
Testing Network-based Intrusion Detection Signatures
Using Mutant Exploits

Giovanni Vigna
vigna@cs.ucsb.edu

William Robertson
wkr@cs.ucsb.edu

Davide Balzarotti
balzarot@cs.ucsb.edu

Reliable Software Group
University of California, Santa Barbara

Santa Barbara, CA 93106

ABSTRACT
Misuse-based intrusion detection systems rely on models of
attacks to identify the manifestation of intrusive behavior.
Therefore, the ability of these systems to reliably detect at-
tacks is strongly affected by the quality of their models, which
are often called “signatures.” A perfect model would be able
to detect all the instances of an attack without making mis-
takes, that is, it would produce a 100% detection rate with
0 false alarms. Unfortunately, writing good models (or good
signatures) is hard. Attacks that exploit a specific vulner-
ability may do so in completely different ways, and writing
models that take into account all possible variations is very
difficult. For this reason, it would be beneficial to have test-
ing tools that are able to evaluate the “goodness” of detection
signatures. This work describes a technique to test and eval-
uate misuse detection models in the case of network-based
intrusion detection systems. The testing technique is based
on a mechanism that generates a large number of variations
of an exploit by applying mutant operators to an exploit tem-
plate. These mutant exploits are then run against a victim
host protected by a network-based intrusion detection system.
The results of the systems in detecting these variations pro-
vide a quantitative basis for the evaluation of the quality of
the corresponding detection model.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Network]: Security
and Protection

General Terms
Security

Keywords
Security Testing, Intrusion Detection, Quality Metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04, October 25–29, 2003, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

1. INTRODUCTION
Intrusion detection systems analyze one or more streams of

events looking for the manifestations of attacks. For example,
network-based intrusion detection systems (NIDSs) analyze
network packets, while host-based intrusion detection sys-
tems (HIDSs) analyze audit data collected by an operating
system about the actions performed by users and applica-
tions.

The analysis of the event streams can be performed accord-
ing to different approaches. A common classification of ap-
proaches divides them into misuse detection approaches and
anomaly detection approaches. In the first case, the analysis
relies on models that represent intrusive behavior. The anal-
ysis process tries to identify series of events that conform to
these models and, therefore, represent an intrusion. In the
second case, the analysis uses models that characterize the
normal behavior of a system and aims at identifying events
that do not fit the established models, in the assumption that
anomalous behavior is often evidence of malicious intent.

Network-based intrusion detection systems based on mis-
use detection approaches are the most widely-deployed type
of intrusion detection systems. For example, Snort [28] and
ISS’s RealSecure [11], which represent the leading products
in the open-source and commercial worlds, respectively, are
both network-based misuse detection systems.

One problem with misuse detection systems is that their
ability to reliably detect attacks is strongly affected by the
quality of their models, which are often called “signatures.”
A perfect model would be able to detect all the instances of
the modeled attack without making mistakes. In technical
terms, a perfect model would produce a 100% detection rate
with 0 false alarms (also called false positives).

Unfortunately, writing good models (or good signatures)
is hard and resource-intensive. Attacks that exploit a certain
vulnerability may do so in completely different ways. This
problem could easily be solved by writing a model for each
way in which the vulnerability can be exploited, or, even bet-
ter, by creating a model which is abstract enough to capture
all the different variations of an attack. For example, the
work in [10] suggests that good models should consider only
those events that if removed from the attack would make the
attack unsuccessful. Unfortunately, this is not always pos-
sible, and sometimes by creating an abstract signature it is
possible to undermine its detection precision (i.e., the model
would also flag as intrusive perfectly normal activity). Also,
the security expertise of the signature developer may have

a notable impact on the ability of the model to characterize
the attack correctly.

If the models used in intrusion detection are known, it is
possible to examine them to identify possible “blind spots”
that could be exploited by an attacker to perform the attack
while avoiding detection. Unfortunately, few commercial sys-
tems (if any) provide access to the models they use to detect
intrusions. Even in the cases when these models are available,
it is extremely time consuming to devise testing procedures
that analyze the models and identify blind spots.

This work describes a technique to test and evaluate mis-
use detection models in the case of network-based intrusion
detection systems. The testing technique is based on an au-
tomated mechanism to generate a large number of variations
of an exploit by applying mutant operators to an exploit
template. The mutant exploits are then run against a victim
system where the vulnerable applications and/or operating
systems are installed. The attacks are analyzed by a network-
based intrusion detection system. The intrusion alerts pro-
duced by the NIDS are then correlated with the execution of
the mutant exploits. By evaluating the number of successful
attacks that were correctly detected, it is possible to get a
better understanding of the effectiveness of the models used
for detection.

Obviously, this technique does not provide a formal eval-
uation of the “goodness” of an attack model. Nonetheless,
we claim that this is a valid way to improve one’s confidence
in the generality of a detection model. Note that the tech-
nique could be easily extended to host-based intrusion de-
tection systems and to systems that use anomaly detection
approaches. Nonetheless, hereinafter we will limit the scope
of our analysis to network-based misuse detection systems.

The mutation process is deterministic and guided by a seed
value, which makes the mutations reproducible. The mutant
operators are supposed to preserve the “effectiveness” of the
attack, that is, all the generated mutants are supposed to be
functional exploits. Unfortunately, both the exploits and the
attack targets may be very complex. Therefore, it is possible
that a variant of an exploit becomes ineffective because of
some condition that may be difficult (or impossible) to model.

To address this issue, the technique relies on an oracle to
determine if an attack has been successful or not. In most
cases, the oracle mechanism can be embedded in the exploit
itself, for example by crafting an exploit so that it will gen-
erate side effects that can be used to determine if the exploit
was successful. However, in some cases it is not possible to
generate evidence of the effectiveness of an attack as part of
its execution, and, for those cases, an external oracle that re-
ports on the outcome of specific attacks has to be developed.

