly, Voris et al. [2015] evaluated their deception tool by operating an experiment
where decoy files were automatically placed on a benign user system, and a few volunteer users
were asked to attack the system. They found that their automated decoy placement achieved similar
results compared to a manually designed placement.

6.2 Evaluation of Deception Generation

This part relates to the human perception of the generated deception techniques and whether they
are discernible from other genuine assets of the target system. Table 3 lists the existing approaches
in the literature that performed an evaluation of the deception generation approach, including the
metric used for the evaluation and the individual subjects involved in the experiment. Note that
most experiments have been performed in controlled and instrumented environments, involving
mostly volunteer human subjects. This section discusses the different evaluation strategies and the
obtained results.

6.2.1 Network Layer. We observed, in this layer, two experimental approaches to evaluate the
deception generation mechanism, including an automated, tool-based approach and a manual,
human-based approach.

In the first category, Trassare [2013] proposed a network-based approach that deceives malicious
traceroute attempts in order to conceal the topology and assets of a physical data communications
network. To evaluate the generated deceptive topology, the author conducted experiments using
the traceroute tool against different network topologies. The results of the experiments showed
that the generated deceptive topology drastically limits the ability of traceroute probes to scan the
network. Similarly, Shing [2016] measured the efficiency of deceptive network tarpits against an

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:24 Xiao Han, Nizar Kheir, and Davide Balzarotti

automated detector [Alt et al. 2014]. The author found that only 2.8% of the tarpit hosts had been
identified as decoys by the detector.

The second category covers human-based evaluation attempts. In this area, Bowen et al. [2010a]
evaluated the believability of the generated decoy traffic by using 15 human subjects, including
students in network security, researchers, and security professionals. The participants were asked
to manually discern the decoy traffic from the real one. During the experiments, even the most
skilled participants successfully discerned in average 49.9% of the decoy traffic, which is equivalent
to the probability of guessing randomly. Alternatively, Rrushi introduced in [2011] a network-based
deceptive approach that is aimed at protecting industrial control systems. By generating decoy
network traffic, the proposed solution enables a defender to intervene in the process of an attacker
to select a target and thus steer it towards simulated fake devices. To evaluate the solution, the
author asked students to try to discern genuine assets from other decoy assets in the target deceptive
system using signal detection theory. The results of those experiments showed that decoy traffic
drastically increased the uncertainty of students when picking and attacking their targets.

6.2.2 System Layer. To measure the similarity between a decoy and a genuine file system,
Rowe [2006] used 36 statistical metrics such as the mean, standard deviation, minimum, and
maximum values in order to characterize the structure and type of filenames, file types, size, the
distribution of date, and the directory shape. The author found that the generated fake files are
statistically discernible from other real files in the file system, but that the difference is small
enough that it remains difficult for individual users to discern decoy and benign files. Kontaxis et al.
introduced in [2014] a deceptive system that uses fake computation activities to prevent attackers
from accessing unauthorized confidential information in the cloud. To evaluate the efficiency of the
generated scheme, the authors proposed a binary instrumentation tool that compared the similarity
between the control flow graphs for both replicated decoy servers and benign servers. In their
evaluation, the authors have shown that it is difficult to notice the difference between legitimate and
generated activities. Adversaries would have either to take the risk to trigger an alert or investigate
significantly to identify data that they are interested in, which may reveal themselves.

6.2.3 Application Layer. In [2017], Whitham et al. proposed an automated tool to process the
content of benign documents in order to generate fake documents with the same structure and
semantic. To evaluate their approach, the authors introduced a similarity score that leverages the
percentage of common words between a decoy and genuine documents. The similarity is expected
to be the highest between the decoy document and its originating genuine document, and the
lowest between the decoy document and other documents in the file system.

In a different use case, Julian [2002] conducted an experiment where users were asked to perform
normal and harmful queries against a web application that adds deceptive delays. The author
measured the reaction of test subjects to determine whether the subjects were able to discern
deceptive from other regular processing delays for the application. During the experiment, all users
had been misled by the delaying tactic.

6.2.4 Data Layer. White conducted in [2010] two sets of experiments that involved 100 partici-
pants. These participants were asked to discern real data from other automatically generated decoy
content. In the first experiment, participants were unaware of the existence of honey tokens. When
they were given a list of 20 genuine data, they believed that, in average, 3.67 of them were indeed
decoys. Afterwards, participants correctly found, in average, almost the same number (3.36) of
fake data within 3 lists of data in which generated decoys had been inserted. A second experiment
revealed that the participants failed to correctly select the honey tokens, even when they were

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :25

Type Reference Experiment subject Metric
[Cohen et al. 2001b] 27 students duration of attack
[Cohen and Koike 2002] 7 students ability to control attack path
[Durkota et al. 2015b] [none] defender’s loss
[Yuill et al. 2004] 3 students number of detection
[Bowen et al. 2009] 20 users ability to detect attackers
Controlled [Brewer et al. 2010] 3 web bots bot detection accuracy
[Ben Salem and Stolfo 2011] 40 students number of detection
[Shabtai et al. 2016] 173 students detection rate
[Heckman et al. 2013] 4 red/blue teams user reaction
[Han et al. 2017] 150 CTF participants number of detection
[Araujo et al. 2014] [none] practicality
[Webb et al. 2008] spammer spammer detection
[Stringhini et al. 2010] spam bot spammer detection
[Liu et al. 2012] potential attackers privacy violation detection
[Bowen et al. 2010a] snoopers at Defcon’09 snooper detection
[Chakravarty et al. 2011] malicious Tor exit nodes eavesdropping detection
Real-world [Borders et al. 2007] potential attackers attack reduction
[Nikiforakis et al. 2011] potential attackers privacy violation detection
[Lazarov et al. 2016] potential attackers detection of malicious activities
[Onaolapo et al. 2016] potential attackers detection of malicious behaviors
[Bowen et al. 2010b] malware malware detection
[Akiyama et al. 2013] malware attack detection
[McRae and Vaughn 2007] phishing site phisher detection

Table 4. Evaluation of deception effectiveness

aware that the samples did include decoy elements. The correctly selected number of honey tokens
was similar to what would have been obtained if the participants had selected randomly.

