
Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware

Antonio Ruggia∗, Dario Nisi†, Savino Dambra†, Alessio Merlo‡, Davide Balzarotti†, Simone Aonzo†
∗ University of Genoa, Italy

† EURECOM, Sophia Antipolis, France
‡ Centre for Higher Defence Studies (CASD), Rome, Italy

ABSTRACT
Since Android is the most widespread operating system, malware
targeting it poses a severe threat to the security and privacy of
millions of users and is increasing from year to year. The response
from the community was swift, and many researchers have ven-
tured to defend this system. In this cat-and-mouse game, attackers
pay special attention to flying under the radar of analysis tools, and
the techniques to understand whether their app is under analysis
have become more and more sophisticated. Moreover, these evasive
techniques are also adopted by benign apps to deter reverse engi-
neering, making this phenomenon pervasive in the Android app
ecosystem.

While the scientific literature has proposed many evasive tech-
niques and investigated their impact, one aspect still needs to be
studied: how and to what extent Android apps, both malware and
goodware, use such controls. This paper fills this gap by introduc-
ing a comprehensive taxonomy of evasive controls for the Android
ecosystem and a proof-of-concept app that implements them all.
We release the app as open source to help researchers and practi-
tioners to assess whether their app analysis systems are sufficiently
resilient to known evasion techniques. We also propose DroidDun-
geon, a novel probe-based sandbox, which circumvents evasive
techniques thanks to a substantial engineering effort, making the
apps under analysis believe they are running on an actual device.
To the best of our knowledge, currently, DroidDungeon is the only
solution providing anti-evasion capabilities, maintainability, and
scalability at once.

Using our sandbox, we studied evasive controls in both benign
and malicious Android apps, revealing insights about their purpose,
differences, and relationships between evasive controls and pack-
ers/protectors. Finally, we analyzed how the execution of an app
differs depending on the presence or absence of evasive counter-
measures. Our main finding is that 14% and 4% of malicious and
benign samples refrain from running in an analysis environment
that does not correctly mitigate evasive controls.

ACM Reference Format:
Antonio Ruggia∗, Dario Nisi†, Savino Dambra†, Alessio Merlo‡, Davide
Balzarotti†, Simone Aonzo†. 2024. Unmasking the Veiled: A Comprehensive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM AsiaCCS 2024, 1-5 July 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Analysis of Android Evasive Malware. In Proceedings of ACM ASIA Confer-
ence on Computer and Communications Security (ACM AsiaCCS 2024). ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Android is the world’s most popular mobile operating system, with
over 2 billion active devices, making it a prime target for malware
authors [6]. Over the past years, Android malware has significantly
evolved in terms of its capabilities, sophistication, and adoption of
evasive techniques [58, 79].

In this paper, we study the evasive behavior of Android apps
with a focus on techniques used for detecting different forms of
dynamic analysis. While these techniques are prevalent among
malware to avoid exposing themalicious behavior inside an analysis
environment, they are also adopted by benign apps to protect their
code from reverse engineering and specific client-side attacks or to
ensure that the users’ sensitive data (e.g., bank access tokens) are
not stored in a rooted device [29, 66, 83]. Either way, the goal of
evasive controls is to protect the apps (whether benign or malicious)
by retrieving precise and accurate information on the hardware
and software components of the system they are running on.

Dealing with this topic is as vast as it is complex. First, we aim to
study known evasion techniques without attempting to detect new
ones or look for those still unknown. As first contribution, we
collected all documented evasive techniques by searching through
blog posts, malware writeups, and scientific papers, and we cat-
egorized them into two main groups. Direct evasive techniques
(DETs) retrieve specific data that can be directly used to detect
whether the app is executed inside an analysis environment. Con-
versely, indirect evasive techniques (IETs) return data that must be
further processed to be used for evasion. This distinction is crucial
for detecting evasion attempts: a sample employing DETs is un-
equivocally looking for information on the runtime environment,
which per se is enough to infer an evasion attempt, whereas merely
employing IETs may serve the same objective, but not necessarily.

Our second contribution is the development of a proof-of-
concept Android app implementing all the collected evasive tech-
niques we gathered. We were inspired by Al-Khaser [9], an exe-
cutable for the Windows OS developed to test the stealthiness of
sandboxes, which has also been used in several scientific papers to
study the Windows evasive malware [37, 44, 63] phenomenon.

Then, to measure the techniques used in the wild, we needed
a sandbox to execute both benign and malicious samples. In the
context of malware analysis, the term sandbox generally refers to a
dynamic analysis tool that runs in a safe and controlled environ-
ment for analyzing and observing suspicious code behavior without
risking damage to the host or the network [55]. Sandboxes may

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

offer several advantages, such as easily restoring the environment
after analysis, ensuring that any malicious activity stays confined
to the sandbox, scalability, and replication for a wide range of con-
figurations, making testing the behavior of several suspect samples
across different scenarios easier. In [30], the authors highlighted
the requirements that a malware analysis sandbox for Android
should follow. We can summarize them in two criteria: anti-evasion
(or “resilience to the detection”) and maintainability. The former
refers to the ability of a sandbox to be transparent to the apps run-
ning inside it, creating the minimum possible set of artifacts that
allow an app to detect the sandbox itself. Ideally, a sandbox also
exposes realistic and consistent information; otherwise, malware
may leverage non-coherent knowledge to build a novel evasive
technique. Maintainability quantifies developers’ effort to address
new evasive controls and upgrade the sandbox with a new version
of the Android (kernel and OS). Achieving maintainability does not
necessarily require avoiding kernel and OS modifications as long as
they are easily portable to the newer versions. Another critical as-
pect of large-scale malware analysis is scalability, which measures
the system’s ability to analyze many samples simultaneously in an
automated fashion and under several device configurations.

In Android, sandboxes are often implemented as emulators [96]
or as containers [86]. However, at the time of writing, none of the
current Android sandboxes meet the anti-evasion, maintainability,
and scalability criteria at once. Some fully emulated sandboxes (e.g.,
DroidScope and CopperDroid) cannot offer stealthiness or trans-
parency, leaving several artifacts allowing an app to identify their
presence easily. On top of that, these solutions are also based on
obsolete versions of Android. Container-based sandboxes, such
as VPBox, on the other hand, claim to be resilient to evasion by
running on actual phones (bare metal). This, however, comes at the
expense of scalability because smartphones’ hardware still needs
to be improved in computing power, allowing only a limited num-
ber of analysis containers to run in parallel on the same phone,
and making container-based sandboxes unfit for large-scale mea-
surements or part of heavy-load analysis pipelines. Finally, all the
state-of-the-art solutions are not easily upgradable with the latest
Android OS versions, significantly reducing their maintainability.

To fill this gap, as a third contribution of this paper, we present
the design of a new sandbox – named DroidDungeon– that jointly
meets the anti-evasion, scalability, and maintainability require-
ments and enables us to perform the first analysis of evasive con-
trols in malware and goodware. Our sandbox’s design allows the
deployment in both an actual device and an emulated environment,
ensuring, in any case, a high level of transparency.

In short, DroidDungeon relies on kernel and user probes to mon-
itor the apps’ behavior and return “fake responses” from system
calls and framework APIs to hide the underlying emulator and
bypass the evasion checks. While simple on paper, providing fake
responses hides several technical challenges, including parsing and
modifying Java objects from outside the managed runtime. More-
over, to avoid side effects, DroidDungeon has to modify only the
events triggered by the app’s logic and not those that ensure the
correct functioning of Android. Therefore, it understands when to
enforce the anti-evasion by performing a custom stack unwind to
determine a system or API call provenance and precisely determine
whether the app under analysis generated a particular event.

Finally, the fourth (and main) contribution of our work is
using DroidDungeon to perform the first study of the actual usage
of evasive checks in benign and malicious Android apps. We care-
fully selected 20,556 malicious and 21,154 apps for our experiments.
Malware samples are uniformly spread over 200 different families
collected by the VirusTotal [92] live feed until April 2023. Benign
applications were retrieved directly from the Google Play store,
with a limit of 500 apps for each available category. We release this
dataset to the community reporting the samples’ hashes (for legal
reasons, we do not share the actual samples).

Our measurement aims to answer the following three main ques-
tions. The reader will find the answers in Section 6.
RQ1: How do malware and goodware differ in using evasive tech-

niques?
RQ2: What is the relation between evasive controls and packer-

s/protectors?
RQ3: Which operations are hidden under evasive controls?

What we discovered is extremely interesting. Malware mainly
leverages evasive controls to verify the environment in which they
are executed; in particular, almost 70% of evasive malware aims to
detect the emulated environment. We also detected one malicious
sample that leverages the SafetyNet [51] Attestation API to verify
the legitimacy of the environment. This could be a critical tipping
point because comprehensive remediation for SafetyNet (and the
new Play Integrity API) does not exist. It also shows how “benign”
services can be abused maliciously. Our experiments also show that
the evasiveness of malware heavily depends on its family: different
malware families implement different numbers and types of evasive
techniques.

Benign samples are instead more prone to check app-specific
features to protect themself from client-side attacks. For instance,
more than 88% of evasive goodware verifies from where they were
installed, and 82% implements at least one IET control related to
signature verification. Moreover, while malware uses evasion tech-
niques predominantly at the beginning, goodware often spreads
them over its entire execution.

