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ABSTRACT
In recent years, web applications have become tremendously pop-
ular, and nowadays they are routinely used in security-critical envi-
ronments, such as medical, financial, and military systems. As the
use of web applications for critical services has increased, the num-
ber and sophistication of attacks against these applications have
grown as well. Current approaches to securing web applications
focus either on detecting and blocking web-based attacks using
application-level firewalls, or on using vulnerability analysis tech-
niques to identify security problems before deployment.

The vulnerability analysis of web applications is made difficult
by a number of factors, such as the use of scripting languages, the
structuring of the application logic into separate pages and code
modules, and the interaction with back-end databases. So far, ap-
proaches to web application vulnerability analysis have focused on
single application modules to identify insecure uses of informa-
tion provided as input to the application. Unfortunately, these ap-
proaches are limited in scope, and, therefore, they cannot detect
multi-step attacks that exploit the interaction among multiple mod-
ules of an application.

We have developed a novel vulnerability analysis approach that
characterizes both the extended state and the intended workflow of
a web application. By doing this, our analysis approach is able to
take into account inter-module relationships as well as the interac-
tion of an application’s modules with back-end databases. As a re-
sult, our vulnerability analysis technique is able to identify sophis-
ticated multi-step attacks against the application’s workflow that
were not addressed by previous approaches. We implemented our
technique in a prototype tool, called MiMoSA, and tested it on sev-
eral applications, identifying both known and new vulnerabilities.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms: Security

Keywords: Web Applications, Multi-step Attacks, Vulnerability
Analysis, Static Analysis, Dynamic Analysis
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1. INTRODUCTION
Web applications are growing in popularity. The introduction of

sophisticated mechanisms for the handling of asynchronous events
in web browsers and the availability of a number of frameworks for
the rapid prototyping of server-side components have fostered the
development of new applications and the transition of “traditional”
applications (e.g., mail readers) to web-based platforms.

While new technologies have brought in significant advantages
in terms of support to the development process, improved perfor-
mance, and increased interoperability, little has been done to tackle
security issues. Therefore, as the complexity of web applications
increases, the possibility for abuse increases as well. For exam-
ple, a simple analysis of the CVE vulnerability database [4] shows
that the percentage of web-based attacks rose from 25% of the total
number of entries in 2000 to 61% in 2006.

This situation is made worse by the fact that web applications are
usually reachable through firewalls by design, and, in addition, the
server-side logic is often developed under time-to-market pressure
by developers with insufficient security skills. As a result, vulnera-
ble web applications are deployed and made available to the whole
Internet, creating easily-exploitable entry points for the compro-
mise of entire networks.

To address the security problems associated with web applica-
tions, the research community has proposed a number of solutions.
A first class of solutions focuses on detecting (and possibly block-
ing) web-based attacks. This can be done by analyzing the requests
sent to web applications [13, 2, 21, 17, 18] or, in some cases, by an-
alyzing the data delivered by the applications to the clients [11, 8].
These solutions have the advantage that they do not require any
modification to the application being protected. However, they
have a significant impact on the system’s performance, and, in case
of false positives (i.e., wrong detections), they may block legitimate
traffic.

A second class of solutions focuses on identifying flaws in the
implementation of a web application before the application is de-
ployed. These approaches utilize static and dynamic analysis tech-
niques to identify vulnerabilities in web applications [7,9,14]. Most
of these approaches are based on the assumption that vulnerabilities
in web applications are the result of insecure data flow. Therefore,
these techniques attempt to identify when data originating from
outside the application (e.g., from user input) is used in security-
critical operations without being first checked and sanitized.

Even though these approaches are effective at detecting suspi-
cious uses of unsanitized data, they suffer from three main limita-
tions. First, their scope is limited to a single web application mod-
ule, such as a single PHP file or a single ASP component. There-
fore, these techniques are not able to identify vulnerabilities that
are caused by the interaction of multiple modules. Second, these



approaches are not able to correctly model the interactions among
multiple technologies, such as the use of multiple languages in the
same application, or the use of back-end databases to store persis-
tent data. Third, and most important, these techniques do not take
into account either the intended workflow of a web application or
its extended state.

The intended workflow of a web application represents a model
of the assumptions that the developer has made about how a user
should navigate through the application. Web applications are of-
ten designed to guide the user through a specific sequence of steps.
For example, an e-commerce site could be structured so that the
user first logs in, then browses a catalog and chooses some goods,
and eventually checks out and purchases the items. The constraints
among operations (e.g., one has to select some goods before pur-
chasing them) define the application’s intended workflow.

A number of mechanisms have been devised to track the progress
of a user through the intended workflow of a web application. These
mechanisms provide ways to store information that survives a sin-
gle client-server interaction and define the extended state of the
application. For example, in a LAMP application1 the extended
state could include the request variables used in each module and,
in addition, the PHP session data and the database tables, which
are shared between modules. The extended state can also include
information that is sent back and forth between the client and the
server to keep track of a user session, such as hidden form fields
and application-specific cookies. Therefore, the extended state of
an application is a distributed collection of session-related infor-
mation, which is accessed and modified by the modules of a web
application at different times during a user session.

Unfortunately, it is possible that different modules of an applica-
tion have different assumptions on how the extended state is stored
and handled, leading to vulnerabilities in the application. We call
these vulnerabilities multi-module vulnerabilities to emphasize the
fact that they originate from the interaction of multiple application
modules, which communicate by reading and modifying the appli-
cation’s extended state.

In this paper, we present a novel vulnerability analysis approach
that combines several analysis techniques to identify sophisticated
multi-module vulnerabilities in web applications. In our approach,
we first leverage dynamic approaches to analyze block-level prop-
erties in the code of web application modules. We then use static
analysis to extract properties at the module level. Finally, we use
model checking techniques to identify possible paths in a web ap-
plication’s workflow that could lead to an insecure state.

The contributions of our approach are the following:

• We introduce a novel model of web application extended
state that characterizes permanent storage and is not limited
to the variables and data structures defined in a single proce-
dure or code module.

• We present a novel approach to analyze the interaction be-
tween the application’s code and back-end databases, which
allows for the identification of sophisticated data-driven at-
tacks.

• We introduce an approach to derive the intended workflow of
a web application and an analysis technique to identify multi-
step attacks that violate the expected inter-module workflow
of a web application.