Similarly, Bercovitch et al. [2011] evaluated the quality of generated honey tokens by showing
both genuine data and generated examples to 105 individual subjects. The authors used the results
of this study to tune their likelihood-based rating and to select undetectable honey tokens.

6.2.5 Summary. The most commonly used type of evaluation to measure the realism of deception
consists of using a human evaluator to judge the generated deception, which is similar to a Turing
test where a human is used to judge the behavior of a machine. Generally, previous work managed
to evaluate and produce realistic deception, but in specific application domain such as network,
files, and database. Equivalent experiments are still missing for other domains, including web
applications.

6.3 Evaluation of Deception Effectiveness

The effectiveness of a given deception technique refers to its ability to achieve the desired function-
ality. Different methodologies have been used in the literature in order to evaluate the effectiveness
of deception. We classify them into two main categories, as illustrated in Table 4. The first category
includes evaluations that were conducted in a controlled environment, typically by involving few
participants. The second category instead includes evaluations where deception techniques have
been publicly exposed to the Internet and evaluated against real users and attackers.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:26 Xiao Han, Nizar Kheir, and Davide Balzarotti

6.3.1 Evaluation in Confined Environments. Different experimental setups have been introduced
in the literature to evaluate the effectiveness of deception in instrumented and confined environ-
ments. These experiments have also adopted different strategies for evaluation, depending on
whether deception applies at the network, system, application, or data layers.

Network Layer. Cohen et al. [2001b] measured the effects of network-based deceptive defenses by
conducting experiments over simulated attack graphs. Participants to these experiments included
students and few security experts (both security professionals and researchers). The participants
were divided into two groups, including those who were not aware of existing deception techniques,
and those who had been informed about the existence of deception. The obtained results have
shown that network-based deception techniques were indeed effective as attackers spent more
time trying to go through deceptive paths rather than through the real attack paths. The authors
were also able to drive some conclusions on the cognitive confusing factors related to deception,
through analyzing the forms filled by the participants during the experiment.

In [2002], Cohen et al. extended the previous experiments by introducing a more generic attack
graph model designed to drive attackers towards fake targets. The experiments involved seven
students who were asked to attack and try to compromise the system. The results were promising,
with students constantly misguided and driven through fake attack paths that were introduced for
this purpose. In [2015b], Durkota et al. modeled a particular attack graph using game theoretical
approach. They evaluated the loss of defender with respect to the number of honeypots deployed
in a simulated network.

System Layer. Heckman et al. [2013] organized a cyber-wargame within an instrumented en-
vironment. The game involved two distinct teams. A so-called blue team was tasked to set-up
a command and control system and try to protect the system against attacks from a second red
team. The blue team experimented multiple deception techniques to mislead the adversaries. The
log analysis following the experiments resulted in very promising observations. In particular, the
adopted deception techniques had a significant impact on the red team operation, as attackers
spent a long time trying to compromise fake targets.

Application Layer. Araujo et al. [2014] offered to mitigate known vulnerabilities by implementing
the concept of honey patches. In this scope, the effectiveness of their solution largely hinges to
its applicability to a large number of known existing vulnerabilities. The authors evaluated their
approach using an experimental environment that included an Apache HTTP server and a simulated
web application. They evaluated the effectiveness of their approach according to the number of
real application vulnerabilities that they were able to transform into decoy vulnerability through
the concept of honey patch. In particular, the authors collected a total number of 75 vulnerabilities
that affect their configuration and that were reported between the year 2005 and 2013. Overall,
they found that 49 out of the 75 analyzed vulnerabilities (almost 65%) were indeed convertible into
honey patches. In [2017], Han et al. evaluated existing deception techniques that may be used to
detect web attacks, including honey parameters, honey account, and honey trap resource, etc. The
authors leveraged a Capture The Flag (CTF) exercise where 150 participants were asked to find
vulnerabilities within a specially designed e-commerce application. During the CTF exercise, they
detected 64% of the participants that successfully found at least one vulnerability.

Data Layer. As described in Section 3, state of the art data layer deception techniques mostly
consisted of generating and placing decoy user accounts or content. The evaluation of these
techniques in instrumented environments mainly involved human participants who were asked
to analyze and tell apart decoy from other real authentic accounts and data. In this scope, Yuill
et al. [2004] tested their honeyfile system by deploying it on a honeynet and then asking a group

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :27

of students to test and try to compromise the system. During the experiment, a honeyfile was
considered effective when it contributed to detecting at least one attacker and that the attacker did
not realize the fake nature of the honeyfile before an alert had been triggered. Overall, the authors
found that the most effective honey files were those placed closer to the root directory of the file
system.

In [2009], Bowen et al. evaluated their deception system by integrating it into a honeynet of
several virtual machines. The authors posted multiple message invitations with dedicated accounts
to their platform in order to encourage volunteer participants to connect and test their deception
system. After one week of observation, the authors were able to collect 20 unique users. Five out of
these participants triggered at least one alert associated with a decoy document.

In [2011], Ben Salem and Stolfo designed an experiment to evaluate the enticing and conspicuous
nature of decoy documents. The authors asked a group of students to access an unlocked computer
system, looking for financial documents. Several decoy documents were also placed in the system
in order to evaluate the reaction and attitude of users when they discovered such documents. The
results of the study showed that the use of decoys was very efficient in detecting malicious accesses
to the system. In particular, all attackers were detected in the first ten minutes after they had
connected to the target computers.

Finally, Shabtai et al. [2016] organized an experiment that involved 173 distinct participants.
The experiment consisted of generating 50 loan requests, some including deceptive honey tokens.
Participants, acting as individual bank employees, could choose to behave in a honest way by
validating the loan request and obtaining a 10% commission. Alternatively, they could have acted
in a malicious way by suggesting a private funding program from a competitor, and thus obtaining
a 20% illegal commission. The participants were divided into two distinct groups, one informed
about existing honey tokens in the loan requests and the other unaware of this fact. The results of
the experiment showed that all malicious participants could be detected by planting honey tokens
in 20% of the loan requests.

6.3.2 Real-World Evaluations. In open evaluations conducted on the Internet the administrator
does not fully control the users who interact with the deception system. Therefore, these exper-
imental setups usually enable to collect and analyze a wider set of interactions with the system.
Nonetheless, they often lack the appropriate ground truth about the number and nature of each
attack, as well as information about user incentives and real intentions when connecting to the
system.