We have developed a tool based on our testing technique
and used it to evaluate two popular network-based intrusion
detection systems, namely Snort and RealSecure. The tool
was able to generate mutant exploits that evade the majority
of the analyzed intrusion detection models. This is the first
time that such a high rate of success in evading detection has
been achieved using an automated tool.

The rest of paper is structured as follows. Section 2 presents
some related work. Section 3 presents the set of mutation
operators. Section 4 describes the mutant exploit generation
process. Then, Section 5 presents the results of the applica-
tion of our technique to the network-based misuse detection
systems under test. Finally, Section 6 concludes and outlines
future work.

2. RELATED WORK
In the past few years, the problem of systematically testing

intrusion detection systems has attracted increasing interest
from both industry and academia.

A class of intrusion detection evaluation efforts have sought
to quantify the relative performance of heterogeneous intru-
sion detection systems by establishing large testbed networks
equipped with different types of IDSs, where a variety of ac-
tual attacks are launched against hosts in the testbed [14, 5,
4, 8]. These large-scale experiments have been a significant
benefit to the intrusion detection community. Practitioners
have gained quantitative insights concerning the capabilities
and limitations of their systems (e.g., in terms of the rates of
false positive and false negative errors) in a test environment
intended to be an unbiased reproduction of a modern com-
puter network. While generally competitive in flavor, these
evaluations have precipitated valuable intellectual exchanges
between intrusion detection practitioners [15].

Unfortunately, testing and comparing intrusion detection
systems is difficult because different systems have different
operational environments and may employ a variety of tech-
niques for producing alerts corresponding to attacks [23, 26].
For example, comparing a network-based IDS with a host-
based IDS may be very difficult because the event streams
they operate on are different and the classes of attacks they
detect may have only a small intersection. For these reasons,
IDS testing and comparison is usually applied to homoge-
neous categories of IDSs (e.g., host-based IDSs).

In this paper we are concerned with the black-box evalu-
ation of the signatures of network-based intrusion detection
systems. This is a complementary approach with respect to
our previous research on using IDS stimulators (e.g., Mu-
cus [17], Snot [30], Stick [7], and IDSwakeup [2]) to per-
form cross-testing of network-based signatures. In partic-
ular, in [17] we used the set of signatures of a network-
based intrusion detection system to drive an IDS stimula-
tor and generate test cases (i.e., traffic patterns that match
the signatures). These test cases were then analyzed using
a different network-based intrusion detection system. This
cross-testing technique provided valuable insights about how
network-based sensors detect attacks. However, its applica-
bility was limited by the lack of publicly available signature
sets. In fact, developers of closed-source systems believe that
keeping their signatures undisclosed is an effective way to
protect the system from evasion techniques, over-stimulation
attacks, and intellectual property theft.

The testing technique discussed in this paper attempts to
overcome this limitation by relying on exploits to generate
test cases instead of using intrusion detection signatures. The
test cases are obtained by applying evasion techniques to
an exploit pattern. These techniques may operate at the
network level [1, 24], at the application level [27], or at the
exploit level [16]. One advantage is that many exploits are
publicly available and can be converted into exploit patterns
with limited effort.

A similar approach was followed by the Thor tool [9], which
was developed to perform testing of intrusion detection sys-
tems using variations of attacks. However, Thor’s imple-
mentation is very limited and it includes only one evasion
technique, namely IP fragmentation. This technique has the
advantage that it can be independently applied to an exploit
without having to modify the exploit source code because it
operates at the network level. Unfortunately, this also means

that a system that performs defragmentation correctly is able
to detect all instances of these variations.

Our approach supports multiple evasion techniques and al-
lows the developer of the test exploit to compose these tech-
niques to achieve a wide range of mutations. Compared to
Thor, our system also supports a more sophisticated veri-
fication mechanism to test the effectiveness of the modified
attacks. Note that our approach neither claims to completely
cover the space of possible variations of an attack, nor states
that it guarantees that the variations of attacks are success-
ful. Nevertheless, it provides an effective framework for the
composition of evasion techniques to test the quality of in-
trusion detection signatures.

The testing technique we propose is similar to the fault in-
jection approach. Software fault injection [6, 34, 12] is a test-
ing methodology that aims at evaluating the dependability of
a software system by analyzing its behavior in the presence
of anomalous events. When applied to security testing, soft-
ware fault injection is often performed by modifying the en-
vironment in which the target application is executed. This
usually involves changing external libraries, network behav-
ior, environment variables, contents of accessed files, and, in
general, all the input channels of the application [3]. This ap-
proach is supported by “fuzzer” tools, such as Sharefuzz [29]
and Spike [31]. Fuzzers are designed to find software bugs
(such as the lack of dynamic checks on input buffers) by pro-
viding random and/or unexpected input data to the target
application. For example, the Spike tool provides an API
that allows one to easily model an arbitrary network proto-
col and then generate traffic that contains different ranges of
values for each field of the messages used in the protocol.

Our approach differs from traditional fault injection be-
cause our test cases must be successful attacks. This re-
quirement poses an additional constraint on the generation
of test cases. The techniques used in traditional software
fault injection do not necessarily provide a valid input to
the application. In our case, the mutant generation process
must instead preserve the correctness of the attack, other-
wise it would not be possible to determine if the intrusion
detection system failed to detect a variation of the attack or
if it simply ignored an attack that was not successful. As
a consequence, we cannot use many of the transformation
and “fuzzing” techniques adopted when performing software
fault injection.

Our technique performs testing using mutants of attacks,
but despite the use of the “mutant” term, our approach dif-
fers notably from “mutation testing.” Mutation testing [25]
is a white-box technique used to measure the accuracy of a
test suite. In mutation testing, small modifications are ap-
plied to a target software application (e.g., by modifying the
code of a procedure) to introduce different types of faults.
This modification generates a mutant of the application to
be tested. If the test suite is not able to correctly distinguish
a mutant from the original application, it might be necessary
to add new test cases to the suite to improve its accuracy.