Moreover, we checked if a relationship between evasive controls
and packers exists. We discovered that the presence of a packer
does not affect the number of evasive checks but rather the sample’s
techniques. In particular, packer samples are more prone to check
process artifacts than non-evasive ones.

Finally, we analyzed every sample two times: in the first run,
DroidDungeon hides the underlying emulator by enforcing the anti-
evasion criterion, while in the second, the app is executed and
monitored without modifying the emulator’s behavior. The results
highlight that evasive samples perform different events depending
on when they are executed. In particular, 14% of evasive malware
samples stop their execution before launching any activity when
executed in an emulated environment. Also, evasive malware is
more prone to interact with potentially dangerous APIs (e.g., record
audio and video of the device) or execute CLI commands if executed
in an environment that behaves like an actual device.

2 BACKGROUND
This section provides the necessary technical background for the
rest of the paper. We start by presenting the relevant details of how

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

an Android app is built, the Android RunTime system, and then
introduce the Zygote process.
Anatomy of an Android app. Each Android app is distributed and
installed as an Android PacKage (APK) file. In a nutshell, an APK
file is a ZIP archive containing all the necessary files to run the first
execution of the app, i.e., compiled code, resources (e.g., images for
the user interface), and a Manifest file. An Android app is usually
developed in Java or Kotlin and compiled into the Dalvik bytecode
(DEX file). In addition, Android apps could also include C/C++ code,
which is compiled into a native library (SO file) for each supported
architecture. The Manifest provides valuable information about the
app, particularly its package name (on Android, you cannot install
two apps with the same name), its components, and the required
permissions.

At installation time, Android creates a dedicated directory for
each app in which the system copies the original APK, renaming
it as base.apk. To ensure its integrity, each APK is signed with
the developer’s private key and contains the corresponding public
certificate of the developer. Thus, during the installation process,
the Android OS verifies the integrity of the APK and its resources.
It is worth noticing that this mechanism does not provide any
authentication, as the developer certificate does not need to be
issued by any trusted certificate authority.
Android ART. Since Android 5.0, Google introduced the Android
RunTime (ART) to replace the Dalvik virtual machine. While Dalvik
just-in-time (JIT) compiles framework code and apps on demand,
ART uses a hybrid approach that combines Ahead-Of-Time (AOT),
JIT compilation, and profile-guided compilation. When an app is
installed, AOT compilation is performed for only a subset of the
app’s methods. After the first execution and when a device charges,
ART performs the AOT compilation of all frequently used code
based on a profile generated during the first runs. Thus, during the
next executions, ART uses the profile-guided code and avoids doing
JIT compilation at runtime for methods already compiled. Methods
that get JIT-compiled during the new runs are added to the profile,
which the following compilation will pick up. It is worth noting that
ART performs AOT compilation also of the framework libraries.
However, in this case, the amount of compiled code depends on
configuration options specified when the framework is built [48].

The AOT compiled code is saved in a special file format named
OAT, a custom ELF executable that includes two special sections:
oatdata to store headers and info about the compiled DEX files,
and oatexec to store the compiled code. It is worth noticing that the
OAT file format changes between Android versions, and no official
documentation tracks those changes. Using AOT compilation has
the advantage of achieving better performance at the price of having
longer installation times and more extensive storage requirements.
As these disadvantages are minor on today’s hardware, it is clear
why ART was preferred to the Dalvik JIT.
Zygote & app startup. Zygote is the parent process of all Android
apps, created by the init process during the system boot. This pro-
cess initializes the first instance of Dalvik Virtual Machine (DVM)
and pre-loads all framework classes that the apps should use very
often. Each new app process is a fork of the Zygote process, which
is used as a template, thus, saving the time required to load these
resources into its address space. In this way, the memory addresses

the space of the Android framework, and the native libraries are
the same for all Android apps (inherited from the Zygote).

3 TAXONOMY OF ANDROID EVASIVE
CONTROLS

An evasive control is a technique that is used by an app to prevent
the runtime inspection and analysis of its behavior. This is what
the MITRE Malware Behavior Catalog [20] classifies as a malware
objective under the name of Anti-Behavioral Analysis, and it is im-
portant to distinguish it from other forms of code protection (e.g.,
code obfuscation, encryption, and Dynamic Code Loading) that are
instead classified as Anti-Static Analysis1 While the anti-behavioral
techniques aim at concealing the action performed by a sample,
anti-static analysis techniques focus on protecting the app code by
making it more complex to analyze. As such, they do not affect the
app’s runtime behavior, which continues to execute similarly in
any environment. Therefore, the two objectives, evasive controls,
and static analysis protection, are orthogonal and often combined
together [75]. For instance, Denuvo Mobile Game Protection jointly
uses evasive checks (e.g., anti-debugging) and DCL to protect An-
droid apps from repackaging [54].

Over the years, researchers studied different aspects related to
evasive controls, such as their adoption in benign samples [29, 33,
66, 87] or their impact on malware classification [22, 27, 28, 32, 38,
64, 65, 68, 72, 89]. Moreover, novel and more sophisticated anti-
behavioral techniques have been routinely presented year after
year [1–4, 7, 16, 39, 56, 58, 79, 80, 83–85, 91, 98].

A first attempt to propose a taxonomy of protection techniques
used in Android apps was recently published in 2023 by Faruki et
al. [41]. However, the authors considered only a small subset of the
techniques outlined in this paper, focusing mainly on obfuscation.
As we already explained, we follow theMITRE classification instead
and therefore do not consider obfuscation as part of evasive checks.

By following the MITRE jargon, there are many ways to achieve
the same objective; each called a malware ‘Behavior’. Each behavior
can be implemented in multiple ways, which MITRE call ’Methods’.

In the rest of this section, we present the list of evasive behaviors
covered in our study by grouping them into three macro-categories:
Environment verification, APK tampering verification, and High-level
verification.

3.1 Environment verification
Environment checks aim to detect the reliability of the environment
in which apps are installed.
Root detection. The Android design does not require users to use
the root account; therefore, such an account is disabled by default.
A method known as rooting allows an end user to get super-user
access to an Android smartphone. Super-users can alter system
settings, access private areas in the primary memory, install special-
ized apps, or use a debugger or dynamic analysis tool. Therefore,
the presence of executables that require root permissions may in-
dicate that a sample is executed in an instrumented environment,
such as a sandbox. Of all the possible tests that can be used for root

1The Malware Behavioral Catalog currently focuses mainly on Windows malware and
does not contain specific checks for Android. However, we believe it is useful to adopt
its naming scheme to present our work better.

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

detection, the most common look for the presence in the file system
of the su or busybox executables or test whether well-known paths
that are usually read-only have write permission [81, 83, 87].

Debugging detection.A debugger introduces changes to the mem-
ory space of the target process and may impact the execution time
of certain code snippets [29, 66]. Thus, anti-debugging techniques
can detect (by looking for specific artifacts or side effects) or prevent
the app from being debugged.

Hook detection. Anti-hooking controls aim to detect dynamic
binary instrumentation tools (e.g., Xposed [52] and Frida [70]) that
can hook and tamper with the execution flow of an app. The sim-
plest way to detect their presence is by scanning package names,
files, or binaries and looking for well-known frameworks’ resources.
In addition, each dynamic analysis framework works differently
and may require specific detection techniques. For instance, Xposed
is an Android app that applies modules directly to the Android OS
ROM and requires root privileges. Contrary, Frida injects instead a
JavaScript engine into the instrumented process.

Emulator detection. Anti-emulation techniques try to detect
whether the app is running on an actual device. For instance, the
Android emulator is built on top of the QEMU [31] emulator and
an emulator may not provide the same hardware functionalities
as a real phone (for instance, for sensors like gyroscope and ac-
celerometer), or some particular artifacts may or may not be present
(e.g., different files or file content, Android system properties). In
addition, some emulators do not fully support the Google Play Ser-
vices (e.g., Genymotion [46]) or require some changes in the system
property (e.g., ro.build.tag).

Memory integrity verification. This type of evasive control aims
to verify the integrity of the app’s memory space against memory
patches applied at runtime [83]. For instance, hooks to C/C++ code
can be installed by overwriting function pointers in memory or
patching parts of the function code (e.g., inline hooks that modify
the function prologue). Thus, an app can check the integrity of its
memory regions to detect any alteration.

App-level virtualization detection. Android virtualization is a
recent technique that enables an app (container) to create a vir-
tual environment in which other apps (plugins) can run while fully
preserving their functionalities [61, 90]. The container app acts
like a proxy, intercepting each request from the plugin app to the
Android OS and vice versa to fool the OS into believing that the
container issued the request. Anti-virtualization techniques aim to
detect whether the app is executed within these virtual environ-
ments [35, 62, 84, 94, 97]. This could be done in different ways, for
instance, by verifying its ownUID, the number of running processes,
or the object instance of the Android API clients.

Network artifact detection. This type of evasive control aims to
inspect the network interfaces to detect artifacts, such as unusual
interface names or ADB connected over the network. Moreover,
since sandboxes often intercept and analyze the app’s network
traffic to understand its behavior, evasive apps may also check for
the presence of VPNs or proxies.

3.2 APK tampering verification
Anti-tampering techniques detect any modification on the original
app during its execution [29, 66]. If modifications are detected, the
app can take evasive actions, such as turning off certain features or
terminating its execution.

Signature checking. As Section 2 explains, APKs are digitally
signed. This control checks if the certificate is the expected one.