We implemented our approach in a prototype analysis tool, called
1A LAMP application is a web application based on the composi-
tion of Linux, Apache, MySQL, and PHP.

MiMoSA2, for PHP-based web applications, and we evaluated it on
a number of real-world applications, finding both known and new
vulnerabilities. The results show that our approach is able to iden-
tify complex vulnerabilities that state-of-the-art techniques are not
able to identify.

The rest of the paper is structured as follows. In Section 2, we
present some examples of the vulnerabilities that are the focus of
our approach. In Section 3, we introduce the web application model
that is at the basis of our analysis. Section 4 and 5 describe our ap-
proach to the identification of multi-module vulnerabilities in web
applications. Then, Section 6 presents the results of applying our
analysis to real-world applications. Finally, Section 7 presents re-
lated work, and Section 8 briefly concludes.

2. MULTI-MODULE ATTACKS
Multi-module attacks can be categorized into two classes: data-

flow attacks and workflow attacks. Data-flow attacks exploit the
insecure handling of user-provided information that is stored in the
web application’s state and passed from one module to another. In
workflow attacks, an attacker leverages errors in how the state is
handled by the application’s modules in order to use the application
in ways that violate its intended workflow.

Data-flow Attacks.
In multi-module data-flow attacks, the attacker uses a first mod-

ule to inject some data into the web application’s extended state.
Then, a second module uses the attacker-provided data in an in-
secure way3. Examples of multi-module data-flow attacks include
SQL injection [3] and persistent (or stored) Cross-Site Scripting
attacks (XSS) [12].

A web application is vulnerable to a SQL injection attack when it
uses unsanitized user data to compose queries that are later passed
to a database for evaluation. The exploitation of a SQL injection
vulnerability can lead to the execution of arbitrary queries with the
privileges of the vulnerable application and, consequently, to the
leakage of sensitive information and/or unauthorized modification
of data. In a typical multi-module SQL injection scenario, the at-
tacker uses a first module to store an attack string containing ma-
licious SQL directives in a location that is part of the application’s
extended state (e.g., a session variable). Then, a second module
reads the value of the same location from the extended state and
uses it to build a query to the database. As a result, the malicious
SQL directives are “injected” into the query.

In cross-site scripting attacks, an attacker forces a web browser
to evaluate attacker-supplied code (typically JavaScript) in the con-
text of a trusted web site. The goal of these attacks is to circumvent
the same-origin policy, which prevents scripts or documents loaded
from one site from getting or setting the properties of documents
originating from different sites. In a multi-module XSS attack, a
first module is leveraged to store the malicious code in a location
that is part of the extended state of the application, e.g., in a field
of a table in the back-end database. Then, at a later time, the ma-
licious code is presented to a user by a different module. The user
browser executes the code under the assumption that it originates
from the vulnerable application rather than from the attacker, effec-
tively circumventing the same-origin policy.

Workflow Attacks.
Most web applications have policies that restrict how they can

2MiMoSA stands for Multi-Module State Analyzer.
3As it will be clear later, this second module can be a second invo-
cation of the module that performed the first step of the attack.



be navigated to ensure that their functionality and data is accessed
in a well-defined and controlled way. Usually, to implement these
restrictions a module stores in the web application’s extended state
the current navigation state, e.g., whether or not the current user
has logged in or has already visited a certain page. Other modules,
then, use this portion of the state information to deny or authorize
access to other parts of the application.

Workflow attacks attempt to circumvent these navigation restric-
tions. For example, a workflow attack could try to directly access a
page that is not reachable through normal navigation mechanisms,
such as hyper-textual links4. These attacks may allow one to by-
pass authorization mechanisms (e.g., gaining access to restricted
portions of a web application) or to subvert the correct business
logic of the application (e.g., skipping a required step in the check-
out sequence of operations on an e-commerce web site).

3. A FORMAL CHARACTERIZATION OF
MULTI-MODULE VULNERABILITIES

In the previous sections, we described how the state of a web
application can be maintained in a number of different ways. In
order to abstract away from the various language- or technology-
specific mechanisms, we introduce the concept of state entity. A
state entity E is similar to a variable in a traditional programming
language, in that it can be used to store parts of the application’s
state. Different modules can share information by accessing the
same state entities. The set of all the state entities corresponds to
what we defined in the introduction as the application’s extended
state.

We classify the state entities into two classes: server-side and
client-side. Server-side entities model the part of the extended state
that is maintained on the server. For example, a server-side entity
can represent a field in a database or a PHP session variable. Client-
side entities are instead used to model the part of the extended state
stored in and/or generated by the user’s browser. Cookies, GET
and POST parameters are examples of this type of entities.

3.1 Module Views
To summarize the operations that each module performs on the

application’s extended state, we introduce the concept of Module
View (or simply view hereinafter). Each view represents all the
state-equivalent execution paths in a single module, i.e., all the
paths in the control-flow graph (CFG) of a module that perform the
same operations on the state entities. When an application mod-
ule is executed, e.g., as a consequence of a user request, the path
followed by the execution in that module is completely included in
one and only one of its views. In this case, we say that the view that
contains the executed path is “entered” by the user. We describe the
algorithm used to summarize a module into its views in Section 4.3.

Consider, for example, the login module of an application. When
a user provides correct credentials, the module may define a set of
new session variables (e.g., to track that the user is authenticated
and to load her preferences). On the contrary, the module may
redirect unauthorized users to an error page without changing the
extended state. These two different behaviors depend on the cur-
rent extended state of the application, namely on the values of the
request parameters and the content of the database that stores the
information about the users. The view abstraction allows us to asso-
ciate with each behavior a compact representation that summarizes
its effect on the extended state of the application.

Formally, a view V is represented as a triple (Φ, Π, Σ) where:

4This attack is sometimes referred to as “forceful browsing.”

• Φ is the view’s pre-condition, which consists of a predicate
on the values of the state entities. The program paths mod-
eled by the view can be executed only when the view pre-
condition is true (evaluated in the context of the current ex-
tended state).

• Π is the set of post-conditions of the view. These conditions
model, as a sequence of write operations on state entities, the
way in which the extended state is modified by the execution
of the program paths represented by the view. Each write
operation has the following form:

write(EL, ER, Ψ).