Our approach is different from mutation testing because
the mutations are applied to the procedure (i.e., the exploit)
used to generate the test cases (i.e., the attacks), and the tar-
get application (i.e., the intrusion detection system) is never
modified. One may argue that the intrusion detection system
may be considered to be the test suite and that the variations
of an attack represent instances of the mutated target appli-
cation. Even in this perspective, our technique differs from

traditional mutation testing in that mutation testing intro-
duces faults in an application to check if the test suite is able
to detect the problems, while our mutation techniques pre-
serve the functionality of the target application while chang-
ing its manifestation in terms of network traffic.

3. MUTATION MECHANISMS
Exploit mutation is a general term comprising a broad

range of techniques to modify and obfuscate an attack against
a vulnerable service. Mutation techniques can operate at
several layers, the most significant of which are the network
layer, the application layer, and the exploit layer. The follow-
ing sections discuss the set of techniques that were utilized
in the creation of our exploit mutation engine.

3.1 Network Layer Mutations
Network layer mutations are a class of techniques that op-

erate at the network or transport layers of the classic OSI net-
working model. These mutations can thus be applied inde-
pendently of higher-level mutations, facilitating the compo-
sition of mutation techniques. Even though these techniques
have been known for some time [24], they remain effective in
evading current NIDS implementations.

3.1.1 IPv6
IPv6 is the next-generation of Internet Protocol designated

as the successor to IPv4. IPv6 provides expanded address-
ing, an optimized header format, improved support for exten-
sions, flow labeling, and improved authentication and privacy
capabilities [21]. IPv6 is currently being deployed in networks
across the Internet, but, due to several factors, adoption has
been slower than anticipated. This situation, coupled with
vendor oversight, has resulted in many NIDSs historically ne-
glecting to handle IPv6 traffic, allowing an attacker to evade
detection by sending attacks over IPv6, when available.

3.1.2 IP Packet Splitting
Some network-based signatures check the length of a packet

to determine whether an attack has occurred. In such cases,
it may be possible to deliver the attack using several smaller
packets in order to evade the signature. Even though stream
reassembly would mitigate the effectiveness of this evasion
technique, the procedure is costly enough that it is not per-
formed for all services in typical production deployments of
NIDSs.

3.2 Application Layer Mutations
Application layer techniques are defined as mutations which

occur at the session, presentation, and application layers of
the OSI networking model. These techniques include eva-
sion mechanisms applied to network protocols such as SSL,
SMTP, DNS, HTTP, etc.

3.2.1 Protocol Rounds
Many protocols allow for multiple application-level sessions

to be conducted over a single network connection in order
to avoid incurring the cost of setting up and tearing down
a network connection for each session (e.g., SMTP transac-
tions, HTTP/1.1 pipelining). Many NIDSs, however, have
neglected to monitor rounds other than the initial one, ei-
ther through error or because of performance reasons. This
allows an attacker to evade a vulnerable NIDS implemen-

tation by conducting a benign initial round of the protocol
before launching the actual attack.

3.2.2 FTP Evasion Techniques
It is possible to insert certain telnet control sequences into

an FTP command stream, even in the middle of a command.
This approach was adopted years ago by Robert Graham’s
SideStep [27] to evade NIDSs. Many NIDSs are able to nor-
malize FTP commands by identifying and stripping out the
control sequences used by SideStep. However, by using al-
ternate control sequences it is still possible to evade current
NIDSs.

3.2.3 HTTP Evasion Techniques
Differences between web server and NIDS implementations

of the HTTP protocol allow an attacker to evade HTTP-
related signatures by modifying the protocol stream so that
a request is accepted by web servers even though it violates
the HTTP specification [22]. Most Web servers are known
for being “tolerant” of mistakes and incorrectly formatted
requests. Instead, the HTTP protocol parsers of NIDSs typ-
ically strictly adhere to the specification. Therefore, “incor-
rect” requests that will be served by a web server might be
discarded by the NIDS. Examples of HTTP protocol evasion
techniques include neglecting the use of carriage returns, ran-
dom insertion of whitespace characters, and inserting junk
characters into parsed numerical fields. Similar evasion tech-
niques are also applicable to the FTP and IMAP protocols.

3.2.4 SSL NULL Record Evasion Technique
The Secure Sockets Layer (SSL) is a protocol developed

by Netscape to provide a private, authenticated, and reli-
able communications channel for networked applications [19].
The specification defines a set of messages (e.g., client-hello,
server-hello, client-master-key, server-verify); these
messages are encapsulated in objects known as “records.”
SSL records are composed of both a header and data portion,
and are required to be of non-zero length. Some implementa-
tions of the SSL protocol, however, allow NULL records (i.e.,
records with a zero-length data portion) to be inserted arbi-
trarily into the session stream. Thus, a malicious client could
modify a valid session handshake, described in Figure 1, as
shown in Figure 2.

client-hello C -> S: challenge,cipher_specs
server-hello S -> C: connection-id,server_certificate,

cipher_specs
client-master-key C -> S: {master_key}server_public_key
client-finish C -> S: {connection-id}client_write_key
server-verify S -> C: {challenge}server_write_key
server-finish S -> C: {new_session_id}server_write_key

Figure 1: Valid SSLv2 session negotiation example.