Code integrity. These checks verify whether some code or re-
source has been tampered with by computing its signature at run-
time and comparing it with pre-computed and hardcoded values.

Installer verification. Since API level 5, the Android Package
Manager stores information on which ‘installer’ app (e.g., Google
Play Store or Samsung Store) was used to install any given app.
These evasive check retrieves the package name of the installer app
to verify whether the app has been installed from the expected app
store. Tampered apps are more likely to be distributed on unofficial
app stores that differ from the original. Moreover, an APK can also
be downloaded directly from a website, and thus, in this case, the
installer app can be a browser or a file manager.

3.3 High-level verification

SafetyNet attestation & Integrity API. SafetyNet [51] is a plat-
form security service offered by Google that provides a set of APIs
to help protect apps against security threats, such as device tam-
pering and other potentially harmful apps. For instance, to verify
the integrity of a device, an app leverages the Attestation API by
invoking the attestmethod of the SafetyNet client, while to check
if malicious apps are installed on the device, an app can invoke the
listHarmfulApps API.

Starting January 2023, the SafetyNet attestation is deprecated
and replaced by the Play Integrity API [50]. It offers an enhanced se-
curity mechanism that verifies the app’s integrity to defend against
tampering and redistribution of your app and the environment in
which it is running. Also, it consolidates multiple integrity offerings
(including the ones offered by SafetyNet) under a single API.

Human Interaction. Even sophisticated Android malware sand-
boxes often neglect to mimic realistic user behavior and interaction.
In 2022, Kondracki et al. [58] have shown how user-related artifacts
(e.g., number of photos and songs, list of contacts) can be abused to
distinguish an actual device from a sandbox environment.

3.4 Behaviors and Methods
All the evasive behaviors listed above can be implemented in differ-
ent ways. In the rest of the paper, we assign a unique identifier to
each method, which consists of the concatenations of three strings:
the behavior, the method, and the type of control. For instance,
the ROOT-SU-FILE method denotes a root detection evasive behav-
ior, which aims to verify the presence of the su binary (method),
and achieves that by looking at the file (type of control). Due to
space constraints, we cannot include a complete description of all
the 97 unique techniques we implemented in the paper. The inter-
ested reader can find all details in our Github repository [10]. The
repository also contains Android-Al-Khaser, an Android app that
implements a proof-of-concept of each evasive technique.

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

Figure 1: Sandbox overview

Finally, it is important to notice that while, in certain cases, we
can detect the presence of a given evasive method used by an app,
in other cases, an app can collect some general information that can
be used internally to implement the evasive control. We call the first
type a Direct evasion technique (DET) and the second an indirect
one (IET). For instance, Magisk [19] is a famous open-source app
to customize Android, which requires root access. To verify if this
app is installed, a developer can interact with the getPackageInfo
or the getInstalledApplications methods of the PackageMan-
ager. The former accepts the package name of the target app, while
the second does not take any argument and returns a list of all
apps installed for the current user. Thus, if a sample invokes the
getPackageInfo method with the com.topjohnwu.magisk argu-
ment, we can flag it as a direct implementation of the root detection
evasive method. However, a sample can also retrieve the entire list
of apps by invoking getInstalledApplications and then look
for the Magisk package name in several stealthy ways (e.g., by
comparing the hash of each name). Hence, in this case, we can not
be sure that the app is trying to evade the analysis, but we can
still report that it collects specific information that can be used to
implement evasive control in an indirect way.

4 DROIDDUNGEON
Figure 1 presents an overview of DroidDungeon. We implemented
the monitoring and anti-evasion capabilities of the sandbox in a
custom kernel module (from now on, CKM). This choice is less in-
vasive than other techniques commonly used in malware analysis
– such as userspace instrumentation, as pointed out by previous
work [69, 88] – resulting in stealthier and sounder analysis. Pre-
cisely, CKM can monitor system and app events (i.e., Android APIs,
library functions, and system calls), enforcing the anti-evasion cri-
terion when necessary. Alongside the CKM , DroidDungeon also
ships a userspace companion app (UCA), which provides config-
uration directives to the kernel module through a special device
file (/dev/mydevice in the figure). These directives include the
list of Android APIs and syscalls to monitor and the anti-evasion
techniques to enable, which the analyst can tweak by providing
configuration files to the UCA.

At first, the kernel module is automatically loaded during the
device boot routine but remains dormant, waiting for the UCA to
start (Step 1 of Figure 1). CKM detects this event by monitoring
the prctl syscall that the Android operating system uses to name
the main process of an app when it starts. At this point, the ker-
nel module finds the Zygote’s PID by iterating over the list of all
running processes, and it creates a special device file (Step 2) to
communicate with the UCA (Step 3).

The app then sends the categories of syscall that the module
needs to hook2 (Step 4), and the Android APIs to monitor (Step
5). The kernel module leverages the kernel tracepoint, k(ret)probe,
and u(ret)probe subsystems3. In particular, CKM sets one tracepoint
to tap the kernel’s syscall trap handler that parses the parame-
ters of each syscall invoked on the system, and one k(ret)probe or
u(ret)probe for each specific syscall and Android API that logs the
event and implements the relevant anti-evasion tricks.

During the module initialization phase, the UCA also sends the
memory addresses of the android.os.Build Java class. This class
is initialized during the device’s start-up in the Zygote process,
and some of its static fields are known to be exploited for evasion.
Since in Android each app inherits its address space from Zygote,
virtually all apps can access such valuable information, which CKM
needs to modify as an anti-evasion countermeasure (Step 6)4.

The module setup phase ends when the UCA sends the init
command. At this point, the kernel module works event-driven,
responding to the events triggering the registered tracepoints and
probes and sending the corresponding log entries to the companion
apps through the special device (Step 7).

4.1 CustomKernelModule: Implementation
Details, Technical Challenges & Solutions

The CKM is a loadable Linux kernel module written in 11,842 lines
of C code. It can intercept all the system calls, kernel functions,
and compiled userspace code in ELF or OAT format and parse and
modify native (C/C++) and Java objects. CKM monitors only the
apps installed after the companion one by filtering out all the events
of processes with a UID higher than the UCA. This prevents CKM
from interfering with critical system components, which would
make the operating system unstable. Last, CKM sends a log of all
relevant recorded events to the UCA through the device file by
using a protocol based on the eXternal Data Representation (XDR)
standard [57].
Tracepoints and probes. To register tracepoints, kernel, and user
probes, the CKM uses respectively the register_trace_sys_en-
ter, register_kprobe, and uprobe_register standard Linux ker-
nel functions. While register_kprobe and uprobe_register can
2To give an idea, the syscall connect belongs to the network category. Table 2 in the
Appendix recaps the list of syscalls for each category.
3These are built-in tracing mechanisms provided by the Linux kernel. Tracepoints
and K(ret)probes allow one to register callbacks triggered any time a specific kernel
function is executed. The callback has complete control over the calling process,
including inspecting and modifying CPU registers and memory. While tracepoints
can only be declared at compile time, k(ret)probes can be defined at runtime and
allow tracing a specific function’s beginning and end. U(ret)probes are the userspace
equivalent to k(ret)probes and can be placed on any ELF or OAT file a process loads.
4In theory, it is possible to find the address of the Build class directly from kernel
space by introspecting any app’s address space. We opted to offload this task to the
userspace app instead. Obtaining the class address is, in fact, much easier by taking
advantage of the managed ART runtime from the app than it is from kernel space.

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

be used by any kernel module, the Linux kernel prevents an exter-
nal module from registering such a tracepoint. We circumvented
this limitation by patching the Android kernel to export tracepoint-
related functions and make them externally visible. This tweak
consists of only two lines of C code (Listing 1 in Appendix), mak-
ing it, in fact, extremely portable between the various kernel and
Android versions.

Unlike tracepoints, whose targets are fixed and defined at com-
pilation time, the CKM has to specify the targets of the kernel and
user probes at runtime. The former can be set by specifying the ker-
nel symbol name of the desired function to hook. The procedure is
more complicated for the latter, as the uprobe_register function
requires a specific offset of the ELF file at which to add the probe.
We offloaded the offset calculation to the UCA, which delivers the
binary file paths (i.e., the path of the ELF or OAT file) and the offset
of each API to hook through the communication device.

Parsing probe parameters. To monitor execution events and
implement anti-evasion measures, CKM needs to interpret the pa-
rameters the analyzed apps employes to invoke syscalls and APIs.
The first step of this process consists in recovering the parameters’
values according to the architecture calling convention. While im-
plementing the parsing routines, we discovered that the OAT files
adopt undocumented (at least to our knowledge) calling conven-
tions on the x86 and x86-64 architectures. In particular, the first
three parameters must be passed through registers on x86 or the
first five in the case of x86-64, with the remainder on the stack.
Moreover, Java instance methods have a hidden parameter pointing
to the object on which the method is called (referred to as this
in Java). Once the parameters are retrieved, CKM handles them
according to the related event’s semantics. For instance, to monitor
the write syscall, CKM resolves the first parameter to the path of
the output file and copies the data written by de-referencing the
pointer provided as the second parameter.

Java object parser. While parsing syscall parameters is relatively
easy, handling the parameters provided to Android APIs proved
to be a more complex task requiring knowledge about how the
ART runtime stores Java objects in memory. In particular, each
Java entity can be classified into four categories according to its
type, namely Primitive, Array, String, and Complex [24]. While
Primitive entities store basic data types (e.g., bool, char, int), all the
other categories represent Java objects, i.e., structured data types
that inherit their structure from the java.lang.Object class. The
Object class has two members: a four bytes pointer to a java.-
lang.Class object and a four bytes hash.