This operation copies the content of the left entity EL (which
can also be a constant value) to the right entity ER. The
set Ψ contains the sanitization operations applied to the left
entity before its value is transferred to the right entity. If the
sanitization set is empty, no sanitization is applied.

• Σ is the set of sinks contained inside the view. Each sink is
a pair (E, Op) where E is a state entity and Op is a poten-
tially dangerous operation (such as a SQL query or an eval
statement) that uses the entity unsanitized. Note that the un-
sanitized use of an entity is not necessarily a vulnerability,
since the sanitization process may take place inside one of
the other views (belonging to the same module or to another
module).

The extended state of an application may change as the user
moves from one web page to another, clicking on links, submit-
ting forms, following redirects, or just jumping to a new URL. In
fact, when a view is entered, the extended state S is updated by ap-
plying the view’s post-conditions to the extended state in which the
application was before entering the view. Let Vi = (Φi, Πi, Σi) be
the view entered at step i of the user’s navigation process, then:

Sinit = ∅ Si = apply(Πi, Si−1).

In addition to the set of the entity values, the extended state also
keeps track of the current sanitization state of each entity. An en-
tity E is sanitized in the application state Si (represented by the
predicate san(E, Si)) if its value is set by sanitizing write opera-
tions. In this work, we take the standard approach of assuming that
sanitization operations are always effective in removing malicious
content from user-provided data.

3.2 Application Paths
The presence of the pre-condition predicate in each view limits

the possible paths that a user may follow inside the web application.
We say that a path P = 〈V0, V1, . . . , Vn〉, where Vi is a view,
belongs to the set of Navigation Paths N if and only if:

∀i < n, Si |= Φi+1,

that is, if and only if the state at each intermediate step satisfies the
pre-condition of the following step.

Since at the beginning of the execution the application state is
empty, it must be ∅ |= Φ0. In order for this to happen, the pre-
condition Φ0 must be empty or it must contain only predicates on
client-side entities. This is justified by the fact that pre-conditions
containing only client-side entities (for example, those requesting
a particular value for a certain GET parameter) can always be sat-
isfied if the user provides the right value. We define the set of



Application Entry Points η as the subset of views that can be used
as starting points in a navigation path:

Vi ∈ η iff ∅ |= Φi.

The subset of navigation paths allowed by the application design
is called the Intended Path set, I ⊆ N . These paths represent
the workflow of the web application, expressed either through the
use of explicit links provided by the application or through other
common user navigation behaviors. We say that a navigation path
〈V0, . . . , Vn〉 belongs to the intended path set of the application if
and only if:

∀i < n

„
Vi+1 ∈ η∨∃Link(Vi, Vi+1)∨Vi−1 = Vi+1∨Vi = Vi+1

«
.

In other words, at each step of the path the next view satisfies one of
the following: it is an application entry point, is reachable through
a link, is the same as the previous view (which corresponds to the
user pressing the back button in her browser), or is the same as the
current view (which corresponds to the use of the refresh button).

Given the previous definition, we can now provide a formal char-
acterization of the two classes of vulnerabilities we introduce in this
paper. A violation of the intended workflow of the application oc-
curs when:

∃p ∈ N | p /∈ I,

that is, when there exists a valid navigation path that is not an in-
tended path.

A multi-module data-flow vulnerability is defined as:

∃p = 〈V0, . . . , Vn〉 ∈ N , ∃Ex ∈ Σn | ¬ san(Ex, Sn−1),

that is, there is a path in the application such that some portion of
the application’s extended state is used in a security-critical opera-
tion without being properly sanitized.

4. INTRA-MODULE ANALYSIS
The analysis performed by MiMoSA consists of two phases: an

intra-module phase, which examines each module of the applica-
tion in isolation, followed by an inter-module phase, where the ap-
plication is considered as a whole.

The goal of the intra-module analysis is to summarize each appli-
cation module into a set of views, by determining its pre-condition,
post-conditions, and sinks. From each module, we also extract the
list of all outgoing links and we associate them with the views they
belong to. This information is then used by the inter-module anal-
ysis to reconstruct the intended workflow of the application.

The main steps of the intra-module phase are shown in Fig-
ure 1. Note that these steps are obviously language-dependent.
Even though in this paper we focus on applications written in the
PHP language, our approach can be easily extended to extract views
from modules written in other programming languages.

To better illustrate our technique, we will refer to a simple web
application whose code is presented in Figure 2. The application
is written in PHP and consists of three modules: index.php,
which is the application entry point, create.php, which allows
new users to create an account, and answer.php, which provides
some information that should be accessible only to registered users.
The application state is maintained using both a relational database,
which contains the users’ accounts, and a PHP session variable, i.e.,
_SESSION["loggedin"].

Even though the application is very simple, it contains repre-
sentative examples of the security problems that our approach is

able to identify. In particular, the application contains two vul-
nerabilities. The first vulnerability is caused by the fact that the
index.php module uses usernames retrieved from the database
as part of its output page. Usernames are strings arbitrarily cho-
sen by users during the registration process implemented by the
create.php module. Since these strings are never sanitized in
any module, the application is vulnerable to XSS attacks. The sec-
ond vulnerability is contained in the answer.php module. The
module incorrectly checks the value of the loggedin variable in-
stead of _SESSION["loggedin"] in order to verify the user
status. However, if the PHP register_globals option is acti-
vated and the _SESSION["loggedin"] variable has not been
defined (i.e., the user is not logged in), an attacker can include a
loggedin parameter in her GET or POST request, effectively
shadowing the session variable with a value of her choosing. This
could be leveraged to bypass the registration mechanism and ac-
cess the restricted answer.php module without being previously
authenticated, thus violating the intended workflow of the applica-
tion.

As it is clear from the examples above, these vulnerabilities are
carried out in multiple steps and involve multiple modules. The
ultimate goal of our analysis is to detect these multi-module vul-
nerabilities. However, in order to analyze the interactions between
modules, it is first necessary to analyze the properties of each mod-
ule. This analysis is the focus of the rest of this section.