This handshake is illegal according to the specification,
but currently-deployed SSL implementations will accept it
as valid. OpenSSL, in particular, relies on an internal read
function that will silently drop NULL records without notify-
ing higher layers of the library. This function is used during
session negotiation as well as during normal data transfer.
Thus, NIDSs that monitor the SSL protocol in order to de-
tect SSL-related attacks can be evaded if they correctly ad-
here to the specification instead of mimicking the behavior

client-hello C -> S: challenge,cipher_specs
server-hello S -> C: connection-id,server_certificate,

cipher_specs
client-null C -> S:
client-null C -> S:
client-null C -> S:
client-master-key C -> S: {master_key}server_public_key
client-null C -> S:
client-null C -> S:
client-finish C -> S: {connection-id}client_write_key
server-verify S -> C: {challenge}server_write_key
server-finish S -> C: {new_session_id}server_write_key

Figure 2: SSLv2 session negotiation NULL record
evasion.

of real-world implementations, because they will discard the
monitored traffic as an invalid SSL handshake.

3.3 Exploit Layer Mutations
Exploit layer mutations are defined as transformations di-

rectly applied to an attack as opposed to techniques that
are applied to a network session as a whole, as discussed in
the previous sections. This class of mutations includes well-
known techniques such as using alternate encodings as well
as more advanced techniques to obfuscate malicious code.

3.3.1 Polymorphic Shellcode
The ADMmutate polymorphic shellcode engine is used to

generate self-decrypting exploit payloads that will defeat most
popular NIDS shellcode detectors [13]. Features of this en-
gine include XOR-encoded payloads with 16-bit sliding keys,
randomized NOP generation, support for banned characters,
to{upper,lower}() resistance, and polymorphic payload de-
coder generation with multiple code paths. The tool also
allows for the insertion of non-destructive junk instructions
and the reordering/substitution of code.

3.3.2 Alternate Encodings
Many applications allow for multiple encodings of data to

be transferred across the network, for such reasons as per-
formance or to preserve the integrity of data. Examples of
this include BASE-64 or archive formats such as TAR or ZIP.
In particular, some NIDSs neglect to normalize HTTP traf-
fic and are still vulnerable to the well-known technique of
URL-encoding attack strings.

4. MUTANT GENERATION
In order to test the effectiveness of NIDSs against mutant

exploits, we developed a framework for automatically gener-
ating large numbers of exploit variations. The framework,
written in the Python scripting language, consists of a set of
exploit templates, a set of mutation mechanisms, and a mu-
tation engine. An architectural overview of the framework is
depicted in Figure 3.

Exploit templates are realized as Python classes that im-
plement a generic exploit interface. This interface, utilized
by the mutation engine, allows each exploit to perform the
necessary setup and teardown for each exploit attempt (e.g.,
restart a target service, remove artifacts from previous ex-
ploitation, etc.), perform the actual exploit, and determine
if the attack was successful. Each attempt requires a target

Figure 3: Exploit mutation framework.

and a random seed value provided by the engine, the use of
which is explained below.

The success of an exploit attempt is determined through
one of several methods, depending on the suitability of a
method in relation to a given exploit. One commonly used
means of determining the success of an attack is to insert
and execute a payload in the context of the exploited target
application that simply sends back a string indicating that
control was successfully transferred to the exploit code. An-
other method, in the case that the previous one is impossible
or inconvenient to implement, is to create a file in a known
location. A subsequent check over an auxiliary channel for
the existence of the file is then made after an exploit attempt
to determine if the exploit was successful.

Each exploit template implements a baseline exploit for a
specific vulnerability and utilizes a subset of the mutation
operators provided by the framework to generate mutant at-
tacks. These mutation mechanisms implement a generic in-
terface composed of a single method, “mutate,” that takes
an exploit or a component of an exploit, applies a transfor-
mation to it, and returns the result. Mutation methods are
further parameterized by a random seed, provided by the mu-
tation engine, which influences the behavior of the mutator
in some specific and repeatable way. For instance, the SSL
session mutation mechanism varies the location and number
of SSL NULL records inserted into a session, as described in
Section 3.2.4, based on the provided seed.

Each operator, regardless of the seed value, must be con-
strained to generating mutations that preserve the semantics
and effectiveness of the baseline exploit. By applying a com-
position of mutation operators to an exploit template with a
single seed, a random – yet repeatable – mutant exploit can
be generated from the exploit template.

The final component of the framework is the mutation en-
gine, which is responsible for generating mutant exploits by
instantiating an exploit template with a set of random seeds,
executing the resulting mutants against a chosen target, and
determining the results of the execution of each exploit.

5. EVALUATION
In order to test the detection capabilities of commonly de-

ployed NIDSs as well as the effectiveness of the exploit mu-
tation framework, an evaluation of the testing tool against a
set of vulnerable services monitored by two popular network-
based intrusion detection systems was conducted. The goal
of the evaluation was to determine whether the described ex-
ploit mutation framework is capable of automatically gener-
ating exploits that can evade today’s most advanced NIDSs.
As a byproduct, the results of the execution of the mutant
exploit provides an insight on the ability of the tested NIDSs
to detect variations of attacks.

The evaluation took place on an isolated testbed composed
of an attacking host running RedHat Linux 9.0, a sensor
host running Snort and ISS’s RealSecure on RedHat Linux
7.3, and a set of target hosts with various operating systems,
including OpenBSD 3.1, RedHat Linux 6.2, RedHat Linux
7.3, RedHat Linux 9.0, and Windows 2000 Server. A variety
of vulnerable services were installed on these target hosts.

5.1 Exploits
The exploits used in this evaluation were selected for a

range of services and protocol types, according to their im-
pact, as well as the degree to which they could be mutated.
The resulting mix is a suite of ten exploits that cover different
target operating systems (Linux, Windows, and OpenBSD),
different protocols (FTP, HTTP, IMAP, RPC, and SSL),
and different categories of attacks (buffer overflow, directory
traversal, denial of service, etc.). All the selected exploits are
publicly available, and some of them have already been used
in other IDS testing experiments, for example one recently
performed by the Neohapsis OSEC Project [18]. Each of the
selected exploits are described below.