The object’s Class defines the size of the object instance, its
superclass, and the list of fields as an array of Art_Field objects.
Each Art_Field specifies a pointer to the declaring class of the field
(from which the field name can be retrieved) and its offset (in byte)
from the beginning of the Complex object. Thus, by parsing the
array of Art_Fields, we can decode the Complex objects as a set
of fundamental object instances. It is also important to note that a
field of a Complex object could, in turn, be another Complex object
or an Array of Complex objects. This makes parsing Java objects a
recursive procedure that ends when a Primitive or a String object is
found. To our knowledge, CKM is the first in-kernel runtime Java
object parser and modifier.

Custom stack unwind. In DroidDungeon, we have mainly adopted
a “fake response” approach by modifying the output values of sev-
eral system calls, Android APIs, and library functions when invoked
by the app under analysis, mimicking the behavior they would show
on an actual device. However, indiscriminately providing fake re-
sponses to all invocations of these functions can be detrimental.
For instance, several evasion techniques consist in scouting the file
system in search of QEMU-specific device files. A naive approach
to counter these stratagems would be to counterfeit the result of
all file system syscalls that could reveal their existence. In doing so,
however, we would hinder the intended uses of such devices that
the Android framework opens any time a new app starts, resulting
in an unrecoverable exception. To handle this and other cases, we
developed a more fine-grained technique to assess a call’s purpose
by considering its provenance. CKM tampers its outputs only if the
call originates (directly or indirectly) from the app’s code. On the
other hand, if the call does not originate from the app’s code, it
must be part of the intended operations performed by the Android
framework, and CKM should not meddle in its execution.

To assess a call’s provenance, CKM unwinds the call stack, re-
constructs the list of function calls, and looks for those that belong
to the app’s code. Reconstructing the calling function list means
retrieving the list of return addresses from the stack. The first ele-
ment in this list (i.e., the caller’s address of the hooked function) is
the value in the stack immediately before the area pointed by the
stack pointer. The following elements in the list can be computed
iteratively by reconstructing each caller’s stack frame and retriev-
ing the respective return address. At any given step of the stack
unwind procedure, CKM computes the next frame pointer (𝐹𝑃) as:

𝐹𝑃 (𝑛+1) = 𝐹𝑃𝑛 − 𝐹𝑆𝑛 − (𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑣𝑜𝑖𝑑∗) ∗ 𝑆𝐴𝑛)
where 𝐹𝑆𝑛 is the frame size of the n-th function in the call stack
(i.e., the sum of the sizes of all stack variables of that function),
and 𝑆𝐴𝑛 is the number of its parameters passed on the stack. Since
neither 𝐹𝑆 nor 𝑆𝐴 can be easily retrieved at runtime, we opted
for computing them a-priori for every symbol of every library in
the Android framework. To this end, we developed a Ghidra [17]
script and a Python program based on oatdump that computes each
function’s frame size and stack parameters for Android ELF libraries
and OAT files, respectively. The value calculated for each function
in the Android libraries is then embedded in the CKM at build time.

The stack unwind procedure ends whenever it encounters an
address that belongs to the app’s code or an invalid address. In the
first case, the module verifies which method or API the app invokes
to determine whether to enforce the anti-evasion policy. When,
instead, the unwinding procedure reaches an invalid address, CKM
infers that the event was due to an Android standard routine (e.g.,
app start-up) and does not enforce the anti-evasion criterion.

Notice that this approach works even against reflection. Invoking
a frameworkmethod through the reflection only adds a few function
calls between the caller and the callee, which our stack unwind
routine can handle seamlessly.

To our knowledge, DroidDungeon is the first analysis system that
performs call provenance test through an in-kernel stack unwinder.
JIT & stack unwind. In Android, the libart.so library enforces
the JIT compilation and contains the jit functions to manage all DEX
instructions (i.e., nterp_op_<inst_name> functions). For instance,

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

nterp_op_return_void and nterp_op_return_object, respec-
tively, handle the return statement of a Java (void) procedure or a
function that returns an object. Android interprets the non-OAT-
compiled DEX code to build a chain of equivalent jit functions.

We discovered that also these functions do not respect the stan-
dard calling convention: the jit functions do not have a prologue
and epilogue, ending the procedure with a JMP instruction instead.
Moreover, the return address – a pointer to the following jit function
in the chain – is computed at runtime. Thus, the stack unwinding
routine does not apply to this scenario (except for the nterp_op_re-
turn* functions, which have an epilogue and end with the standard
RET statement returning to the pointer stored on the stack).

The idea we had to manage JIT-compiled functions in the stack
unwind procedure is that once the execution reaches the jit function
chain, the stack frame does not changes until the return is reached.
It is worth noticing that a JIT-compiled function always ends with
a return statement regardless of the first DEX instruction. Also,
during the stack unwinding procedure, CKM reaches a JIT-compiled
function if and only if it invoked another API or a native method,
i.e., if it came from one of the nterp_op_invoke_* jit functions.
Thus, once one of these functions is reached, CKM can consider as
if the return jit function had been invoked: it adds the return’s stack
frame size to the SP, retrieving the caller’s return address from the
stack as usual.

4.2 UserspaceCompanionApp
The UCA is a regular Android app written in about 1,620 lines of
Java and 1,283 lines of C code. It supports the CKM in Steps 2 and 7
of Figure 1. The JSON configuration files specify the set of functions
the CKM has to hook and which anti-evasion techniques need to be
enforced. Contrary to the kernel probe, which can be registered by
specifying only the function name, UCA retrieves the offset of the
target userspace functions from the ELF or OAT files, which CKM
needs to register the uprobes. In particular, the app leverages the
readelf [21] utility for the ELF files, while it uses oatdump for the
OATs. Finally, UCA listens on the device file to log the intercepted
events into a regular file.

4.3 Anti-evasive Policy
The DroidDungeon design allowed us to limit the artifacts we need
to manipulate to only the emulator and network categories (refer
to Section 3). Specifically, once the kernel module receives the init
command, it modifies the properties of the network interfaces (e.g.,
their names) to make them appear similar to the ones in an actual
device. Also, it installs probes to monitor and tamper with file-
related operations (Step 4 of Figure 1) and manipulate high-level
Android APIs (Step 5), including changes to system properties (e.g.,
ro.hardware) and the simulation of real sensors.

We recall that some static fields of the Build class can be ex-
ploited for evasion, and CKM modifies them each time a new app
starts (Step 6).

Finally, the device has a user logged in to an actual Google
account, and the file system is populated with a collection of doc-
uments, images, and other common files to resemble a legitimate
smartphone so that malware may identify it as a more valuable
target [67].

5 EXPERIMENTAL SETUP
Dataset. To perform our analysis, we built a comprehensive dataset
of Android apps divided into malware and goodware samples. We
collected malicious apps from the VirusTotal (VT) feed [92], a real-
time stream of JSON-encoded reports containing the analysis results
for each app submitted to VT. We wanted our dataset to be diverse
regarding the number of families and balanced so that every mal-
ware family is well-represented. For this reason, we monitored the
feed from September 2022 to April 2023. We only retained the An-
droid apps identified as malicious by at least five engines and fed
them to the AVClass2 malware labeling tool [82], which outputs the
most likely family name for the sample. At the end of the collection,
we ended up with 20,556 malicious apps, uniformly distributed over
200 families.

For goodware, we collected the package names of the 500 most
downloaded free apps for each of the 50 official Google Play Store
categories in April 2023.We extracted this information usingGoogle
Play Scraper [8] and downloaded the apps thanks to apkeep [12]
directly from the Google Play store. In total, we collected 21,154
unique samples.
Runtime Environment.We used DroidDungeon to conduct the
first analysis of public evasion techniques in goodware and mal-
ware; thus, we implemented it in an Android emulator. Since Febru-
ary 2020, Google has introduced support for running ARM binaries
on x86 (Android 9) and x86-64 (Android 11) system images. How-
ever, starting from version 12, Android emulators can execute only
64-bit binaries. Thus, to execute ARM and Intel 32- and 64-bit-based
Android apps, our analysis system comprises two emulators based
on Android versions 12 (API level 31) and 11 (API level 30). Before
running an app, we check if it only has 32-bit libraries and choose
the appropriate emulator.

Moreover, because DroidDungeon can not hook DEX code, we
must ensure that every Android Java function is OAT compiled.
Thus, we replaced all the OAT framework files in our Android
emulators’ official system.img. We exploited the AOSP build tools
to unpack the image, OAT-compile all the Java APIs, and repack it in
a new one. It is worth noticing that this step is not straightforward:
Android put in place several techniques to validate the integrity
of the framework files; thus, we took into account every check.
For instance, since version 8, Android performs the verified boot
process [11], which assures the integrity of the framework software,
also verifying the system.img. Thus, we had to recreate a valid
vbmeta.img, namely, the data structure contains all the metadata
for the verified boot process. In this way, we deployedDroidDungeon
with the complete support of the Google Play services.