In this category, Borders et al. [2007] evaluated the effectiveness of decoy IP addresses in
misleading external attackers. To do so, the authors set up an experimental testbed including an
OpenFire gateway that controlled the traffic from the Internet towards three distinct workstations.
Three experiments were conducted over a period of 21 days, involving both a normal and a deceptive
OpenFire configurations. The normal configuration included default firewall rules that drop accesses
to unauthorized ports and protocols. The deceptive configuration also included 36 unallocated
IP addresses towards which the gateway would accept connections in an effort to mislead the
attackers. An intrusion detection system was also configured to notify the administrator in case of
successful attacks towards the three workstations. After the experiment, the number of successful
attacks when using the deceptive configuration was reduced by almost 65% compared with the
number of attacks that were reported when using the normal configuration.

To evaluate the effectiveness of honeyfiles, Nikiforakis et al. [2011] uploaded such decoy docu-
ments to 100 public file hosting services. These files were designed to call back a dedicated server
so that the authors were informed when someone downloaded the decoy file. Over a period of
one month, 80 unique IP addresses accessed the honeyfiles and triggered the notification to the

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:28 Xiao Han, Nizar Kheir, and Davide Balzarotti

Reference Experiment subject Metric

[Gavrilis et al. 2007] students and faculty members number of false alerts
[Brewer et al. 2010] human subjects number of false alerts

[Ben Salem and Stolfo 2011] 57 students number of false alerts
[Voris et al. 2015] 27 users interference with normal activities
[Han et al. 2017] 258 users number of false alerts

Table 5. False positive evaluation of deception techniques

remote server. More interestingly, the decoy files also included decoy credentials that enabled the
remote users to connect to a fake web application that was implemented for the purpose of the
experiment. The authors were able to observe that miscreants from 43 distinct IP addresses had
successfully logged in 93 times with the fake account information leaked in the decoy document.
Similarly, Liu et al [2012] posted five honeyfiles containing decoy accounts on a public file sharing
network. Over a period of one month, 192 distinct users downloaded the honeyfiles, including 45
users who used the decoy accounts in a deliberate attempt to conduct identity theft attacks. Finally,
Lazarov et al. [2016] constructed five fake Google spreadsheets with decoy banking information
and hidden links. Over a period of 72 days, they found that the decoy document have been accessed
165 times and modified 28 times. Moreover, there were 174 clicks on the hidden links inside the
same document.

In a rather different attempt to detect spammers, Webb et al. [2008] created 51 honey profiles
on MySpace, and used these profiles to monitor and detect scam accounts. The authors were then
able to collect 1,570 distinct friend requests over a period of four months. Similarly, Stringhini et
al. [2010] produced 300 honey profiles on three distinct social networks. During their one year long
experiment, the authors were able to detect 173 distinct spammers on Facebook, 8 spammers on
MySpace, and 361 spammers on Twitter.

Finally, the evaluation of honey accounts has been mostly performed through open deployment
and advertisement on popular and publicly accessible Internet services. For example, during one
week, McRae and Vaughn [2007] submitted 11 honey accounts which contained decoy URLs to
phishing sites to track down the phishers while they viewed the honey accounts. However, only
two out of 11 worked successfully. Similar experiments with honey accounts have been performed
on the wireless network at the Defcon 09 hacking conference [Bowen et al. 2010a], on malware
executables [Akiyama et al. 2013; Bowen et al. 2010b], on the Tor network [Chakravarty et al. 2011],
and on underground forum and online paste tool [Onaolapo et al. 2016]. All of them have been
able to detect a variety of attackers, which empirically shows the effectiveness of honey account at
detecting attackers.

6.3.3 Summary. Considering the current application domain, deception is found to be effective
to delay and detect attackers both in controlled and real-world environment. Future deployment of
deception in other domain still requires similar evaluation.

More importantly, only three studies has evaluated the false negative rate [Ben Salem and Stolfo
2011; Han et al. 2017; Shabtai et al. 2016] (testing honey documents, web deception techniques,
and honey tokens respectively), which is fundamental to compare deception solutions with more
traditional intrusion detection approaches. In real-world evaluations, the false negative rate is
rarely measurable due to the lack of ground truth information about the number of attackers. In
contrast, such evaluation is feasible in a controlled environment. Therefore, we believe future effort
in this space should shift their focus on assessing the false negative rate.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :29

6.4 False Alarms Evaluations

Compared to the previous metrics discussed in this section, the evaluation of the false positives rate
when using deception in cyber defense has attracted much less interest among the security research
community. In particular, we are unaware of any structured approach and methodology to evaluate
the false positive rate when deception is being used for intrusion prevention and mitigation.

False positive measurements have been conducted in only a handful of publications that proposed
deceptive techniques for intrusion detection, as shown in Table 5.

For example, Garvilis et al. [2007] conducted a real-world experiment where they exposed decoy
links on the public web site of their university. The authors manually examined the web server
logs to determine whether interactions with the decoy links were benign requests that would
have resulted in false alarms. The experiment ran over a period of one month, during which the
authors collected a total of 45,121 distinct requests — only 19 of which were marked as benign
(corresponding to a 0.04% false positive rate). The remaining hits originated from various bots.
Nonetheless, a main limitation of this approach is the lack of ground truth about the origin and
real nature of false positives. In fact, the authors were unable to verify that the triggered links were
indeed benign and not the result of malicious users who accidentally interacted with the server.

Following a similar approach, Brewer et al. [2010] introduced an experimental testbed that
simulated a real web site. Multiple decoy links were also introduced to the web site in order to
detect potential attackers. The authors further asked multiple participants to navigate through the
web site in order to mimic benign user interactions with the server. All requests towards decoy
links during this experiment were then considered false positives since the organizers were not
expecting the participants to attack the system. In this case, no user has triggered the decoy links
during the experiment, which led to a 0% false positives rate.