IIS Escaped Characters Double Decoding

An error in IIS can lead to a URL being decoded twice,
once before security checks are performed and once af-
ter the checks. Consequently, the server verifies a direc-
tory traversal attempt only after the first decoding step.

The attack exploits this vulnerability by sending to the
server a malicious request containing double-escaped
characters in the URL. By doing this, it is possible for
the attacker to compromise the target system by ac-
cessing any file and executing arbitrary code.

WU-ftpd Remote Format String Stack Overwrite

Some versions of Washington University’s FTP server
suffer from a vulnerability that allows an attacker to ex-
ecute arbitrary code with root permissions. By sending
a well-crafted string as a parameter of the SITE EXEC

command, it is possible to overwrite data on the stack
of the server application and modify the execution flow.
The attack does not require an account on the target
machine and can be executed over an anonymous FTP
session.

WU-imapd Remote Buffer Overflow

Some versions of Washington University’s IMAP server
contain a buffer overflow vulnerability. By sending a
long string as the second argument of several different
commands (e.g., LIST, COPY, FIND, LSUB, and RENA-

ME), it is possible to hijack the server’s control flow and
execute arbitrary code on the target machine. This
vulnerability is mitigated by the fact that the attacker
needs to have an account on the server host in order to
send these commands.

Microsoft DCOM-RPC

Remote Procedure Call (RPC) is a mechanism that al-
lows procedure invocation between processes that may
reside on different systems. The DCOM interface for
RPC in different versions of Windows (XP, NT 4.0,
2000, 2003) suffers from a buffer overflow vulnerabil-
ity associated with DCOM’s object activation requests.
An attacker can exploit this vulnerability to execute
arbitrary code with Local System privileges on the af-
fected machine. This vulnerability is exploited by the
Blaster worm.

IIS Extended Unicode Directory Traversal

Microsoft IIS 4.0 and 5.0 are vulnerable to a directory
traversal attack that can be exploited by an unauthenti-
cated user sending a malformed URL where slash char-
acters are encoded using their Unicode representation.
In this case the attacker can overcome the server’s secu-
rity checks and execute arbitrary commands on the tar-
get machine with the privileges of the IUSR <machine-

name> account.

NSIISlog.DLL Remote Buffer Overflow

Microsoft Windows Media Services provides a method
for delivering media content to clients across a network.
To facilitate the logging of client information on the
server side, Windows 2000 includes a capability specif-
ically designed for that purpose. Due to an error in
the way in which nsiislog.dll processes incoming re-
quests, it is possible for a remote user to execute code
on the target system by sending a specially-crafted re-
quest to the server.

IIS 5.0 .printer ISAPI Extension Buffer Overflow

Windows 2000 introduced native support for the In-
ternet Printing Protocol (IPP), an industry-standard

protocol for submitting and controlling print jobs over
HTTP. The protocol is implemented in Windows 2000
via an Internet Services Application Programming In-
terface (ISAPI) extension. This service is vulnerable to
a remote buffer overflow attack that can be exploited
by sending a specially-crafted printing request to the
server. This results in the execution of arbitrary code
on the victim machine.

WS-FTP Server STAT Buffer Overflow Denial-Of-Service

WS-FTP is a popular FTP server for Windows NT and
2000. Versions up to 2.03 are vulnerable to a buffer
overflow attack, where an attacker sends a long pa-
rameter to the STAT command. By exploiting this vul-
nerability, an attacker can easily shut down the target
FTP server. When Microsoft Windows detects that
the server is out of service, it performs a reboot of the
server.

Apache HTTP Chunked Encoding Overflow

The Apache HTTP Server is a popular open-source web
server that features full compliance with the HTTP/1.1
specification [32]. Apache versions below 1.3.24 and
2.0.38 are vulnerable to an overflow in the handling of
the chunked-encoding transfer mechanism, as described
in CVE-2002-0392. HTTP chunk encoding is described
in the HTTP/1.1 specification as a specific form of en-
coding for HTTP requests and replies.

In general, transfer encoding values are used to in-
dicate an encoding transformation that has been ap-
plied to a message body in order to ensure safe or
efficient transport through the network. In particu-
lar, chunk encoding allows a client or a server to di-
vide the message into multiple parts (i.e., chunks) and
transmit them one after another. A common use for
chunk encoding is to stream data in consecutive chunks
from a server to a client. When an HTTP request is
chunk-encoded, the string “chunked” must be specified
in the “Transfer-Encoding” header field. A sequence
of chunks is appended as the request body. Each chunk
consists of a length field, which is a string that is in-
terpreted as a hexadecimal number, and a chunk data
block. The length of the data block is specified by the
length field, and the end of the chunk sequence is indi-
cated by an empty (zero-sized) chunk. A simple exam-
ple of a chunk-encoded request is shown in Figure 4.

Transfer-Encoding: chunked\r\n
\r\n
6\r\n \ first chunk
AAAAAA\r\n /
4\r\n \ second chunk
BBBB\r\n /
0

Figure 4: HTTP/1.1 chunked encoding example.

Apache is vulnerable to an integer overflow when the
size of a chunk exceeds 0xefffffff. This occurs be-
cause Apache interprets the chunk size as a signed 32-
bit integer, causing boundary checks on the size value
to fail. Thus, an attacker can craft a request such that

Exploit Baseline attack Mutated Attack Evasion Techniques

WU-ftpd Remote Format String Stack Overwrite Detected Evaded Telnet control sequences
Shellcode mutation
IP packet splitting

WU-imapd Remote Buffer Overflow Detected Evaded Prepend zeros to numbers
Shellcode mutation

IIS Escaped Characters Double Decoding Detected Detected
Microsoft DCOM-RPC Detected Detected
IIS Extended Unicode Directory Traversal Detected Evaded URL encoding
NSIISlog.DLL Remote Buffer Overflow Detected Detected
IIS 5.0 .printer ISAPI Extension Buffer Overflow Detected Detected
WS-FTP Server STAT Buffer Overflow Detected Evaded Telnet control sequences

IP packet splitting
OpenSSL SSLv2 Client Master Key Overflow Detected Evaded SSL NULL record insertion
Apache HTTP Chunked Encoding Overflow Detected Evaded HTTP protocol evasion

Table 1: Evaluation Results for Snort.

an overflow is triggered, allowing arbitrary code to be
executed with the permissions of the exploited Apache
process.