4.1 Control-Flow and Data-Flow Graphs
Extraction

The first step of the intra-module analysis is the extraction of the
control-flow and data-flow graphs from each module of the applica-
tion. Our implementation leverages Pixy [9], a static analysis tool
for detecting intra-module vulnerabilities in PHP applications. We
adopted Pixy’s PHP parser, control-flow graph derivation compo-
nent, and alias analysis component. In addition, we extended Pixy
with a data-flow component that computes the def-use chains for a
module using a standard algorithm [1]. The resulting tool provides
all the information needed for the following steps of the analysis.
The main limitation of Pixy, besides being limited to intra-module
analysis only, is the lack of support for object-oriented code. Where
needed, we manually pre-processed input modules to work around
this problem.

4.2 Database Analysis
Databases are often used by web applications to store data per-

manently. This data is usually accessible by every module of the ap-
plication. Therefore, it is important to characterize module-database
interactions as they could be leveraged to perform a multi-module
attack.

The goal of the database analysis is to translate the interaction
between an application module and the back-end database into a
set of variable assignments. By doing this, the following steps of
the analysis (e.g., the view extraction process) can handle database
operations and assignments to variables in a uniform way.

For example, consider the following SQL query that writes the
content of the variable uname to the column username in the
database table users:

UPDATE users SET username=$uname WHERE...

As a result of the database analysis, a new assignment is added after
the call to the function that executes the query. In our example,
MiMoSA generates the following assignment node:

$DB_dbname_users_username = $uname;
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Figure 1: The main steps of the intra-module analysis. The parts in gray are implemented by Pixy.

Note that DB_dbname_users_username is a new variable cre-
ated by our analysis to model the part of the database modified by
the UPDATE operation.

The PHP language provides a number of internal functions to
connect to different types of relational databases. In our proto-
type implementation, we focused on the MySQL library because
of its popularity. However, if the target application uses a different
database, our technique can be easily adapted to address a different
set of primitives. In PHP, access to the MySQL database is usually
performed by first calling the mysql_query function to execute
a query, and then by using one of the mysql_fetch functions to
access the results of the query in an iterative fashion.

The main challenge in the database analysis is to properly re-
construct the values that a query can assume at runtime, so that we
can determine the tables and columns that are modified by the op-
eration. To achieve this, we traverse the control-flow graph of the
module, looking for calls to the mysql_query function. Since,
in general, static analysis cannot provide the value that the query
will assume at runtime, we apply a dynamic analysis technique
to the block of PHP code that precedes the function call to de-
rive the names and fields of the tables involved in the query. The
analysis extracts the largest deterministic path eP that precedes the
mysql_query call. A deterministic path is a sequence of nodes
in the control-flow graph that only contains branch instructions
whose conditional expressions can be statically determined. We
then remove from eP any input/output related operation, and we re-
place any undefined variable in eP with a placeholder.

The resulting code is passed to the PHP interpreter in order to
dynamically determine the value that the query string can assume
along the path eP . If the resulting query performs an UPDATE or
an INSERT operation, it is immediately parsed to extract the as-
signment nodes as shown before. Queries that contain a SELECT
statement are instead analyzed only when the analysis finds that the
corresponding mysql_fetch function is used to assign the result
values to one or more PHP variables.

Consider for instance the mysql_fetch_assoc call at line
16 of index.php of our sample application. Following the data-
flow edges we reach the corresponding query string at line 12.
The dynamic analysis along the deterministic path reconstructs the
query "SELECT * FROM users". The database analyzer then
checks the database schema to resolve the "*" symbol to the corre-
sponding list of column names and it finally generates the resulting
assignments nodes:

$row["username"] = $DB_dbname_users_username;
$row["password"] = $DB_dbname_users_password;

Once these assignments are introduced to the module, the fol-
lowing analysis steps are able to treat the application state stored in
a back-end database and the state stored in program variables in a
uniform way.

4.3 Views Extraction
The goal of this step is to summarize a module into a set of

views. This is a key step in our intra-module analysis, because
it produces the module meta-information necessary to perform the
inter-module vulnerability analysis.

To extract a module’s views, we first perform state analysis to
determine all statements in the control-flow graph that are state-
related, i.e., that either contain state entities or are control- or data-
dependent on state-related statements. We consider state entities
of a PHP application the variables used to refer to request param-
eters (_GET, _POST, _REQUEST), cookies ( _COOKIE), ses-
sion variables (_SESSION), and the database variables generated
by the database analysis step. This allows us to exclude from fur-
ther analysis statements that do not depend on or modify the appli-
cation state. Therefore, in the rest of the analysis we consider only
the subgraph of the CFG that contains state-related nodes. The al-
gorithm we use in this step is based on the functional data-flow
analysis framework of [19], as implemented in Pixy.

4.3.1 Identifying Sinks and State Entities
To identify sinks, we determine all nodes in the CFG that contain

an operation relevant to our analysis. In particular, we look for two
types of operations: state-related operations and sink-related op-
erations. State-related operations are those statements that modify
the server-side state. For example, we identify uses of the session
mechanism, that is, assignments to the _SESSION array or calls
to the session_register() function. Sink-related operations
are statements where state entities are used in sensitive sinks. Our
technique focuses on identifying inter-module XSS and SQL injec-
tion attacks, and, therefore, we keep track of state entities displayed
to the user or used in a database query. Consider, for example, the
create.php module in our example. The analysis identifies two
relevant operations: at line 19, a database query is executed, and, at
line 21, the variable _SESSION["loggedin"] is modified.

After the relevant operations have been identified, we derive their
conditional guards, i.e., the conditions associated with the branches
in the CFG that must be taken in order to reach the statement as-
sociated with the operation. Note that we only keep track of state-
dependent conditions, as identified by the state analysis. In our ex-
ample, the two operations that we identified in create.php are
guarded by the conditional statement at line 9. The analysis also
recognizes that the true branch of the conditional must be taken to
trigger the operations.