All emulators run on a dual-core 2.10 GHz x86-64 processor,
2 GB of RAM, 16 GB of internal storage, and an 8 GB emulated
SD Card. Finally, we manually tested twelve apps (both malicious
and benign) that we knew how they worked and found no user
experience problems or malfunctions.
Red and Blue runs. The concept of red pill and blue pill in eva-
sive malware [37, 71] refers to the movie “The Matrix”, where the
protagonist is offered a choice between a red pill that reveals the
true nature of reality and a blue pill that keeps him in a simulated
world. Thus, a red pill is an evasive technique, while its blue pill is
a corresponding defensive technique to counteract the red one.

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

In this work, we also wanted to study how much the execu-
tions vary when DroidDungeon gives blue pills compared to when
it does not provide them. Hence, every app in our dataset is ex-
ecuted twice. In the first run (BlueRun), DroidDungeon hides the
underlying emulator by administering blue pills (i.e., it enforces the
anti-evasion criterion). In contrast, in the second run (RedRun), the
app is executed without modifying the emulator’s behavior.

In every app execution, DroidDungeon stimulates the app user
interface for 4 mins to increase its code coverage and simulate a real
user with ARES [77]. This black-box tool uses Deep Reinforcement
Learning to test and explore Android apps. Moreover, we modified
ARES to perform the same sequence of user clicks for every tested
app to compare the two execution traces.
Preliminary results.We were able to execute correctly the 93% of
malware (19,090/20,556) and the 99% of goodware (21,081/21,154).
For the failed apps, we were not able to install them because the
signature was not valid or the APK file itself was corrupted.

6 RESULTS OF THE MEASUREMENT
This section discusses the results of the analysis we conducted over
the malware and the goodware datasets. Starting from the app’s
execution traces, we developed a post-analysis routine that iden-
tifies DETs and IETs by looking at the list of events that occurred
after the first access to the base.apk file (which, as explained by
Ruggia et al. [78], signals the start-up of an Android app). When
reporting the results of evasive behaviors and methods, we will use
the unique identifier (in uppercase) we introduced in Section 3.4.

6.1 Prevalence
DETs and IETs usage. 90.8% of goodware and 68.5% of malware
implement at least one DET evasive technique, while about 90% in
both categories contain at least one IET. On average, the malware
uses 2.1 unique DETs (𝜎 = 1.9) and 12.8 (𝜎 = 6.7) IETs, while good-
ware 3.4 (𝜎 = 2.2) and 14.4 (𝜎 = 4.9), respectively. Interestingly,
goodware has almost twice as many DET controls as malicious sam-
ples on average. However, the sample that employs the maximum
number of unique DETs (15) and IETs (39) controls is malicious,
which is almost 15% higher than the maximum for goodware.

While the prevalence is high in both groups, there are important
differences in the techniques adopted by malware and goodware.
Table 1 reports the three DETs and IETs that differ the most among
the two groups. In particular, it shows the percentage of malware
and goodware that implement a specific technique w.r.t. all the
dataset apps. A negative value in the rightmost column means that
such an evasive check is implemented more often in goodware,
while a positive means is more prevalent in the malware dataset.

First, more than 88% of goodware verifies how the app was in-
stalled or updated by invoking the getInstallSourceInfomethod
of the PackageManager (INSTALL-SOURCE-API), clearly showing
how developers care if the app comes from the expected store.

Interestingly, 76.3% of goodware verifies the environment in
which they are executed by checking if permissions not declared
on the Manifest are granted to the app (VIRT-UND PERMS-API). It
is a common technique to detect whether the app is running in
an app-level virtual environment [61, 90] because container apps
have to declare all possible permission to manage with a generic

Table 1: Main differencences of evasive technique usage for
malware w.r.t. goodware.

Evasive Technique Malware Goodware
Malware

-
Goodware

D
ET

INSTALL-SOURCE-API 43.3% 88.7% –45.4%
VIRT-UND_PERMS-API 35.9% 76.3% –40.4%
ROOT-SU-FILE 18.3% 56.1% –37.8%

EMU-SYSTEM-API 44.1% 19.8% +24.3%
EMU-QEMU-FILE 3.9% 1.2% +2.7%
EMU-KNOWN_EMU-FILE 3.2% 1.1% +2.1%

IE
T

SIGNATURE-APP-APP_INFO 25.6% 76.2% –50.6%
NET-SSL_PINNING-API 54.6% 78.1% –23.5%
VIRT-FAKE_COMP-API 31.2% 47.1% –15.9%

HOOK-PROC_ART-MAPS 26.2% 13.0% +13.2%
HOOK/ROOT-APPS-INST_APPS 19.4% 6.5% +12.9%
NET-INTERFACE-NF 14.7% 5.9% +8.8%

plugin app. However, we have investigated this further, discovering
that most goodware samples import third-party libraries for ana-
lytics and monetization (e.g., [13–15, 18]), which check the granted
permissions at runtime to extract as much information as possible.

The third DET control is related to root detection: 56.1% of benign
apps check the presence of the su file (ROOT-SU-FILE).

On the other hand, in malware, DETs controls are related to de-
tecting the emulated environment or an analysis system. In particu-
lar, 44% of malware retrieves and checks Android system properties,
such as the device or the subscriber id, by interacting with Android
managers (EMU-SYSTEM-API). In addition, malware samples are
more prone to searches for well-known emulator artifacts (e.g., EMU-
QEMU-FILE and EMU-KNOWN_EMU-FILE) and network proxy apps.

Concerning the IETs, goodware often retrieves information about
the certificate used to sign the APK by querying the package man-
ager (SIGNATURE-APP-APP_INFO), performs SSL pinning (NET-SSL-
_PINNING-API), and checks for artifacts in the process components
through the Android APIs (VIRT-FAKE_COMP-API).

Conversely, the main IET controls in malware are related to anti-
hooking, root checks, and network artifact detection. First, malware
verifies process artifacts by checking the content of the maps file
in the proc file system (HOOK-PROC_ART-MAPS). Moreover, almost
20% retrieves the list of all installed apps on the device and then
perform some checks over it (i.e., HOOK/ROOT-APPS-INST_APPS).
This technique can be exploited for detecting hooking (e.g., Xposed)
and rooting (e.g., Magisk) apps. Even if there is proper permission
for doing it, Ruggia et al. [78] demonstrated that there are tricks a
malicious app can leverage to bypass this protection mechanism.
For instance, restrictions are not applied to apps targeting API level
30 or lower, which can retrieve the metadata of any app in the
system. Interestingly, 90% of malware on average targets an older
API (<= 30), and almost 3% requests the QUERY_ALL_PACKAGES
permission. The picture is different for goodware: only 14% targets
an API before level 30. Compared to malware, it is a small value, but,
in absolute terms, it is unusual that benign goodware apps do not
update the target API as guidelines. Last, malware verifies network
interface properties by using native functions, such as getifaddrs
(NET-INTERFACE-NF), to figure out if the device uses a VPN.
SafetyNet & IntegrityAPIs.We investigated if and how goodware
and malware use one of the SafetyNet APIs or the Integrity API.
Since these technologies are not open-source, wemanually analyzed
the Android framework to figure out their inner workings.

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

For SafetyNet, we intercept its binder request, the typical An-
droid inter-process communication, and remote method invocation
technique. Table 3 in the Appendix reports the entire mapping be-
tween binder methods id of the SafetyNet client to its “high-level”
security check. Both goodware (35.7%) and malware (30.4%) interact
with at least one of the security services SafetyNet offers.

One of the services offered by SafetyNet is Verify Apps. This
service is unavailable by default, but an app can ask the user to
activate it through the enableVerifyApps method. Then, an app
can check if it has been enabled using the isVerifyAppsEnabled
method. Once the service is enabled, users can check the list of
harmful apps by invoking the listHarmfulApps method. Among
samples that use SafetyNet, over 95% of malware and 90.6% of
goodware samples communicate with the Verify Apps service, and
all invoke the isVerifyAppsEnabled. However, surprisingly, just
one goodware invokes the listHarmfulApps method.

Also, about one fifth of malware (14%) and goodware (19%) use
the Safe Browsing API: they invoke the loadUri method to check
whether a URI is linked to a well-known threat. However, this mea-
surement is limited: we cannot distinguish whether it is an explicit
invocation because the Android WebView automatically invokes
this mechanism. Starting in April 2018, WebView supports the Safe
Browsing feature by default [47, 49], automatically verifying the
URI through this method.

Regarding the Attestation API, we observed only 0.8% of good-
ware samples and just one malware that leveraged it to verify the
legitimacy of the execution environment. It is worth noticing that,
contrary to other SafetyNet services, the Attestation API requires
an app to have a registered and valid API key on its Google website;
however, this malicious sample demonstrates that the attackers can
abuse “benign” security mechanisms. Moreover, our data confirms
the findings of Ibrahim et al. [53], showing that legitimate apps
do not properly use SafetyNet services that would significantly
improve their security posture.

To monitor the Play Integrity, we intercept the intents used to
communicate with this component. Given that this service is very
recent (explicitly created to replace SafetyNet), we monitored only
a negligible amount of goodware (0.11%) and no malware using
this API. We argue that this new service will be harder to exploit
by malicious actors because it is strictly tied to the Google Play
Services and requires many verification steps.

Time-based Analysis. We normalized the execution time of each
sample in a [0,100] range (as suggested by [63]), and then divided it
in three-time slots: [0-10], [11-89], and [90-100]. Then, we tracked
when the first and last evasive checks (both DETs and IETs) were
performed.Moreover, we also considered the difference between the
last and the first to examine whether checks are usually executed in
quick succession or at different points in time. From a preliminary
analysis, we noticed that there were no significant differences if we
considered DET and IET separately; therefore, for ease of reading,
we consider them together.