OpenSSL SSLv2 Client Master Key Overflow
OpenSSL is an open-source implementation of the Se-
cure Sockets Layer (SSLv2/v3) and Transport Layer
Security (TLSv1) protocols [33]. OpenSSL versions be-
low 0.9.6e and 0.9.7beta3 are vulnerable to an over-
flow in the handling of SSLv2 client master keys, as
described in CAN-2002-0656. Client master keys are
generated by the client during the handshake proce-
dure of the SSL protocol, and are used to derive the
session keys that encrypt data transmitted over the se-
cured connection (a typical SSL handshake was shown
in Figure 1). Vulnerable versions of OpenSSL do not
correctly handle large client master keys during the ne-
gotiation procedure, allowing a malicious attacker to
overflow a heap-allocated buffer and execute arbitrary
code with the permissions of the server process.

5.2 Intrusion Detection Systems
For our test we focused on two different NIDSs: Snort and

ISS’s RealSecure. Snort [28] is a lightweight NIDS released
under the GNU GPL license and available both for Windows
and Linux. Its attack detection process relies on a large and
publicly available set of signatures and a set of preprocessors
that handle functions such as protocol decoding and normal-
ization, packet reassembly, and portscan detection. For this
evaluation, Snort v2.1.2 was deployed on our testbed with
all preprocessors enabled with their default settings and all
available signatures loaded.

ISS’s RealSecure [11] is one of the most popular commercial
NIDSs. The attack detection process utilizes a sophisticated
set of precompiled closed-source rules. For this evaluation,
a RealSecure 10/100 network sensor v7.0 and SiteProtector
management console were deployed on our testbed with all
signatures enabled.

These two systems were chosen based on several factors.
First, Snort and RealSecure are generally regarded as the
premier NIDSs in the open-source and closed-source worlds,
respectively, and as such enjoy wide deployment across the
Internet. Also, in many previous evaluations both systems
have been shown to possess excellent attack detection capa-

bilities and to be able to correctly manage many different
types of evasion, obfuscation, and anti-IDS techniques.

5.3 Experiments
The evaluation was conducted by using our mutation en-

gine to generate a number of mutant exploits for each base-
line exploit. These mutant exploits were then launched against
the target hosts in an otherwise silent network. The success
of each mutant exploit was then determined using an oracle,
and unsuccessful attempts were removed from the evaluation.
Finally, the alerts generated by the deployed NIDS sensors
were gathered and correlated with the corresponding exploit
attempt.

The experiment focused on providing some useful indica-
tion about the average quality of the signatures shipped with
the NIDSs under test. It was not our intention to perform
a complete evaluation of all possible characteristics of these
NIDSs. For this reason, we did not take into consideration
properties such as the number of false positive alerts, the be-
havior of the systems when run with background traffic, or
their correlation and reporting capabilities.

5.4 Results
Tables 1 and 2 present the evaluation results for Snort and

RealSecure, respectively. For each attack, we report several
values. The first represents the ability of the intrusion detec-
tion system to correctly detect the baseline attack when the
exploit was not subjected to any mutation technique. The
second reports whether the IDS was able to detect all of the
mutations of the same attack attempted during the experi-
ment. In the last column we summarize the key techniques
that enabled the mutated exploits to evade detection, when
applicable.

The total number of possible mutants that the engine can
generate is a key value that must carefully be tuned for each
exploit. This number depends on how many mutation tech-
niques are applied to the exploit and on the way in which
each technique is configured. For instance, an application-
level transformation that consists of modifying the number
of space characters between the HTTP method (e.g., GET or
POST) and the requested URL can generate a large number of
mutants, one for each number of space characters selected.
When composed with other techniques, this operator may
lead to an unmanageable number of mutant exploits. There-

Exploit Baseline attack Mutated Attack Evasion Techniques

WU-ftpd Remote Format String Stack Overwrite Detected Evaded Telnet control sequences
Shellcode mutation

WU-imapd Remote Buffer Overflow Detected Evaded CR character between the
tag and the command

IIS Escaped Characters Double Decoding Detected Evaded CR character before the
request command

Microsoft DCOM-RPC Detected Detected
IIS Extended Unicode Directory Traversal Detected Evaded CR character before the

request command
NSIISlog.DLL Remote Buffer Overflow Detected Evaded CR character before the

request command
IIS 5.0 .printer ISAPI Extension Buffer Overflow Detected Evaded CR character before the

request command
WS-FTP Server STAT Buffer Overflow Detected Evaded Telnet control sequence
OpenSSL SSLv2 Client Master Key Overflow Detected Evaded SSL NULL record insertion
Apache HTTP Chunked Encoding Overflow Detected Evaded HTTP protocol evasion

Table 2: Evaluation Results for IIS RealSecure.

fore, it is necessary to configure the mutant operators to
produce mutants within a reasonable range of variability.

For our tests, we configured the engine to generate from a
minimum of about a hundred mutations (e.g., in the case of
the FTP-related attacks) to a maximum of several hundred
thousand (e.g., in the case of the HTTP-related attacks).
Note that we stopped the testing process when a mutant that
was able to evade detection was found. Thus, the number of
mutants effectively tested was usually lower than the number
of possible mutations of an exploit.