Then, for each variable that occurs in a conditional guard or in
a state- or sink-related statement, we reconstruct its dependency
with respect to state entities. We currently model several types of
dependencies. In particular, propagation dependencies model the
assignment of one variable to another; call dependencies denote
the fact that a variable takes its value from the result of a func-
tion call (in particular, we currently model sanitization functions);
binary dependencies model the composition of two variables, for



1 <html>
2 <head>
3 <title>The answer to Life, the
4 Universe, and Everything</title>
5 </head>
6
7 <body>
8
9 <?php

10 echo "People that know the answer:";
11
12 $sql = "SELECT * FROM users ";
13 mysql_select_db("dbname");
14 $res = mysql_query($sql);
15
16 while($row = mysql_fetch_assoc($res))
17 echo $row["username"];
18 ?>
19
20 <a href="create.php">Create User</a>
21
22 </body>
23 </html>

index.php

1 <?php
2 session_start();
3
4 if ($loggedin != "ok") {
5 header("Location: index.php");
6 exit;
7 }
8
9 echo "42";

10 ?>
11
12 <html>
13 <head>
14 <title>The final answer is:</title>
15 </head>
16
17 <body>
18 <a href="index.php">Homepage</a>
19 </body>
20 </html>

answer.php

1 <html>
2 <head>
3 <title>Create a new user</title>
4 </head>
5
6 <body>
7
8 <?php
9 if (isset($_POST["user"])) {

10
11 $user = addslashes($_POST["user"]);
12 $pass = addslashes($_POST["pass"]);
13
14 session_start();
15
16 $sql = ’INSERT INTO users ’ .
17 ’VALUES (\’’ . $user .
18 ’\’, \’’ . $pass . ’\’ )’;
19 mysql_query($sql);
20
21 $_SESSION["loggedin"] = "ok";
22
23 header("Location: answer.php");
24 exit;
25 }
26 ?>
27
28 <form action="create.php"
29 method="POST">
30
31 UserName:
32 <input name="user" type="text"><br>
33 Password:
34 <input name="pass" type="password"><br>
35 <input name="create" type="submit">
36
37 </form>
38
39 </body>
40 </html>

create.php

Table: users
+----------+-------------+
| Field | Type |
+----------+-------------+
| username | varchar(32) |
| password | varchar(32) |
+----------+-------------+

Database schema

Figure 2: Example application.

example through mathematical or string operators; constant depen-
dencies denote that a variable takes a constant value; superglobal
dependencies indicate that a variable takes a value from one of the
superglobal objects in PHP, e.g., from a request or session variable.
Multiple dependencies are composed together until each variable is
reduced to either a constant or a state entity.

Note that an additional set of conditional guards can be discov-
ered during the dependency reconstruction analysis: for example,
a variable used in an operation might assume different values de-
pending on some conditions. Such conditions are added to the set
of conditional guards for the operation.

In our example, the variable _SESSION["loggedin"], used
in the state-related statement at line 21 in create.php, is asso-
ciated with a constant dependency that models the fact that it was
assigned the constant value ok. The conditional guard at line 9 is
reduced to the composition of a call dependency (to the isset()
function) and a superglobal dependency (to the _POST["user"]
variable).

4.3.2 Creating the View
After all sensitive operations and their complete set of condi-

tional guards have been identified, we translate them into pre-con-
ditions, post-conditions, and sinks. Currently the following predi-
cates are used in pre-conditions: Exist(v) is true if and only if the
entity v is defined in the current application state. Compare(v, u,

op), where v and u are state entities and op is an operator, is true
if and only if the expression v op u is true. MiMoSA currently
supports the operators <, >, =, and their combinations. The Prop-
agate predicate is used in post-conditions: Propagate(v, u, San)
denotes that the value of the entity v is propagated to u applying
the sanitization operations specified by the set San. For sinks, the
following predicates are used: InSql(v) denotes that the state entity
v is used in a SQL query; Displayed(v) indicates that v is displayed
to the user. Conditions can be combined with the use of and, or,
and not operators.

In addition, we introduce the special Unknown predicate, which
is assumed to be always satisfiable, to model the cases where we
cannot resolve the dependency of a program variable to a state en-
tity. This happens, for example, when a variable takes its value
from a complex series of calls to functions that we do not model.

As an example of the view creation process, consider the module
create.php of our sample application. MiMoSA summarizes it
into two views, corresponding to the two branches of the condi-
tional statement at line 9. One view (corresponding to the false
branch) has pre-condition not Exist($_POST["user"]) and empty
post-conditions and sinks. The other view (corresponding to the
true branch) has pre-condition Exist($_POST["user"]). The as-
signments introduced by the database analysis step to model the
SQL query at line 19 are modeled with the post-conditions Propa-
gate($_POST["user"], DB_dbname.users.username, {addslashes})



and Propagate($_POST["pass"], DB_dbname.users.password,
{addslashes}). In both cases, the analysis keeps track of the san-
itization operated by the addslashes() function. Finally, the
assignment to the session variable _SESSION["loggedin"] is
modeled with the post-conditions Exist($_SESSION["loggedin"])
and Propagate("ok", $_SESSION["loggedin"], ∅). The complete
set of views for our example application is shown in Table 1.

In a module, the number of extracted views is exponential in the
number of state-related conditional statements. As a consequence,
the view extraction process is slow when dealing with very complex
modules. Therefore, whenever the number of views is determined
to be larger than a certain threshold, MiMoSA can be configured to
switch to a simplified view construction approach. In this approach,
instead of generating views for all the paths in the CFG of a mod-
ule, we only generate the views corresponding to a number of paths
sufficient to include all the state- and sink-related operations con-
tained in the module. As a result, all the post-conditions and sinks
of the module are extracted and will be analyzed during the detec-
tion phase. However, since not all their possible combinations are
considered, the simplified approach might introduce inaccuracies.

4.4 Links Extraction
The last step before starting the inter-module vulnerability anal-

ysis is to extract the links contained in the module and associate
them with the views they belong to.

We parse both PHP and HTML code looking for HTML hyper-
links, form actions and inputs, source attributes of frames, and calls
to the PHP function header()5. We also have a limited support
for link extraction from JavaScript code. If the URL of the link is
dynamic, i.e., it is generated using a block of PHP code, the link
extraction routine tries to determine its runtime value by applying a
dynamic analysis technique similar to the one used in the database
analysis phase.

Once all the links have been extracted, we identify the set of
views to which each link belongs. In order to do this, we determine
the conditional branches in the CFG that must be taken in order for
a link to be shown to the user and we compare these branch expres-
sions with the pre-conditions of the extracted views. Consider, for
instance, the link to answer.php contained in the create.php
module of our example application. Our analysis recognizes that it
is displayed only if the execution follows the true branch of the con-
ditional statement at line 9. <create.php>.view_0 is the only
view compatible with this execution and, therefore, it is identified
as the source view of the link.