The KDE plot for malware and goodware are shown in Figure 2
in the Appendix due to space limit, although we report the rele-
vant observations. The percentages of the first and last evasion
techniques occurring during the first slot [0-10] of the execution
are 63.6% and 10.2% for malware and 73.4% and 2.7% for goodware,

respectively. Interestingly, most goodware performs evasive checks
at the beginning of execution, even more than malware. Then, the
last evasive technique falls in the last slot [90-100] for the 30% of
malware and 39.3% of goodware.

Then, for each slot, we computed the percentage of how many
times a specific control has been used. For goodware, the three
most common evasive controls are INSTALL-SOURCE-API, ROOT-
SU-FILE, and VIRT-UND_PEMRS-API, regardless of the time slot.
Thus, benign samples verify from where they were installed and
whether the su binary file is present or some non-declared per-
mission is granted. Contrary, for malware, evasion checks depend
on the timing. In the first time slot, malicious samples verify the
maps file in the proc file system (HOOK-PROC_ART-MAPS) and
from where they are installed (INSTALL-SOURCE-API). Then, re-
gardless of the second and third slot, they look for Android emula-
tor fingerprints (e.g., device ID) and network-related information
(NET-INTERFACE-API, i.e., the name of the network interface).

Finally, we also investigated the order in which goodware and
malware samples performs the evasive checks. Evasive goodware
is predominantly characterized (54%) by controlling the installation
source (INSTALL-SOURCE-API), while only 6% of evasive malware
uses it as the first control. On the other hand, for about half of
the malicious evasive samples, the first control is HOOK-PROC_ART-
MAPS, followed by EMU-SYSTEM-API (12.5%) and NET-LISTENER-
API (10%). The order in which apps utilize different strategies is
crucial because researchers need to appropriately mitigate them to
avoid limiting the results to those evasive techniques used first.

Evasive among families/categories.We assessed if the goodware
category (e.g., banking or game) or malware family affects the
overall evasiveness of a sample. It is reasonable to assume that
benign samples are more prone to implement evasive techniques if
they manage sensitive user information (e.g., banking and finance).

We found that 195/200 (97.5%) malware families contain at least
one sample that uses a DET, while if we include the IETs, the num-
ber of families goes up to 199/200. Also, for 22/200 (11%) malware
families, all the samples in the family contain at least one DET.
These numbers indicate that it is crucial to consider this phenom-
enon in the dynamic analysis of Android malware. On the other
hand, all goodware categories contain at least one evasive sample,
but none have all samples with at least one DET technique. We also
measured the variation of the number of evasive techniques. On av-
erage, the standard deviation of malware is almost four times w.r.t.
goodware; namely, the number of controls carried out by malware
apps depends on their family. In contrast, the app category only
affects a small number of evasive checks in goodware.

We also assessed the ‘evasiveness’ of a family by counting the
number of evasive techniques for each sample. On average, the
most evasive malware family is loead, whose samples implement,
on average, 16.3 evasive controls. This is followed by fydad (14.7),
beitaad (11.2), and snaptube (11.1). In the benign dataset, Finance,
Entertainment, and Shopping are the most evasive goodware cate-
gories (with an average of more than 6 evasive controls per sample).

Finally, we measured how many categories/families use a spe-
cific evasive technique. For goodware, 21 DETs and IETs are imple-
mented by more than 80% of the app categories, while this number
decreases to 12 for malware families. The most widespread for

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

goodware (almost all goodware categories) are verifying process
artifacts, checking the APK signature or whether permissions not
declared in the Manifest are granted. On the other hand, the most
common for malware are emulator (e.g., EMU-SYSTEM-PROPS) and
hook detection checks (e.g., HOOK-FRIDA-FILE). Interestingly, some
checks (e.g., EMU-KNOWN_EMU-FILE and HOOK-PROC_ART-MAPS) are
more spread in goodware categories (86%) w.r.t. malware families
(32%), even if their overall occurrence is higher in malicious apps
(e.g., EMU-KNOWN_EMU-FILE occurs in the 4.3% of malware and only
1.6% of goodware).

RQ1. Our experiments show that goodware and malware use eva-
sive techniques for different purposes. For instance, about 70% of
evasive malware implement at least one environment verification
control related to the emulator detection, while only one third of
evasive goodware does it. Contrarily, the most common environ-
ment verifications for goodware are app-level virtual environment
(81%) and root checks (61%), but they account for respectively only
43.4% and 33% of malicious samples. Goodware is also more prone
to implement APK tampering verification; e.g., more than 82% of
all benign samples perform signature verification controls.

We also observed that malware tends to rely on IETs techniques
more often than on DETs. For instance, for root detection, goodware
verifies if the su binary exists, while malware interacts with the
package manager to retrieve the list of all installed apps.

Finally, our results highlight how malware families affect the
type of evasive controls, while goodware apps tend to employ the
same evasive techniques regardless of their categories. However,
benign apps implement a heterogeneous set of controls for each
category because the variation of the evasive controls in every
category is higher than in the malware family. Each category has
samples with several and no evasive checks, showing how evasive
controls are implemented, especially by the most popular apps.

6.2 Evasive w.r.t. Packers & Protectors
We now look at the relationship between evasive behaviors and the
presence of packing schemes and software protectors. We used AP-
KiD [76] to determine whether a sample uses packing or protection
techniques. On the goodware dataset, APKiD could not recognize
any packer or protector. Conversely, APKiD recognizes 24 different
packers in 11.4% of the malware samples. As reported in Table 4, the
Jiagu packer is the most common in our dataset and was detected on
43.0% of the packed samples. Tencent, Baidu, and MultidexPacker
are the following most prevalent packers, accounting respectively
for 9.9%, 5.8%, and 5.3%; the remaining 10/24 packers account for
less than 1%. On the other hand, only 0.2% of the malware apps are
protected by two different protectors: Virbox and CNProtect. Given
the negligible number of protected apps, our analysis is focused
only on packers with a non-negligible prevalence (> 1%).

In this context, our goal is to understand whether any difference
exists in the adoption of evasive behaviors between packed and
non-packed samples. We started by measuring the proportion of
apps that implement at least an evasive check, and found a similar
prevalence between the two classes - respectively 82% and 89% for
packed and non-packed apps.

We further investigated whether specific evasive controls are
more characteristic of the packed apps compared to the non-packed

ones.We found that themost used evasive techniques in packedmal-
ware are SIGNATURE-ZIP-FILE, HOOK-PROC_ART-MAPS, and HOOK-
FRIDA-FILE. On average, the former IET technique (i.e., opening
the base.apk file through the java.util.zip.ZipFile Java util-
ity) is used by more than 65% of packed apps, with a peak of more
than 90% for Ijiami and ApkEncryptor. On the contrary, such a
technique is used by 26% of the non-packed malware samples and
less than 20% for goodware. From an evasive point of view, this
operation is useful to access and read specific files in the APK, to
perform signature checks or code integrity. However, packers also
leverage this mechanism to unpack the APK file (without unzipping
inside the disk) and load resources or encrypted code.

Nine packers cause the apps to open the fd/*, task/*, or maps
files under the proc file system (i.e., HOOK-PROC_ART-MAPS, HOOK-
FRIDA-FILE) more frequent compared to non-packed ones. In par-
ticular, these operations occurred more than 60% of packed apps
(with a maximum of 81% for Tencent, Baidu, and Bancled), while
this value decreases to 25% for non-packed malware. These IET
techniques verify the process artifacts to identify changes and hook
mechanisms, such as the instrumentations injected by Frida.

We finally investigated how varied the evasive controls are for
each packing software. We detected that APKs packed with Jiagu
implement the highest number of unique evasive controls (56 over
97 techniques identified in this study [10]), closely followed by the
apps packed with ApkEncryptor and DexProtector, on which we
respectively identified the presence of 55 and 51 different evasive
techniques. On the other side, we could only measure 9 distinct
evasive checks on samples packed with Bangcle. In a deeper investi-
gation, we found that for some packers all the samples implement
specific evasive controls: SIGNATURE-ZIP-FILE always character-
izes samples packed with MultidexPacker, while those packed with
AppSealing and ChronClickers always control for EMU-SYSTEM-
API and HOOK-PROC_ART-MAPS. Overall, wemeasured that although
some techniques are more prevalent in packed samples or in specific
packing schemes, all evasive behaviors used in packed samples also
exist in non-packed ones and vice versa. Thus, in the our dataset,
evasive techniques are not strictly related to the usage of a packer.

RQ2. A comparable ratio (82% and 89%) of packed and non-packed
samples implements at least an evasive technique. Similarly, packed
and non-packed APKs implement, on average, 5.1 and 8.7 evasive
checks, respectively. Nevertheless, some behaviors such as SIGNA-
TURE-ZIP-FILE, HOOK-PROC_ART-MAPS, and HOOK-FRIDA-FILE
are more widespread in packed samples than in non-packed ones.
Moreover, samples packed with specific packers always implement
a subset of evasive controls: for instance, samples from AppSeal-
ing and ChronClickers always check Android system properties
(EMU-SYSTEM-API) and process memory artifacts (HOOK-PROC_ART-
MAPS), which are observed on less than 40% of non-packed samples.
We could not find evasive techniques exclusively employed by
packed samples or specific packing routines.