Similarly, Ben Salem and Stolfo [2011] evaluated the false positive generated while using decoy
documents to detect attackers. Authors grouped 52 student into 4 groups installing respectively
10, 20, 30, or 40 decoy documents on their file system. Whenever a benign user opened the decoy
document, an alert was generated. The number of alerts detected starting from one hour after the
students had placed the decoy were respectively 2, 6, 9, and 24. Therefore, the authors concluded that
the false positive rate increases with the number of decoy files. In [2015], Voris et al. also measured
the false positive rate of decoy documents. In their experiment, 27 normal users were asked to
install 40 generated decoy documents inside their file system. The authors then collected more
than 318 hours of file access logs across all participants, finding that legitimate users accidentally
touched decoys less than 7 times over a 8 hour workday. Thus, they suggested a simple threshold
should be used to differentiate between attackers and legitimate users.

Finally, Han et al. [2017] performed an evaluation of the false positive rate of web deception
techniques under a production environment. The authors integrated honey parameters, honey
trap resource, etc., in a Content Management System (CMS) where authenticated users may have
access to their private space. Over the period of seven months, no alert had been triggered by the
deployed deception elements.

6.5 Summary

This section has reviewed different aspects of how to conduct experiments to rigorously evaluate
deception techniques. Previous research have analyzed some of these aspects, such as the assessment
of the quality of newly generated deception elements, better than others. Overall, the results seem
to suggest that intrusion deception is an effective solution that can complement other defense
approaches. However, we believe five points in particular still need more measurement experiments:
1) the assessment of optimal way to manually or automatically place deception elements in a target

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:30 Xiao Han, Nizar Kheir, and Davide Balzarotti

system, 2) the evaluation of the false negative rate to understand how many attack are performed
without triggering any deception element, 3) the evaluation of the false positive rate, in particular
in relationship with different placement approaches, 4) the evaluation of how detection degrades
over time if deception elements are not constantly replaced with new ones, and 5) the evaluation
of how deception can be integrated with other security solutions.

7 DISCUSSION

The research efforts we have surveyed in Sections 3, 4, and 5 describe multiple applications for
deception in the computer security domain. In particular, Section 3 introduced a four-dimensions
classification for deceptive solutions which aims to organize, from a scientific standpoint, the many
existing efforts in this fast evolving field of research. Moreover, Section 4, 5, and 6 discussed the
multiple challenges one is faced with when using deception as a defensive security measure and
surveyed the way the security research community offered to handle these challenges from three
different perspectives, including the modeling, deployment, and evaluation of deception. In this
scope, the proposed scheme covers the common security properties, such as the usability (e.g., the
generation, placement, and monitoring of deception in Section 5) and also the efficacy (e.g., the
effectiveness of detecting attacks and the false positive rate in Section 6). While the large amount
of research that we surveyed in this paper contributed to the development and testing of many
deceptive solutions, this section highlights some gaps that we consider of particular importance in
order to release the full potential of this technology and to achieve a wider consensus among the
security research community.

7.1 Lack of Reproducible Experiments

In light of the significant progress in deception-based defenses that was made over the last few
years, including the proposal of many new possible applications areas, there is an increasing need
towards better evaluating and comparing all these proposed solutions. As discussed in Sections 6.3
and 6.4, the evaluation of deception is particularly challenging since this technology frequently
requires a direct interaction with the attacker. In other words, it is often impossible to test deception
techniques offline on previously collected datasets, forcing researchers to perform live experiments
that are complex to setup and take a considerable amount of time to be executed. Moreover, the fact
that humans may need to be included in the evaluation complicates the organization of reproducible
and sound experiments.

7.2 Updating Procedures and Re-deployment of Deception

Deceptive solutions remain effective as long as the attacker may not be aware of their existence,
including also the possibility for the attacker to properly distinguish a solution from the other
genuine assets to be protected. To better understand the way the security research community
addressed this property, we reviewed in Section 6.1 and 6.2 the existing state of the art on the
generation of realistic and plausible deception, as well as the design of appropriate placement
strategies that offer to place deception within a given target environment. Nonetheless, during
our survey of the literature, we noticed that much less effort has been dedicated to the update of
deception elements and their placement strategy, during a system operation, in order to cope with
dynamic changes in the attacker behavior and the target system. It is important to note that the
update of deceptive elements is not a straightforward task. Traps may become ineffective once
they are too old, but replacing them with new ones may tip the attacker on which are the “fake”
elements in the target system.

It is also interesting to note that most previous work focused on creating a “false reality”, that
the defenders attempt to keep consistent [2006]. Neagoe et al. [2006] instead proposed to create

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :31

inconsistent deception systems to mislead adversary without affording the overhead of maintaining
the consistency of a complex system. The authors claimed that “inconsistency is an accepted part
of life” [Neagoe and Bishop 2006] so that when an adversary discovers inconsistencies in a system,
he may attribute his findings to systems faults or his misunderstanding. This setting may ease the
problem of updating deceptive elements but unfortunately inconsistent deception has received
little attention [Zhang 2012] until now. Moreover, to the best our knowledge, there is not yet any
public evaluation of inconsistent deception against consistent deception, and it’s still unclear which
of them may stand longer with respect to the evolutionary attack landscape.

7.3 Complementary vs. Standalone Solution

Both the industrial and the research community have recently promoted the use of deception
in the computer security field. However, a fundamental question is how deception may extend,
complement, or replace other existing security solutions. Most of the existing research currently
suggests that deception may be an effective solution to complement other defense approaches,
while to the best of our knowledge, no previous work claims that deception is suitable for a
standalone solution. In cases where deception is used as a complementary solution, it is necessary
to understand the benefit and extra efforts of deception deployment in a real-world environment
where classic defenses need to co-exist. A few studies have evaluated the financial cost of deploying
deception under theoretic models [Rowe 2007; Wang et al. 2013]. In Section 5.4, we reviewed the
monitoring of deception and found that there is not yet a comprehensive monitoring system that
may incorporate deception into existing security solutions. Therefore, more research is needed to
understand the appropriate way deception may extend other solutions.

8 CONCLUSIONS

In this paper, we presented a four dimensional classification of existing deception techniques.
Note that our focus was not to discuss all deception techniques presented to date, but mainly
to identify the different approaches that can be used to reinforce or substitute current intrusion
detection and protection solutions. Our work presents a comprehensive analysis of previous studies,
addressing a number of key aspects including the theoretical models that had been proposed for
deception techniques in computer security as well as the generation, placement, deployment, and
monitoring of deception elements. Finally, we examined previous measurements and evaluations
of the effectiveness of deception techniques.