To correctly model the application workflow, in addition to hav-
ing the names of the modules to which one can navigate from a
given view, we also need to extract the set of inputs that are sub-
mitted along the link. In particular, we need to determine which
GET and POST requests parameters are submitted if a user follows
the link. For example, in our sample application, if a user submits
the form at line 28 of the create.php module, the user-provided
parameters user and pass are submitted as a part of the POST
request to create.php.

5. INTER-MODULE ANALYSIS
In the second phase of our analysis, we connect the views ex-

tracted during the intra-module analysis into a single graph. This
graph models the intended workflow of the entire web application.
We then use a model checking technique to identify multi-module
data-flow vulnerabilities and violations of the intended workflow.

5The header() function in PHP is commonly used to set the
HTTP Location header to redirect users to a different page.
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Figure 4: Intended workflow of our example application.

The main steps of the inter-module phase are shown in Figure 3.
Note that since this phase is built on top of the view abstraction, it
is completely independent of the programming languages in which
the modules are developed.

5.1 Intended Workflow
In the first step of the inter-module phase, we use the link infor-

mation extracted during the intra-module analysis to connect all the
views of the application into a single graph.

We connect a source view Vi to a target view Vj if Vi contains
a link l that references Vj’s module and the parameters provided
by l satisfy the pre-condition of Vj . In particular, we adopt the
following two rules:

1. If Vj’s pre-condition contains predicates over client-side state
entities, we check that the extracted link satisfies these re-
quirements. For example, if the pre-condition requires the
presence of a particular GET parameter, we check that the
link provides a parameter with the required name.

2. If Vj’s pre-condition contains predicates over server-side state
entities, we assume that these predicates are always satisfied.
The rationale is that, in general, it is not possible to deter-
mine the extended state of the application considering the
two views in isolation, because it depends on the path that
the user has followed to reach Vi. Therefore, we conserva-
tively assume that the state can satisfy Vj’s pre-condition.

When both conditions are satisfied, we assume that there is an
intended path between the two views and we connect them to-
gether. For example, the link in <index.php>.view_0 (line
20) is connected to the view <create.php>.view_1 but not to
<create.php>.view_0. In fact, the pre-condition of <cre-
ate.php>.view_0 requires the existence of a POST parameter
named user that is obviously not provided if the user clicks on
the link in index.php. The intended workflow for our example
application is given in Figure 4.

Finally, the analysis identifies the application’s entry points. We
exclude the modules that appear inside an include statement
from this step of the analysis, because they are generally not in-
tended to be directly accessed by the user. Of the remaining mod-
ules, we consider as entry point any view that has either an empty
pre-condition or a pre-condition that contains only predicates over
GET parameters (see Section 3).



Module View ID Pre-conditions Post-conditions Sinks
index.php view_0 ∅ ∅ Displayed(DB_dbname.-

users.username)

create.php view_0 Exist($_POST["user"]) Propagate($_POST["user"],
DB_dbname.users.username,
{addslashes})

∅

Propagate($_POST["pass"],
DB_dbname.users.password,
{addslashes})

Exist($_SESSION ["loggedin"])

Propagate("ok", $_SES-
SION["loggedin"], ∅)

create.php view_1 not Exist($_POST["user"]) ∅ ∅
answer.php view_0 not (Exist($loggedin) and

Compare($loggedin, "ok", =))
∅ ∅

answer.php view_1 Exist($loggedin) and
Compare($loggedin, "ok", =)

∅ ∅

Table 1: Views generated for the example application of Figure 2.

View
set

Intended 
workflow 

determination
Vulnerability 

detection ReportsPublic view 
identification

Figure 3: The main steps of the inter-module analysis.

Unfortunately, in some cases it is not possible to differentiate
between an application’s entry point and the developer’s failure to
put the necessary safety checks into a module. For example, in
our experiments we tested a web application where in one of the
administration pages the developer forgot to put a check to verify
that the user was actually logged in as administrator. Our technique
classified the views of this module as entry points since they did not
have any pre-condition at all. Nevertheless, the user of our tool can
easily detect these vulnerabilities by inspecting the automatically
generated list of entry points.

5.2 Detecting Public Views
The intended path introduced in Section 3 did not model a very

important concept of a web application: the existence of publicly-
accessible pages. These pages (such as the FAQs pages) are very
common in many web sites but they are rarely intended as entry
points to the application. Therefore, we do not generate any secu-
rity alert if it is possible to access these pages violating the intended
workflow of the application.

For this reason, we adopted the following rules to detect and
mark the publicly-accessible views:

• Starting from one of the application entry points, all the views
that are reachable along some intended path traversing only
views that have empty post-conditions are marked as pub-
lic. This models the fact that if it is possible to reach a view
through a path that does not change the extended state of the
application, the access to the view is not supposed to be re-
stricted.

• Any empty redirect view is public. An empty redirect view
is a view that does not have any post-condition, any sink, and
only contains a redirect link. This models all the views used
to detect and redirect unauthenticated users that try to access
a restricted page.

In the example, our algorithm marked <create.php>.view_0,
<create.php>.view_1, and <answer.php>.view_0 as
public views. The first two because they are reachable without
any change in the application state and the last one because it is
an empty redirect.

5.3 Detection Algorithm
Our graph exploration mechanism simulates a user that moves

from one view to another. At each step, we select a new view to
add to the current path, we evaluate its pre-condition against the
current state, and, if the pre-condition is satisfied, we update the
state to reflect the effects of the view’s post-conditions.

Each path is analyzed to check if it satisfies the definition we
provided in Section 2 for multi-step data-flow vulnerabilities and
workflow violations. In general, if the graph is correct, it is pos-
sible to find all the vulnerabilities simply by trying each possible
navigation path in the application. Our solution is similar to a
model checking approach, and, unfortunately, it suffers from the
same path explosion problem. Therefore, we limit our analysis to
paths that contain up to one loop and with a total length limited
by a user-defined upper bound. In our experiments, in fact, we ob-
served that most of the vulnerabilities can be exploited using a very
limited number of steps (usually less than 5).