6.3 BlueRun vs. RedRun
In our final experiment, we measured the difference between the
execution traces: the BlueRun in which our sandbox mitigates the
anti-evasion mechanisms, and the RedRun in which it does not. The

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

expectation is that an app employs evasive checks to avoid execut-
ing a particular piece of code. However, it is not trivial to establish
a methodology to compare two traces and find this difference. The
reason is that we cannot make assumptions about code that does
and does not execute. Other works [22, 86, 93] have faced a simi-
lar problem; however, they addressed it for their specific use case:
[86] only compared the number of file operations, while [22, 93]
examined different forms of a call graph. Therefore, we measured
the differences between the events in the execution traces by divid-
ing them into 11 high-level categories related to the workings of
Android: 1) Accessibility Service (a11y), 2) Broadcast Receivers (BR),
3) Command Line Interface commands (CLI), 4) Content Providers
(CP), 5) Dangerous APIs (DAPI), 6) Dynamic Code Loading (DCL), 7)
File System (FS), 8) Inter-Process Communication (IPC), 9) Network
(NET), 10) Permissions (PERM), and 11) Systems Services (SS).

To conduct this measurement correctly and verify whether a
pair of events were the same, we had to post-process the traces
to remove execution-specific values (e.g., a path with UID or tem-
porary network tokens). We were guided by some works [26, 36]
where, for example, the authors generated ML features related to
file system activity by removing the file name and just considering
the path plus the file extension; or else, when dealing with a URL,
they were considering protocol, domain, and port.

In addition, there are some important factors that we considered.
First, given that we ran our experiments on Android emulators, all
the blue pills DroidDungeon inject are designed to hide our specific
environment; thus, there may be cases where the sample does
evasive checks, but we do not provide such blue pills because our
environment does not need them. For example, the su executable
is not present on our emulator, so if an app checks for the presence
of this file, it will not find it in both executions. On the other hand,
if an app checks for the /dev/goldfish_pipe file (the presence
of this device reveals an emulator) in RedRun it finds it, while in
BlueRun it does not. For this reason, the numbers we will report
below must be considered a lower bound. Second, we considered
the events of the two traces divided into categories as elements of
two ordered sets that we will call Red (R) and Blue (B) for brevity.
𝐵<𝑐𝑎𝑡> denotes the set of events in a specific category (e.g., 𝐵𝑁𝐸𝑇

is the collection of NETwork events of BlueRun). Of these sets,
we calculated union, intersection, the two differences, the various
cardinalities, Jaccard Index, and finally aggregated by category,
checking in percentages what the significant differences were. We
also computed the percentage number of times an event occurred
in B and not R and vice versa. Table 5 in the Appendix summarizes
these results. For space and ease of reading, we only report the
significant differences for evasive apps between B and R traces.

Moreover, although these measurements are only meaningful
for the evasive samples, we also verified the non-evasive ones to
double-check that our sandbox worked properly. Therefore, for all
the numbers we reported, we have verified that the same trend
does not occur for the non-evasive samples. During this inspection,
we found that irrespective of the classes (malware/goodware) and
category except for NET, for the non-evasive samples, the two traces
are equal (𝑅<𝑐𝑎𝑡> = 𝐵<𝑐𝑎𝑡>) in more than 90% of the samples, while
this percentage varies considerably for evasive ones (between 30%
and 96%). The only notable exceptions are the network traffic traces:
they are very different even in non-evasive goodware samples

(𝑅𝑁𝐸𝑇 = 𝐵𝑁𝐸𝑇 only in 46%). The main reason is related to ads
and monetization libraries: at each execution, goodware renders
different ads, which generates different network requests.

A closer look at the cases where 𝑅𝑆𝑆 ⊂ 𝐵𝑆𝑆 , i.e., when the two
traces are not the same and the RedRun events are a subset of the
BlueRun ones , allowed us to observe that almost 14% of malware
does not create any Android Activity when they are executed in
RedRun, but they do it when the anti-evasion criterion is enforced;
this phenomenon occurs for less than 4% of goodware. In practical
terms, it means that these samples did not show any GUI and fin-
ished execution when their evasive controls detected a potential
analysis environment. Nevertheless, contrary to other systems (e.g.,
Windows [37, 63]), most evasive malware samples (86%) do not
stop their executions if the anti-evasion criterion is not enforced,
behaving like a legitimate Android app. Combining some observa-
tions in the DAPI, CP, and SS categories, we noticed two interesting
behaviors that evasive malware exhibits when it thinks it is not
under analysis. First, almost 10% more samples interact with the
Captioning Manager (that contains methods to access and monitor
preferred video captioning state), and most of them (70%) use it as
an alternative way to get the user’s properties, such as the preferred
language. Second, 2% records the audio or video of the device for
an unlimited period through methods of the MediaRecorder class.

Regarding the FS category, more than 17% of evasive goodware
looks for the su binary in BlueRun, while they did not do it in
RedRun. We observed that these goodware samples perform root
checks only after verifying the presence of an emulator. Conversely,
it happened for less than 3% of evasive malware, which, on the other
hand, are more prone to change the mode bits of files in their private
folders. For instance, the fchmod syscall occurred more than 20% of
evasive malware in the 𝐵𝐹𝑆 trace w.r.t. the 𝑅𝐹𝑆 one. We manually
investigated this latter fact and found that, in these cases, malware
makes some files containing code, such as native libraries, writable
to modify their content (e.g., the Grifthorse Trojan [5]). In this way,
the sample will execute a different code at runtime compared to
the statically available one in the APK. Finally, the CLI category is
abused by 1.5% of evasive malware to retrieve system properties
value through the getprop command or run chmod command (<
0.1 for goodware), avoiding interacting with the Android APIs.
RQ3.Our experiments show that 14% of malicious and 4% of benign
samples refrain from running in our analysis environment when
we do not mitigate evasive controls. In other cases, malware hides
techniques to obtain information about the device or records au-
dio/video without the user’s knowledge. It also overwrites portions
of its code to perform different operations than those that could be
observed by statically analyzing the APK file. Goodware, instead,
tries to hide its search for the presence of a device with root.

7 RELATED WORK ON ANDROID SANDBOXES
According to [86], we grouped current Android sandboxes for mal-
ware analysis based on the technique on which they are based.
There are currently no Android malware sandboxes based on app-
level virtualization, so this solution was not considered.
Full-system emulation. In the last years, researchers proposed
several sandboxes based on Android emulators. In 2012, Yan et
al. developed DroidScope [96], a virtual machine introspect (VMI)

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

system to monitor the activity of the malicious app in the Android
emulator. In 2015, Tam et al. proposed CopperDroid [88], a sandbox
built on QEMU to automatically perform out-of-the-box VMI-based
dynamic analysis and reconstruct Android malware behaviors. In
the same year, DroidBox [74] and CuckooDroid [60] have been
proposed. The former is a custom Android OS version 4.1.1 variant
that tracks and taints API calls. Alternatively, CuckooDroid is an
extension of Cuckoo Sandbox [42] for automating the analysis of
Android apps; it is based on the Xposed Framework to monitor
API calls and provide blue pills to the target apps. Similarly to
CuckooDroid, over the years, other researchers proposed hook-
based sandboxes which rely on Xposed [30, 34, 43] or Frida [40]. In
2018, Liu et al. [59] proposed RealDrois, an emulator-based analysis
system built by modifying the Android framework.

Android Container-Based Virtualization. Similarly to the desk-
top counterparts, the Android container-based virtualization is a
lightweight in-kernel virtualization technique that creates an iso-
lated (virtual) environment in the same Android device. However,
Android container development has to overcome several challenges;
in particular, mobile devices are not be designed for multiplexing
hardware components (e.g., WiFi and Bluetooth).

In 2011, Andrus et al. proposed Cells [25], a virtualization ar-
chitecture enabling multiple isolated virtual phones (VP) to run
simultaneously on the same physical device. In 2015, Xu et al. de-
veloped Condroid [95], a lightweight Android virtualization solu-
tion based on container technology, which leverages both Linux
namespaces and cgroups to create multiple VPs. In 2021, Song et al.
proposed VPBox [86], an Android OS-level sandbox framework via
container-based virtualization that overcame the limitations of the
previous works, integrating with the principle of anti-evasion. In
particular, VPBox offers complete device virtualization for all the
device components (e.g., WiFi), minimizing the artifacts in the VPs.

DroidDungeon vs. SOTA. Emulators are programs that simulate
the functionality of some hardware, thus providing great scalability
and flexibility. For instance, the virtual environment can be restored
to a clean snapshot in seconds. However, the anti-evasion crite-
rion is demanded to the sandbox itself, which has to implement
the “bypass” logic for each evasive technique. In particular, Droid-
Scope, CopperDroid, and DroidBox do not enforce any detection
resilience mechanism, while hook-based techniques can bypass
only a subset of evasive controls, leaving several artifacts uncov-
ered. For instance, Xposed is not designed to hook into lower-level
system calls; hence an attacker can detect the emulator by mak-
ing direct syscalls. DroidDungeon leverages the probe mechanism,
which allows the hooking of user functions and system calls. Thus,
we can provide more fine-grained analysis mechanisms that only
hook the least possible set of functions. For instance, to identify
the opening of a file, DroidDungeon hooks only file-related system
calls, avoiding hooking all the high-level functions for both the Java
and the native layers. Moreover, all the container-based virtualiza-
tion techniques and framework-level modifications (e.g., RealDroid)
heavily modify the Android kernel and OS layers, which can make
integration with system updates challenging (no maintainability
criterion); in addition, the former techniques share the assumption
to be executed on an actual phone affecting scalability.