During our study, we found that the use of deception and the type of elements that can be
used to deceive an attacker are well covered in dozens of publications. However, we identified
several shortcomings such as a lack of a clear methodology to test and measure the placement,
the accuracy, the false negative rate, and the false positive rate of such techniques. Therefore,
we believe future research should focus on designing and conducting real-world experiments to
measure and compare the effectiveness of intrusion deception solutions.

REFERENCES

Mitsuaki Akiyama, Takeshi Yagi, Kazufumi Aoki, Takeo Hariu, and Youki Kadobayashi. 2013. Active credential leakage for
observing web-based attack cycle. In International Workshop on Recent Advances in Intrusion Detection.

Boniface Kayode Alese, FM Dahunsi, RA Akingbola, OS Adewale, and TJ Ogundele. 2014. Improving deception in honeynet:
Through data manipulation. In IEEE International Conference for Internet Technology and Secured Transactions (ICITST).

Mohammed Almeshekah and Eugene Spafford. 2014a. The case of using negative (deceiving) information in data protection.
In International Conference on Cyber Warfare and Security.

Mohammed H Almeshekah. 2015. Using deception to enhance security: A Taxonomy, Model, and Novel Uses. Ph.D. Dissertation.

Mohammed H Almeshekah and Eugene H Spafford. 2014b. Planning and integrating deception into computer security
defenses. In ACM Workshop on New Security Paradigms Workshop (NSPW).

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:32 Xiao Han, Nizar Kheir, and Davide Balzarotti

Lance Alt, Robert Beverly, and Alberto Dainotti. 2014. Uncovering network tarpits with degreaser. In ACM Annual Computer
Security Applications Conference (ACSAC).

Kostas G Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Konstantinos Xinidis, Evangelos P Markatos, and Angelos D
Keromytis. 2005. Detecting Targeted Attacks Using Shadow Honeypots. In Usenix Security.

Chuvakin Anton. 2016. “Deception as Detection" or Give Deception a Chance? http://blogs.gartner.com/anton-
chuvakin/2016/01/08/deception-as-detection-or-give-deception-a-chance.

Frederico Araujo and Kevin W Hamlen. 2015. Compiler-instrumented, Dynamic Secret-Redaction of Legacy Processes for
Attacker Deception. In USENIX Security.

Frederico Araujo, Kevin W Hamlen, Sebastian Biedermann, and Stefan Katzenbeisser. 2014. From patches to honey-
patches: Lightweight attacker misdirection, deception, and disinformation. In ACM SIGSAC conference on computer and
communications security (CCS).

Rana Aamir Raza Ashfaq, Xi-Zhao Wang, Joshua Zhexue Huang, Haider Abbas, and Yu-Lin He. 2017. Fuzziness based
semi-supervised learning approach for intrusion detection system. Information Sciences (2017).

Malek Ben Salem and Salvatore J. Stolfo. 2011. Decoy document deployment for effective masquerade attack detection. In
Detection of Intrusions and Malware, and Vulnerability Assessment.

Maya Bercovitch, Meir Renford, Lior Hasson, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2011. HoneyGen: An automated
honeytokens generator. IEEE International Conference on Intelligence and Security Informatics (ISI) (2011).

Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. 2009. All Your Contacts Are Belong to Us: Automated
Identity Theft Attacks on Social Networks. In 20th International World Wide Web Conference (WWW).

Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. 2010. Kamouflage: Loss-Resistant Password Management. In
European Symposium on Research in Computer Security.

Kevin Borders, Laura Falk, and Atul Prakash. 2007. OpenFire: Using deception to reduce network attacks. In Security and
Privacy in Communications Networks and the Workshops.

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, and Salvatore J. Stolfo. 2009. Baiting inside attackers using
decoy documents. International Conference on Security and Privacy in Communication Systems (2009).

Brian M Bowen, Vasileios P Kemerlis, Pratap Prabhu, Angelos D Keromytis, and Salvatore J Stolfo. 2010a. Automating the
Injection of Believable Decoys to Detect Snooping. Proceedings of the Third ACM Conference on Wireless Network Security
(2010).

Brian M Bowen, Pratap Prabhu, Vasileios P Kemerlis, Stelios Sidiroglou, Angelos D Keromytis, and Salvatore J Stolfo. 2010b.
Botswindler: Tamper resistant injection of believable decoys in vm-based hosts for crimeware detection. In International
Workshop on Recent Advances in Intrusion Detection.

Douglas Brewer, Kang Li, Laksmish Ramaswamy, and Calton Pu. 2010. A link obfuscation service to detect webbots.
International Conference on Services Computing (SCC) (2010).

Thomas E Carroll and Daniel Grosu. 2011. A game theoretic investigation of deception in network security. Security and
Communication Networks (2011).

Hayreddin Ceker, Jun Zhuang, Shambhu Upadhyaya, Quang Duy La, and Boon-Hee Soong. 2016. Deception-Based Game
Theoretical Approach to Mitigate DoS Attacks. In International Conference on Decision and Game Theory for Security.
Springer.

A Cenys, D Rainys, L Radvilavi¢ius, and N Goranin. 2005. Implementation of Honeytoken Module In DBMS Oracle 9ir2
Enterprise Edition for Internal Malicious Activity Detection. In IEEE Computer Society’s TC on Security and Privacy.
Sambuddho Chakravarty, Georgios Portokalidis, Michalis Polychronakis, and Angelos D. Keromytis. 2011. Detecting traffic

snooping in tor using decoys. Workshop on Recent Advances in Intrusion Detection (2011).

Andrew Clark, Kun Sun, Linda Bushnell, and Radha Poovendran. 2015. A Game-Theoretic Approach to IP Address
Randomization in Decoy-Based Cyber Defense. In International Conference on Decision and Game Theory for Security.
Springer.

Andrew Clark, Quanyan Zhu, Radha Poovendran, and Tamer Bagar. 2012. Deceptive routing in relay networks. In International
Conference on Decision and Game Theory for Security. Springer.