As Table 1 shows, Snort correctly detected all instances
of the baseline attacks. The exploit mutation engine, how-
ever, was able to automatically generate mutated exploits
that evaded Snort’s detection engine for 6 of the 10 attacks.
Table 2 shows that RealSecure, similarly, was able to detect
all instances of the baseline attacks. In this case, however,
the exploit mutation engine was able to generate mutant ex-
ploits that evaded detection by RealSecure in 9 out of 10
cases. Even though it is tempting to make relative compar-
isons between the two systems, strong conclusions cannot be
drawn due to the non-exhaustive nature of the exploration
of the detection space. Nonetheless, it can be concluded that
both sensors proved to be surprisingly vulnerable to the gen-
erated mutant exploits.

It is worth noting that most of these techniques are well-
known and thus one would expect that the mutants should be
correctly detected by both Snort and RealSecure. The results
demonstrate, however, that NIDSs remain vulnerable to vari-
ations based on these classic mutation techniques. Consider
as an example the evasion technique that relies on inserting
telnet control sequences in an FTP command stream; this ap-
proach has been used by the SideStep IDS evasion tool since
2000. Both of the tested NIDSs claim to correctly identify
and remove telnet control characters, but it seems that this is
true only for certain types of negotiation sequences. For ex-
ample, the sequence 0xFF-0xF1 (IAC-NOP) used by SideStep
is in fact correctly removed by the NIDSs. However, by using
other combinations of control characters (e.g., 0xFF-0xF0 or
0xFF-0xFC-0xFF) it is possible to evade both Snort and Re-
alSecure. Another problem stems from the fact that different
FTP servers handle these characters in different ways. Thus,
it is very difficult for a NIDS to know the exact command

that will be processed by the server without taking the server
version itself into account.

In the case of the IMAP attacks, the evasion techniques
necessary to evade detection were very simple. The IMAP
specification defines that each client command must be pre-
fixed with a tag in the form of a short alphanumeric string
(e.g., ‘1’, ‘alpha2’, etc.). The protocol also allows a parame-
ter to be sent in literal form. In this case, the parameter is
sent as a sequence of bytes prefix-quoted with a byte count
between curly brackets, followed by a CR-LF. An example of
a legal IMAP login is shown in Figure 5.

C: A001 LOGIN {6}
S: + Ready for additional command text
C: davide {6}
S: + Ready for additional command text
C: secret
S: A001 OK LOGIN completed

Figure 5: IMAP login example.

WU-imapd accepts a CR character as a separator between
the command tag and the command body. RealSecure’s pro-
tocol analyzer accepts only a space character and drops the
request otherwise. In the case of Snort, an alert is generated
when a literal parameter contains more than 255 characters.
Snort determines the number of bytes by parsing the string
between curly brackets. However, it only looks at the first 5
bytes after the open curly bracket and thus it is easy to evade
detection by prepending some zeros to the number (e.g., 1024
becomes 000000001024).

For the HTTP attacks, the RealSecure analyzer is deceived
by some non-standard characters in the request. In this case,
it is sufficient to insert a CR before the command. With Snort,
the known techniques of encoding malicious URLs still seem
to be effective, as shown by its inability to detect variations
of the directory traversal attack.

All of these techniques are clear evidence of how difficult
it can be to discover effective obfuscation techniques through
a simple manual approach. In fact, while it is infeasible for
an attacker to manually modify an exploit in order to try
all possible combinations of obfuscation techniques, it is an
easy task for an automatic engine to iterate through possible

combinations of techniques until a successful mutant exploit
is discovered. Using such an approach, it is possible, for
example, to inject a huge number of different combinations
of unexpected characters into an attack stream, ascertain
which ones are really “invariant” for the target service, and
then insert them into multiple attacks to test the real efficacy
of a NIDS’s detection engine.

Also of note is the relative effectiveness of our automated
approach as opposed to manual efforts such as the recent IDS
evaluation by NSS (4th edition) [20]. In this case, both ex-
periments tested similar versions of Snort and RealSecure; in
addition, many of the same mutation techniques were used
for the tests. Our automated mutant exploit generation ap-
proach, however, was successful in evading the majority of
the attack signatures of both NIDSs, while the NSS evalu-
ation concluded that both Snort and RealSecure were quite
resistant to evasion. We believe that this provides a strong
indication of the promise of this automated approach in con-
trast to the manual application of evasion techniques.

6. CONCLUSIONS AND FUTURE WORK
Network-based intrusion detection systems rely on signa-

tures to recognize malicious traffic. The quality of a sig-
nature is directly correlated to the IDS’s ability to identify
all instances of the attack without mistakes. Unfortunately,
closed-source systems provide little or no information about
both the signatures and the analysis process. Therefore, it is
not possible to easily assess the quality of a signature and de-
termine if there exist one or more “blind spots” in the attack
model.

Writing good signatures is hard and resource-intensive.
When a new attack becomes publicly known, NIDS vendors
have to provide a signature for the attack in the shortest
time possible. In some cases, the pressure for providing a
signature may bring the signature developer to write a model
tailored to a specific well-known exploit, which does not pro-
vide comprehensive coverage of the possible ways in which
the corresponding vulnerability can be exploited.

This paper presented a technique for the black-box testing
of network-based signatures and a tool based on the tech-
nique. The tool takes exploit templates and generates ex-
ploit mutants. These mutants are then used as test cases to
gather some insight on the quality of the signatures used by
network-based intrusion detection systems.

We applied our tool to ten common exploits and used the
test cases against two of the most popular network-based in-
trusion detection systems. The results obtained show that by
composing several evasion techniques it is possible to evade
a substantial number of the analyzed signatures. Therefore,
even though the tool does not guarantee complete coverage
of the possible mutation space, the tool is useful in gaining
assurance about the quality of the signatures of an intrusion
detection system.