Our detection algorithm traverses the graph following the in-
tended paths. At each step it checks if it is possible to jump to
one of the views that should not be reachable from the current po-
sition. If it succeeds, it raises a workflow violation alert and it does
not go any further along that path. This means that some vulner-
abilities may not be discovered because they are hidden “behind”
other vulnerabilities. In this case, the user should fix the discovered
vulnerability and run the analysis again.

By applying MiMoSA to our sample application, we identify the
two existing vulnerabilities. Figure 5 shows the reports produced
by MiMoSA for the example application of Figure 2.

Workflow Violation:
Path:
- index.php[view_0]
- answer.php[view_1]

DISPLAY of unsanitized entity:
Entity: DB_dbname.users.username
Example of Exploitable Path:

- create.php[view_0]
- index.php[view_0]

Figure 5: Vulnerabilities detected in the sample application of
Figure 2.

6. EVALUATION
To prove the effectiveness of our approach in detecting multi-

module data-flow vulnerabilities and violations of the intended work-
flow of a web application, we ran our tool on five real-world web
applications.

The selected applications satisfy three requirements: i) they are
written in PHP and they contain multiple modules, ii) they use both
session variables and database tables to maintain the application
state, and iii) they do not contain object-oriented code. The list of
chosen applications is shown in Table 2. The table also shows the
list of known vulnerabilities for each application.

For each application we ran the intra-module analysis in order
to extract the set of views corresponding to the application mod-
ules. We then ran the inter-module analysis to connect together the
views and calculate the intended application workflow. Finally, we
applied our detection algorithm to find anomalies in the possible
navigation paths and to detect multi-module data-flow vulnerabili-
ties.

The results of our tests are summarized in Table 3. For the intra-
module phase, the table reports the number of views extracted and
the time required by the analysis6. In the inter-module phase, we
explored up to one hundred million paths, covering at least all the
paths of length 3. The table reports the time required to generate
the paths and the alert messages raised by our tool. The alerts are
grouped according to the entities involved (for the data-flow vulner-
abilities) and the modules (for the workflow violations). For both
data-flow and workflow vulnerabilities, we report the number of
violations detected by our tool, the number of false positives, and
how many of the remaining violations correspond to exploitable
vulnerabilities.

MiMoSA was able to find all the known vulnerabilities and to
discover several new ones.

With regard to multi-module data-flow vulnerabilities, we had
only one false positive. In fact, in the MyEasyMarket application,
the PHP variable REMOTE_ADDR is saved in the database and later
printed to the user. Even though the value of the variable is never
sanitized, it is automatically set to the IP address of the client’s
machine by the PHP engine. Therefore, it only has a limited range

6All the experiments were executed on a Pentium 4 3.6GHz with
2G of RAM.

of valid values (numbers and dots) that do not allow a user to mount
an attack against the application.

MiMoSA also reported several violations of the intended work-
flow of the web applications. Even though in most of the cases they
corresponded only to anomalous paths into the application (e.g., di-
rectly jumping from the login to the logout page), we were also able
to confirm that some of the reported violations correspond to actual
vulnerabilities that could be exploited to gain unauthorized access
to a restricted page.

While the inter-module analysis is the more time consuming phase,
the intra-module analysis is certainly the more fragile, since it is
where the static analysis techniques that we use introduce most of
the approximations. Any imperfection in this phase can result in
an increasing number of both false positives and false negatives.
For instance, during the construction of the intended paths, we ob-
served that some of the views were isolated, with no connection
to any other part of the application7. This was probably caused by
an error in the view extraction, such as a missing link or a wrong
pre-condition predicate.

To better test the accuracy of our intra-module analysis and eval-
uate its impact on the final results, we selected one of the appli-
cations in our test suite (i.e., SimpleCMS) and manually analyzed
the output of each step of the view extraction phase. The results
are shown in Table 4. MiMoSA achieves a high accuracy in the
extraction of database operations, links, post-conditions, and sinks.
Also the rate of unknown conditions, i.e., the pre-conditions that
MiMoSA was not able to correctly reconstruct, is reasonable, con-
sidering that we are using a static analysis technique.

In this application, the number of generated views is, instead,
considerably higher than the number of views actually present in
the application code. This happens because of two main reasons.
First, MiMoSA might generate views corresponding to paths that
are infeasible in the program, such as the ones that traverse nodes
with conflicting conditions. The presence of these views does not
affect the final results since they are never entered during the detec-
tion phase. The second reason is that MiMoSA can generate dupli-
cate views, i.e., views with different but equivalent pre-conditions.
Even though this may lead to inaccuracy in the final results, in most
of the cases its main effect is just to slow down the path generation
phase.

7. RELATED WORK
In the introduction, we briefly mentioned some recent works in

the areas of intrusion detection and application firewalls that fo-
cus on detecting and blocking web-based attacks. Since our work
focuses on vulnerability analysis, and, consequently, deals with a
different class of problems than the detection of attacks at runtime,
we are not going to further review these works here.

There is a number of recent works in the area of vulnerability
analysis of web-based applications. Most of these approaches are
based on taint propagation analysis applied to application written
in PHP [7, 9, 10, 22] or Java [6, 14].

The WebSSARI tool [7] is one of the first works that applies
static taint propagation analysis to find security vulnerabilities in
PHP. WebSSARI targets three specific types of vulnerabilities: cross-
site scripting, SQL injection, and general script injection. The
tool uses flow-sensitive, intra-procedural analysis based on a lat-
tice model and typestate. When the tool determines that tainted data
reaches sensitive functions, it automatically inserts runtime guards,

7These views were not taken into consideration by our path explo-
ration algorithm since they could not provide any useful informa-
tion to the user.



Application Name PHP Files Description Known Vulnerabilities
Aphpkb 0.71 59 Knowledge-base management system –

BloggIt 1.01 24 Blog engine CVE-2006-7014

MyEasyMarket 4.1 23 On-line shop –

Scarf 2006-09-20 18 Conference administration CVE-2006-5909

SimpleCms 22 Content management system BID 19386

Table 2: PHP applications used in our experiments. Vulnerabilities are referenced by their Common Vulnerabilities and Exposures
ID (CVE) or their Bugtraq ID (BID).