Fred Cohen. 1998. A note on the role of deception in information protection. Computers & Security (1998).

Fred Cohen. 2006. The Use of Deception Techniques: Honeypots and Decoys.

Fred Cohen. 2010. Moving target defenses with and without cover deception. http://all.net/Analyst/2010-10.pdf.

Fred Cohen et al. 1998. The deception toolkit. Risks Digest (1998).

Fred Cohen and Deanna Koike. 2002. Leading Attackers Through Attack Graphs with Deceptions The Attack Graph.
Computers & Security (2002).

Fred Cohen, Dave Lambert, Charles Preston, Nina Berry, Corbin Stewart, and Eric Thomas. 2001a. A framework for
deception. National Security Issues in Science, Law, and Technology (2001).

Fred Cohen, Irwin Marin, Jeanne Sappington, Corbin Stewart, and Eric Thomas. 2001b. Red teaming experiments with
deception technologies. http://all.net/journal/deception/RedTeamingExperiments.pdf.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :33

Stephen Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Booby trapping software. In Proceedings of the 2013
workshop on New security paradigms workshop.

Michael Crouse, Bryan Prosser, and Errin W Fulp. 2015. Probabilistic performance analysis of moving target and deception
reconnaissance defenses. In Proceedings of the Second ACM Workshop on Moving Target Defense.

Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon, Mohamed Ali Kaafar, and M Zubair Shafiq. 2014. Paying for
likes?: Understanding Facebook like fraud using honeypots. In Conference on Internet Measurement Conference.

Cristiano De Faveri and Ana Moreira. 2016. Designing Adaptive Deception Strategies. In IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C).

Cristiano De Faveri, Ana Moreira, and Vasco Amaral. 2016. Goal-driven deception tactics design. In IEEE International
Symposium on Software Reliability Engineering (ISSRE).

Karel Durkota, Viliam Lisy, Branislav Bosansky, and Christopher Kiekintveld. 2015a. Approximate solutions for attack
graph games with imperfect information. In International Conference on Decision and Game Theory for Security. Springer.

Karel Durkota, Viliam Lisy, Branislav Bosansky, and Christopher Kiekintveld. 2015b. Optimal Network Security Hardening
Using Attack Graph Games.. In IJCAL

Karel Durkota, Viliam Lisy, Christopher Kiekintveld, Branislav Bosansky, and Michal Péchoudek. 2016. Case Studies of
Network Defense with Attack Graph Games. IEEE Intelligent Systems (2016).

Simson Garfinkel. 2007. Anti-forensics: Techniques, detection and countermeasures.

Nandan Garg and Daniel Grosu. 2007. Deception in honeynets: A game-theoretic analysis. In IEEE Information Assurance
and Security Workshop.

Dimitris Gavrilis, Ioannis Chatzis, and Evangelos Dermatas. 2007. Flash crowd detection using decoy hyperlinks. International
Conference on Networking, Sensing and Control (ICNSC) (2007).

Han C Goh. 2007. Intrusion deception in defense of computer systems. Technical Report.

Christopher N Gutierrez, Saurabh Bagchi, H Mohammed, and Jeff Avery. 2015. Modeling Deception In Information
Security As A Hypergame—-A Primer. In Proceedings of the 16th Annual Information Security Symposium. CERIAS-Purdue
University.

Xiao Han, Nizar Kheir, and Davide Balzarotti. 2017. Evaluation of Deception-Based Web Attacks Detection. In ACM Workshop
on Moving Targets Defense (co-located with CCS).

Sharif Hassan and Ratan Guha. 2016. Modelling of the State of Systems with Defensive Deception. In IEEE International
Conference on Computational Science and Computational Intelligence (CSCI).

Kristin E Heckman, Frank J Stech, Ben S Schmoker, and Roshan K Thomas. 2015. Denial and Deception in Cyber Defense.
IEEE Computer (2015).

Kristin E Heckman, Michael] Walsh, Frank J Stech, Todd A O’boyle, Stephen R DiCato, and Audra F Herber. 2013. Active
cyber defense with denial and deception: A cyber-wargame experiment. computers & security (2013).

Cormac Herley and Paul C van Oorschot. 2017. Sok: Science, security and the elusive goal of security as a scientific pursuit.
In IEEE Symposium on Security and Privacy (SP).

Karel Horak, Quanyan Zhu, and Branislav Bosansky. 2017. Manipulating Adversary’s Belief: A Dynamic Game Approach
to Deception by Design for Proactive Network Security. In International Conference on Decision and Game Theory for
Security. Springer.

Kenneth Houkjeer, Kristian Torp, and Rico Wind. 2006. Simple and realistic data generation. In Proceedings of the 32nd
international conference on Very large data bases. VLDB Endowment.

Sushil Jajodia, Anup K Ghosh, VS Subrahmanian, Vipin Swarup, Cliff Wang, and X Sean Wang. 2012. Moving Target Defense
II: Application of Game Theory and Adversarial Modeling. Springer.

Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. 2011. Moving target defense: creating asymmetric
uncertainty for cyber threats. Springer Science & Business Media.

Sushil Jajodia, VS Subrahmanian, Vipin Swarup, and Cliff Wang. 2016. Cyber Deception: Building the Scientific Foundation.

Priyanka Jogdand and Puja Padiya. 2016. Survey of different IDS using honeytoken based techniques to mitigate cyber
threats. In IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).

Ari Juels and Thomas Ristenpart. 2014. Honey encryption: Security beyond the brute-force bound. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques.

Ari Juels and Ronald L Rivest. 2013. Honeywords: Making password-cracking detectable. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.

Ari Juels and Cornell Tech. 2014. A Bodyguard of Lies : The Use of Honey Objects in Information Security. ACM symposium
on Access control models and technologies (SACMAT) (2014).

Donald P Julian. 2002. Delaying Type Response for Use By Software Decoys. Ph.D. Dissertation.

Parisa Kaghazgaran and Hassan Takabi. 2015. Toward an Insider Threat Detection Framework Using Honey Permissions.
Journal of Internet Services and Information Security (JISIS) (2015).

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:34 Xiao Han, Nizar Kheir, and Davide Balzarotti

Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Giovanni Vigna, and Vern Paxson. 2014. Hulk:
Eliciting Malicious Behavior in Browser Extensions.. In USENIX Security.