Future work will focus on extending the framework for the
description of the mutation process to include mutations that
are conditionally applied according to the results of previous
mutant operators, i.e., to support the concurrent applica-
tion of co-dependent mutation techniques in an automated
way. Another possible future direction (suggested by one of
the reviewers) is to use our mutation approach to evaluate
the amount of false positives generated by a signature. This
would allow one to evaluate another important aspect of sig-
nature quality.

Acknowledgments
This research was supported by the Army Research Office,
under agreement DAAD19-01-1-0484 and by the National
Science Foundation under grants CCR-0209065 and CCR-
0238492. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of the National Science Foundation, the
Army Research Office, or the U.S. Government.

7. REFERENCES
[1] Anzen. nidsbench: A Network Intrusion Detection

System Test Suite. http://packetstorm.widexs.nl/-
UNIX/IDS/nidsbench/, 1999.

[2] S. Aubert. Idswakeup. http://www.hsc.fr/-
ressources/outils/idswakeup/, 2000.

[3] W. Du and A. P. Mathur. Vulnerability Testing of
Software System Using Fault Injection. Technical
Report, COAST, Purdue University, West Lafayette,
IN, US, April 1998.

[4] R. Durst, T. Champion, B. Witten, E. Miller, and
L. Spagnuolo. Addendum to “Testing and Evaluating
Computer Intrusion Detection Systems”. CACM,
42(9):15, September 1999.

[5] R. Durst, T. Champion, B. Witten, E. Miller, and
L. Spagnuolo. Testing and Evaluating Computer
Intrusion Detection Systems. CACM, 42(7):53–61, July
1999.

[6] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre,
J. Laprie, E. Martins, and D. Powell. Fault Injection
for Dependability Validation: A Methodology and
Some Applications. IEEE Transactions on Software
Engineering, 16(2):166–182, 1990.

[7] C. Giovanni. Fun with Packets: Designing a Stick.
http://www.eurocompton.net/stick/, 2002.

[8] J. Haines, D.K. Ryder, L. Tinnel, and S. Taylor.
Validation of Sensor Alert Correlators. IEEE Security
& Privacy Magazine, 1(1):46–56, January/February
2003.

[9] R. Marty. Thor: A Tool to Test Intrusion Detection
Systems by Variations of Attacks. ETH Zurich
Diploma Thesis, March 2002.

[10] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State
Transition Analysis: A Rule-Based Intrusion Detection
System. IEEE Transactions on Software Engineering,
21(3):181–199, March 1995.

[11] ISS. Realsecure 7.0. http://www.iss.net/, 2004.

[12] D. Pradhan J. Clark. Fault Injection: A Method For
Validating Computer-System Dependability. IEEE
Computer, 28(6):47–56, 1995.

[13] K2. ADMmutate.
http://www.ktwo.ca/security.html, 2004.

[14] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunningham, and M. Zissman. Evaluating Intrusion
Detection Systems: The 1998 DARPA Off-line
Intrusion Detection Evaluation. In Proceedings of the
DARPA Information Survivability Conference and
Exposition, Volume 2, Hilton Head, SC, January 2000.

[15] J. McHugh. Testing Intrusion Detection Systems: A
Critique of the 1998 and 1999 DARPA Intrusion

Detection System Evaluations as Performed by Lincoln
Laboratory. ACM Transaction on Information and
System Security, 3(4), November 2000.

[16] Metasploit Project. Metasploit.
http://www.metasploit.com/, 2004.

[17] D. Mutz, G. Vigna, and R.A. Kemmerer. An
Experience Developing an IDS Stimulator for the
Black-Box Testing of Network Intrusion Detection
Systems. In Proceedings of the 2003 Annual Computer
Security Applications Conference, Las Vegas, Nevada,
December 2003.

[18] Neohapsis OSEC Project. Neohapsis OSEC.
http://osec.neohapsis.com/, 2004.

[19] Netscape Communications Corporation. SSL 2.0
Protocol Specification.
http://wp.netscape.com/eng/security/SSL 2.html,
1995.

[20] Network Security Services Group. NSS IDS Evaluation
(4th Edition). http://www.nss.co.uk/ips, 2004.

[21] Network Working Group. Internet Protocol, Version 6
(IPv6) Specification.
http://www.faqs.org/rfcs/rfc2460.html, 1998.

[22] Network Working Group. Hypertext Transfer Protocol
– HTTP/1.1. http://www.w3.org/Protocols/-
rfc2616/rfc2616.html, 1999.

[23] Next Generation Software Security Ltd. NGSS
Evaluation. http://www.nextgenss.com/, 2004.

[24] T.H. Ptacek and T.N. Newsham. Insertion, Evasion
and Denial of Service: Eluding Network Intrusion
Detection. Technical Report, Secure Networks, January
1998.

[25] R. J. Lipton R. A. DeMillo and F. G. Sayward. Hints
on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–43, 1978.

[26] M. Ranum. Experience Benchmarking Intrusion
Detection Systems. NFR Security White Paper,
December 2001.

[27] R. Graham. SideStep.
http://www.robertgraham.com/tmp/sidestep.html,
2004.

[28] M. Roesch. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of the USENIX LISA ’99
Conference, November 1999.

[29] D. Aitel. Sharefuzz.
http://www.atstake.com/research/tools/-

vulnerability scanning/, 2004.

[30] Sniph. Snot. http://www.sec33.com/sniph/, 2001.

[31] D. Aitel. Spike. http://www.immunitysec.com/-
resources-freesoftware.shtml, 2004.

[32] The Apache HTTP Server Project. Apache HTTP
Server. http://httpd.apache.org/, 2004.

[33] The OpenSSL Project. OpenSSL.
http://www.openssl.org/, 2004.

[34] J. Voas, G. McGraw, L. Kassab, and L. Voas. A
’Crystal Ball’ for Software Liability. IEEE Computer,
30(6):29–36, 1997.