Application Intra-Module Analysis Inter-Module Analysis

Views Time Time DF Violations-(FP) DF Vulnerabilities WF Violations-(FP) WF Vulnerabilities
Aphpkb 4680 31:24m 3:00h 0-(0) 0 17-(10) -

BloggIt 339 2:12m 0:31h 14-(0) 14 3-(0) -

MyEasyMarket 449 1:12:00h 6:36h 2-(1) 1 1-(0) 1a

Scarf 1721 7:30m 1:10h 3-(0) 3 3-(0) 1

SimpleCms 417 0:22m 2:50h 8-(0) 8 5-(0) 4
a Detected through inspection of the entry point list, as discussed in Section 5.1.

Table 3: Results of the experiments. DF: Data Flow, WF: Work Flow, FP: False Positives.

i.e., sanitization routines.
Xie and Aiken [22] use intra-block, intra-procedural, and inter-

procedural taint propagation analysis to find SQL injection vul-
nerabilities in PHP code. This approach uses symbolic execution
to model the effect of statements inside functions. These effects
are summarized into the pre- and post-condition sets for each ana-
lyzed function. The function pre-conditions contain a derived set of
memory locations that have to be sanitized before the function invo-
cation, while the post-conditions contain the set of parameters and
global variables that are sanitized inside the function. To model the
effects of sanitization routines, the approach uses a programmer-
provided set of possible sanitization functions, considers certain
forms of casting as a sanitization process, and, in addition, keeps a
database of sanitizing regular expressions, whose effects are speci-
fied by the programmer.

Pixy [9,10], which we have described in Section 4.1, specifically
targets the identification of intra-module XSS vulnerabilities. This
tool seems to be the most complete static PHP analyzer in terms
of the PHP features modeled. To the best of our knowledge, it
is the only publicly available tool for the analysis of PHP-based
applications.

None of the described approaches performs inter-module analy-
sis, that is, all the vulnerabilities identified by these approaches are
local to a single application module. Unlike our approach, these
techniques do not have any notion of the application’s extended
state, and, therefore, they are unable to capture the workflow vul-
nerabilities described in Section 2. By considering all inputs gen-
erated from outside of an application as being tainted, these ap-
proaches should be able to identify some types of multi-module
data-flow vulnerabilities. However, because of the locality of the
analysis, they are incapable of tracing the origins of multi-steps at-
tacks, and, as a result, are subject to a much higher false positive
rate.

There is also a number of works that apply dynamic analysis
techniques to the analysis of web-based applications. For example,
approaches that use dynamic taint propagation analysis, conceptu-
ally similar to Perl’s taint mode but often with a more refined granu-
larity, have been applied to other languages as well: Nguyen-Tuong

et al. [15] propose modifications of the PHP interpreter to dynami-
cally track tainted data in PHP programs, and Haldar et al. [5] apply
a similar approach to the Java Virtual Machine.

Pietraszek and Vanden Berghe [16] present a unifying view of
injection vulnerabilities and describe a general approach for de-
tecting and preventing injection attacks. This approach is based on
instrumenting the platform, such as the PHP interpreter, to track the
flow of untrusted data inside the applications. A context-sensitive
string evaluation is then performed at each sensitive sink to detect
injection attacks.

All dynamic approaches described above either are able or, at
least in theory, can be extended to detect multi-module data-flow
attacks. The main difference with our approach is that we are able
to detect such vulnerabilities statically, considering all the possi-
ble application’s paths. Also, none of these approaches can detect
workflow vulnerabilities because they do not model or take into
account the application’s intended workflow.

There are also several recent approaches that try to identify SQL
injection attacks by building models of legitimate queries that can
be performed by an application and comparing these models to
the dynamically-generated queries. Whenever these queries struc-
turally violate the static model, an attack is detected. For example,
the AMNESIA tool [6] targets SQL injection attacks in Java-based
applications. AMNESIA defines a SQL injection attack as the at-
tack in which the logic or semantics of a legitimate SQL statement
is changed due to malicious injection of new SQL keywords or op-
erators. Thus, to detect such attacks, the semantics of dynamically-
generated queries is checked against a derived model that repre-
sents the intended semantics of the query.

Su and Wassermann [20] propose another approach that uses the
syntactic structure of the program-generated output to identify in-
jection attacks, such as XSS, XPath injection, and shell injection
attacks. The current implementation, called SqlCheck is designed
to detect SQL injection attacks only. The approach works by track-
ing sub-strings from the user input through the program execution.
The tracking is implemented by augmenting input strings with spe-
cial characters, which mark the start and the end of each sub-string.
Then, dynamically-generated queries are intercepted and checked



Views Accuracy Rate of

Extracted Optimal DB Operations Links Post-Conds Sinks Unknown Conditions
417 47 96% 78% 100% 100% 15%

Table 4: Accuracy of the view extraction step for SimpleCMS.

by a modified SQL parser. Using the meta-information provided by
the sub-string markers, the parser is able to determine if the query’s
valid syntactic form is modified by the sub-string derived from user
input, and, in that case, it blocks the query.

Both AMNESIA and SqlCheck can successfully detect SQL in-
jection attacks at the time of injection; however, without a sig-
nificant implementation effort, none of them can detect data-flow
vulnerabilities such as persistent XSS attacks. Obviously, both ap-
proaches, as being based on the syntactic structure of legitimate
output, are incapable of detecting workflow vulnerabilities/attacks.

8. CONCLUSIONS
As web applications that perform security-critical tasks become

more sophisticated, there is an increasing need for techniques and
tools that can address the novel security issues introduced by these
applications. In particular, because of the heterogeneous nature of
web applications, it is important to develop new techniques that are
able to analyze the interaction among multiple application modules
and different technologies.

In this paper, we presented a novel vulnerability analysis ap-
proach that takes into account the multi-module, multi-technology
nature of complex web applications. Our technique is able to model
both the intended workflow and the extended state of a web appli-
cation in order to identify both workflow and data-flow attacks that
involve multiple modules.

We developed a prototype tool, called MiMoSA, that implements
our approach and we tested it on a number of real-world applica-
tions. The results show that by modeling explicitly the state and
workflow of a web application, it is possible to identify complex
vulnerabilities that existing state-of-the-art approaches are not able
to identify.

Future work will focus on two main directions. First, we will
include additional technologies so that we can cover a larger class
of applications. Second, we plan to leverage the findings of the
static analysis to automatically generate test drivers to reduce the
number of the false positives.
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