Josh Karlin, Daniel Ellard, Alden W Jackson, Christine E Jones, Greg Lauer, David Mankins, and W Timothy Strayer. 2011.
Decoy Routing: Toward Unblockable Internet Communication.. In FOCL

Constantine Katsinis and Brijesh Kumar. 2012. A Security Mechanism for Web Servers Based on Deception. Proceedings of
the The 2012 International Conference on Internet Computing (ICOMP) (2012).

Constantine Katsinis, Brijesh Kumar, Security Technology, and Rapidsoft Systems. 2013. A Framework for Intrusion
Deception on Web Servers. (2013).

Gene H Kim and Eugene H Spafford. 1994a. The design and implementation of tripwire: A file system integrity checker. In
ACM Conference on Computer and Communications Security.

Gene H Kim and Eugene H Spafford. 1994b. Experiences with tripwire: Using integrity checkers for intrusion detection. In
System Administration, Networking, and Security Conference.

Georgios Kontaxis, Michalis Polychronakis, and Angelos D Keromytis. 2014. Computational Decoys for Cloud Security. In
Secure Cloud Computing.

Spitzner Lance. 2001. The Value of Honeypots, Part One: Definitions and Values of Honeypots.
https://www.symantec.com/connect/articles/value-honeypots-part-one-definitions-and-values-honeypots.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK: Automated software diversity. In IEEE
Symposium on Security and Privacy (SP).

Martin Lazarov, Jeremiah Onaolapo, and Gianluca Stringhini. 2016. Honey Sheets: What Happens To Leaked Google
Spreadsheets?. In USENLX Workshop on Cyber Security Experimentation and Test (CSET).

Erwan Le Malécot. 2009. MitiBox: camouflage and deception for network scan mitigation. In Proceedings of the 4th USENIX
Workshop on Hot Topics in Security (HotSec).

Xiaowei Li and Yuan Xue. 2014. A survey on server-side approaches to securing web applications. ACM Computing Surveys
(CSUR) (2014).

Tom Liston. 2001. LaBrea:“Sticky” Honeypot and IDS. http://labrea.sourceforge.net/labrea-info.html. (2001).

Bingshuang Liu, Zhaoyang Liu, Jianyu Zhang, Tao Wei, and Wei Zou. 2012. How many eyes are spying on your shared
folders?. In ACM workshop on Privacy in the electronic society.

Craig M. McRae and Rayford B. Vaughn. 2007. Phighting the phisher: Using Web bugs and honeytokens to investigate the
source of phishing attacks. Proceedings of the Annual Hawaii International Conference on System Sciences (2007).

B Michael, M Auguston, N Rowe, and R Riehle. 2002. Software Decoys: Intrusion Detection and Countermeasures. In
Proceedings of the IEEE Workshop on Information Assurance.

Sherry Murphy, Todd McDonald, and Robert Mills. 2010. An Application of Deception in Cyberspace: Operating System
Obfuscation. In International Conference on Information Warfare and Security.

Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. 2017. The Waterfall of Liberty: Decoy Routing Circumvention that
Resists Routing Attacks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

Marcin Nawrocki, Matthias Wahlisch, Thomas C Schmidt, Christian Keil, and Jochen Schonfelder. 2016. A Survey on
Honeypot Software and Data Analysis. arXiv preprint arXiv:1608.06249 (2016).

Jose Nazario. 2009. PhoneyC: A Virtual Client Honeypot. LEET (2009).

Vicentiu Neagoe and Matt Bishop. 2006. Inconsistency in deception for defense. In Proceedings of the 2006 workshop on New
security paradigms. ACM.

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans. 2005. Automatically hardening web
applications using precise tainting. Security and Privacy in the Age of Ubiquitous Computing (2005).

Nick Nikiforakis, Marco Balduzzi, Steven Van Acker, Wouter Joosen, and Davide Balzarotti. 2011. Exposing the Lack of
Privacy in File Hosting Services.. In LEET.

Adam Nossiter, David E. Sanger, and Nicole Perlroth. 2017. Hackers Came, but the French Were Prepared.
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html.

Hamed Okhravi, Thomas Hobson, David Bigelow, and William Streilein. 2014. Finding focus in the blur of moving-target
techniques. IEEE Security & Privacy (2014).

Hamed Okhravi, MA Rabe, TJ Mayberry, WG Leonard, TR Hobson, D Bigelow, and WW Streilein. 2013. Survey of cyber
moving target techniques. Technical Report. MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.

Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. 2016. What Happens After You Are Pwnd: Understanding
the Use of Leaked Webmail Credentials in the Wild. In ACM SIGCOMM Internet Measurement Conference.

Keshnee Padayachee. 2014. Aspectising honeytokens to contain the insider threat. IET Information Security (2014).

Augusto Paes de Barros. 2003. RES: Protocol Anomaly Detection IDS - Honeypots. http://seclists.org/focus-ids/2003/Feb/95.

Younghee Park and Salvatore J Stolfo. 2012. Software decoys for insider threat. In Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

Deception Techniques In Computer Security: A Research Perspective :35

AB Robert Petruni¢. 2015. Honeytokens as active defense. International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) (2015).

Radek Pibil, Viliam Lisy, Christopher Kiekintveld, Branislav Bosansky, and Michal Péchoucek. 2012. Game theoretic model
of strategic honeypot selection in computer networks. Decision and Game Theory for Security (2012).

Lawrence Pingree. 2015. Emerging Technology Analysis: Deception Techniques and Technologies Create Security Technology
Business Opportunities. Gartner, Inc (2015).

Niels Provos et al. 2004. A Virtual Honeypot Framework.. In USENIX Security Symposium.

Mohammad Ashiqur Rahman, Mohammad Hossein Manshaei, and Ehab Al-Shaer. 2013. A game-theoretic approach for
deceiving remote operating system fingerprinting. In IEEE Conference on Communications and Network Security (CNS).

Neil Rowe. 2007. Planning cost-effective deceptive resource denial in defense to cyber-attacks. In Proceedings of the 2nd
International Conference on Information Warfare & Security.

Neil C Rowe. 2004. Designing good deceptions in defense of information systems. In IEEE Computer Security Applications
Conference.

Neil C Rowe. 2006. Measuring the effectiveness of honeypot counter-counterdeception. In IEEE Annual Hawaii International
Conference on System Sciences (HICSS).

Neil C Rowe. 2008. Deception in Defense of Computer Systems from Cyber Attack. Cyber Warfare and Cyber Terrorism
(2008).

Neil C Rowe, Binh T Duong, and E Custy. 2006. Fake Honeypots: A Defensive Tactic for Cyberspace. In IEEE Information
Assurance Workshop.

Neil C Rowe and Hy S Rothstein. 2004. Two taxonomies of deception for attacks on information systems. (2004).

Neil C Rowe and Julian Rrushi. 2016. Introduction to Cyberdeception. Springer.

Julian L. Rrushi. 2011. An exploration of defensive deception in industrial communication networks. International Journal
of Critical Infrastructure Protection (2011).

Julian L Rrushi. 2016. NIC displays to thwart malware attacks mounted from within the OS. Computers & Security (2016).

Karen Scarfone and Peter Mell. 2007. Guide to intrusion detection and prevention systems (idps). NIST special publication
(2007).

Asaf Shabtai, Maya Bercovitch, Lior Rokach, Ya’akov (Kobi) Gal, Yuval Elovici, and Erez Shmueli. 2016. Behavioral Study of
Users When Interacting with Active Honeytokens. ACM Trans. Inf. Syst. Secur. (2016).

Leslie Shing. 2016. An improved tarpit for network deception. Master’s thesis. Monterey, California: Naval Postgraduate
School.

Matthew Smart, G Robert Malan, and Farnam Jahanian. 2000. Defeating TCP/IP Stack Fingerprinting. In Usenix Security
Symposium.

Lance Spitzner. 2003a. The honeynet project: Trapping the hackers. IEEE Security & Privacy (2003).

Lance Spitzner. 2003b. Honeypots : Catching the Insider Threat. In Annual Computer Security Applications Conference.

Lance Spitzner. 2003c. Honeytokens: The other honeypot. http://www.securityfocus.com/infocus/1713.

Cliff Stoll. 1989. The cuckoo’s egg: tracking a spy through the maze of computer espionage.

Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. 2010. Detecting spammers on social networks. In Proceedings
of the 26th annual computer security applications conference.

Symantec. 2016. Internet Security Threat Report . https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-
2016-en.pdf.

Samuel T Trassare. 2013. A technique for presenting a deceptive dynamic network topology. (2013).

Trend Micro. 2015. Understanding Targeted Attacks: The Impact of Targeted Attacks.
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/the-impact-of-targeted-attack.

Vincent E Urias, William MS Stout, and Han W Lin. 2016. Gathering threat intelligence through computer network deception.
In IEEE Symposium on Technologies for Homeland Security (HST).

Nikos Virvilis, Bart Vanautgaerden, and Oscar Serrano Serrano. 2014. Changing the game: The art of deceiving sophisticated
attackers. International Conference on Cyber Conflict, CYCON (2014).

Jonathan Voris, Jill Jermyn, Nathaniel Boggs, and Salvatore Stolfo. 2015. Fox in the Trap: Thwarting Masqueraders via
Automated Decoy Document Deployment. In Proceedings of the Eighth European Workshop on System Security. ACM.

Jonathan Voris, Jill Jermyn, Angelos D Keromytis, and Salvatore J Stolfo. 2013. Bait and snitch: Defending computer systems
with decoys. In Proceedings of the cyber infrastructure protection conference, Strategic Studies Institute, September.

Wei Wang, Jeffrey Bickford, Ilona Murynets, Ramesh Subbaraman, Andrea G. Forte, and Gokul Singaraju. 2013. Detecting
Targeted Attacks By Multilayer Deception. Journal of Cyber Security and Mobility (2013).

Steve Webb, James Caverlee, and Calton Pu. 2008. Social Honeypots: Making Friends With A Spammer Near You. In CEAS.

Jonathan White. 2010. Creating personally identifiable honeytokens. In Innovations and Advances in Computer Sciences and
Engineering. Springer.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

:36 Xiao Han, Nizar Kheir, and Davide Balzarotti

Ben Whitham. 2013. Automating the generation of fake documents to detect network intruders. International Journal of

Cyber-Security and Digital Forensics (IJCSDF) (2013).
Ben Whitham. 2017. Automating the Generation of Enticing Text Content for High-Interaction Honeyfiles. In Proceedings of

the 50th Hawaii International Conference on System Sciences.
Jim Yuill, Dorothy E Denning, and Fred Feer. 2006. Using deception to hide things from hackers: Processes, principles, and

techniques. Technical Report. DTIC Document.
J. Yuill, M. Zappe, D. Denning, and F. Feer. 2004. Honeyfiles: deceptive files for intrusion detection. Proceedings from the

Fifth Annual IEEE SMC Information Assurance Workshop (2004).
James Joseph Yuill. 2006. Defensive Computer-security Deception Operations: Processes, Principles and Techniques. Ph.D.

Dissertation. Advisor(s) Vouk, Mladen and Anton, Ana L
Du Zhang. 2012. The utility of inconsistency in information security and digital forensics. In Recent trends in information

reuse and integration. Springer.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2019.

	Abstract
	1 Introduction
	2 Survey Methodology
	2.1 Proposed Scheme
	2.2 Previous surveys

	3 Classification
	3.1 Previous Classifications
	3.2 Multi-Dimension Classification
	3.3 Overview of Intrusion Deception Techniques

	4 Modeling
	4.1 Deception Planning
	4.2 Interactions between Attackers and Deception Techniques

	5 Deployment
	5.1 Mode of Deployment
	5.2 Placement
	5.3 Realistic Generation
	5.4 Monitoring

	6 Measurement & Evaluation
	6.1 Evaluation of Deception Placement
	6.2 Evaluation of Deception Generation
	6.3 Evaluation of Deception Effectiveness
	6.4 False Alarms Evaluations
	6.5 Summary

	7 Discussion
	7.1 Lack of Reproducible Experiments
	7.2 Updating Procedures and Re-deployment of Deception
	7.3 Complementary vs. Standalone Solution

	8 Conclusions
	References