It is worth noting that the main goal of container-based virtual-
ization is to create an isolated environment. Still, more is needed
to provide a suitable technique for monitoring and analyzing the
app’s behavior. Contrary, DroidDungeon can be deployed in both an
emulated and actual device. In the former case, it has to enforce the
anti-evasion criterion, while the second one leverages the underly-
ing actual device to bypass evasive checks, behaving like a virtual
phone. Moreover, we developed a fully separate kernel module,
which can be easily integrated with newer Android versions.

Table 6 in the Appendix compares DroidDungeon and the other
state-of-the-art solutions based on the anti-evasion, scalability, and
maintainability criteria. At the time of writing, our solution remains
the best tool to analyze Android malware dynamically.

8 LIMITATIONS AND CONCLUSION
Limitations. First, the probe mechanisms cannot measure direct
memory access or reading Java object fields. For instance, simple
evasive checks aim to verify the fields of the Build class. We cannot
measure these events even if DroidDungeon can mitigate them by
updating the Build class field values when a new app starts.

Second, when a probe is placed in a userspace program, the
instruction at the probed location is overwritten by a jump to
the handler routine. This mechanism introduces artifacts into the
memory of the probed functions that an attacker could exploit to
detect the sandbox.

Third, Garfinkel et al. [45] demonstrated how making hardware
emulation and native hardware indistinguishable is fundamentally
infeasible. The emulator-based implementation of DroidDungeon
inherits all limitations of the hardware emulation, but it can also
be distributed on an actual device.

Fourth, we collected the events by stimulating each app with
ARES. Thus, we inherit the limitations of the dynamic analysis [23,
73], namely, there are parts of the code that may not be explored.

Finally, as mentioned in Section 6.3, our measures in comparing
execution traces should be considered a lower bound because there
are evasive controls that our sandbox does not need to mitigate. In
those cases, if there are differences, they are not measured.
Conclusions. This paper focuses on seeking, collecting, and mea-
suring Android evasive techniques based on their behaviors and
methods, both in malicious and benign apps. For this purpose, we
developed DroidDungeon, a probe-based sandbox that jointly fulfills
the anti-evasion, maintainability, and scalability criteria.

Our experiments show the primary purposes of evasive checks in
malware and goodware, and our main result highlights that 14% of
malware and 4% of goodware refrain from running if their evasive
controls detect a potential analysis environment. It is crucial to
consider these percentages when dealing with dynamic analysis
of Android apps and, thus, consider the bias introduced by evasive
controls, which this work sought to shed light on.

ACKNOWLEDGMENTS
We would like to express our sincere gratitude to Slasti Mormanti
for his invaluable support during the development of this paper.

This work has benefited from a government grant managed by
the National Research Agency under France 2030 with the reference
“ANR-22-PECY-0007”.

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

REFERENCES
[1] 2016. Android Hostile Environment Detection. https://github.com/Fuzion24/An

droidHostileEnvironmentDetection. Accessed December 12, 2023.
[2] 2018. Android Anti Debug. https://github.com/GToad/Android_Anti_Debug.

Accessed December 12, 2023.
[3] 2020. 3 ways to detect the SELinux status in Android natively. https://erev0s.c

om/blog/3-ways-detect-selinux-status-android-natively/. Accessed December
12, 2023.

[4] 2021. Anti Debug and Memory Dump. https://github.com/darvincisec/AntiDeb
ugandMemoryDump. Accessed December 12, 2023.

[5] 2021. GriftHorse Android Trojan Steals Millions from Over 10 Million Victims
Globally. https://www.zimperium.com/blog/grifthorse-android-trojan-steals-
millions-from-over-10-million-victims-globally/. Accessed December 12, 2023.

[6] 2022. Cybercriminals attack users with 400,000 new malicious files daily. https:
//www.kaspersky.com/about/press-releases/2022_cybercriminals-attack-
users-with-400000-new-malicious-files-daily---that-is-5-more-than-in-2021.
Accessed December 12, 2023.

[7] 2022. frida-detection. https://github.com/muellerberndt/f rida-detection.
Accessed December 12, 2023.

[8] 2022. Google Play Scraper. https://github.com/facundoolano/google-play-
scraper. Accessed December 12, 2023.

[9] 2023. Al-Khaser. https://github.com/LordNoteworthy/al-khaser. Accessed
December 12, 2023.

[10] 2023. Android Al-Khaser. https://github.com/eurecom-s3/AAl-Khaser. Accessed
December 12, 2023.

[11] 2023. Android Verified Boot 2.0. https://android.googlesource.com/platform/ex
ternal/avb/+/master/README.md. Accessed December 12, 2023.

[12] 2023. apkeep. https://github.com/EFForg/apkeep. Accessed December 12, 2023.
[13] 2023. AppLovin MAX. https://www.applovin.com/. Accessed December 12,

2023.
[14] 2023. Chartboost. https://support.chartboost.com/en. Accessed December 12,

2023.
[15] 2023. Flurry. https://www.flurry.com/. Accessed December 12, 2023.
[16] 2023. genuine. https://github.com/brevent/genuine. Accessed December 12,

2023.
[17] 2023. Ghidra. https://ghidra.re/. Accessed December 12, 2023.
[18] 2023. InMobi. https://www.inmobi.com/sdk. Accessed December 12, 2023.
[19] 2023. Magisk. https://github.com/topjohnwu/Magisk. Accessed December 12,

2023.
[20] 2023. mbc-markdown. https://github.com/MBCProject/mbc-markdown.

Accessed December 12, 2023.
[21] 2023. readelf. https://man7.org/linux/man-pages/man1/readelf .1.html. Accessed

December 12, 2023.
[22] Vitor Afonso, Anatoli Kalysch, Tilo Müller, Daniela Oliveira, André Grégio, and

Paulo Lício de Geus. 2018. Lumus: Dynamically uncovering evasive Android
applications. In Information Security: 21st International Conference, ISC 2018,
Guildford, UK, September 9–12, 2018, Proceedings 21. Springer, 47–66.

[23] Ashish Aggarwal and Pankaj Jalote. 2006. Integrating static and dynamic analysis
for detecting vulnerabilities. In 30th Annual International Computer Software and
Applications Conference (COMPSAC’06), Vol. 1. IEEE, 343–350.

[24] Aisha Ali-Gombe, Sneha Sudhakaran, Andrew Case, Golden G Richard III, Sencun
Zhu, Peiyi Han, Thenkurussi Kesavadas, Dawu Gu, Kehuan Zhang, XiaoFeng
Wang, et al. 2019. DroidScraper: a tool for Android in-memory object recovery
and reconstruction. In 22nd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2019). 547–559.

[25] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason
Nieh. 2011. Cells: a virtual mobile smartphone architecture. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles. 173–187.

[26] Simone Aonzo, Yufei Han, Alessandro Mantovani, and Davide Balzarotti. 2023.
Humans vs. machines in malware classification. Proc. of USENIX-23 (2023).

[27] Luciano Bello and Marco Pistoia. 2018. Ares: triggering payload of evasive
android malware. In Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems. 2–12.

[28] Harel Berger, Chen Hajaj, and Amit Dvir. 2020. Evasion is not enough: A case
study of android malware. In International Symposium on Cyber Security Cryp-
tography and Machine Learning. Springer, 167–174.

[29] Stefano Berlato and Mariano Ceccato. 2020. A large-scale study on the adoption
of anti-debugging and anti-tampering protections in android apps. Journal of
Information Security and Applications 52 (2020), 102463.

[30] Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor. 2017. Mirage: Toward
a stealthier and modular malware analysis sandbox for android. In Computer
Security–ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I 22. Springer,
278–296.

[31] Software Freedom Conservancy. 2023. QEMU. https://www.qemu.org/. Accessed
December 12, 2023.

[32] The MITRE Corporation. 2023. EvadeMe. https://attack.mitre.org/techniques/T1
633/001/. Accessed December 12, 2023.

[33] Cryptomathic. 2022. Virtualization/Sandbox Evasion: System Checks. https:
//www.cryptomathic.com/news-events/blog/app-hardening-for-mobile-
banking-and-payment-apps-emulator-detection. Accessed December 12, 2023.

[34] Yuning Cui, Yi Sun, and Zhaowen Lin. 2023. DroidHook: a novel API-hook based
Android malware dynamic analysis sandbox. Automated Software Engineering
30, 1 (2023), 10.

[35] Deshun Dai, Ruixuan Li, Junwei Tang, Ali Davanian, and Heng Yin. 2020. Parallel
space traveling: A security analysis of app-level virtualization in android. In
Proceedings of the 25th ACM Symposium on Access Control Models and Technologies.
25–32.

[36] Savino Dambra, Yufei Han, Simone Aonzo, Platon Kotzias, Antonino Vitale, Juan
Caballero, Davide Balzarotti, and Leyla Bilge. 2023. Decoding the Secrets of
Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature
Extraction, and Model Performance. arXiv preprint arXiv:2307.14657 (2023).

[37] Daniele Cono D’Elia, Emilio Coppa, Federico Palmaro, and Lorenzo Cavallaro.
2020. On the Dissection of Evasive Malware. IEEE Transactions on Information
Forensics and Security 15 (2020), 2750–2765.

[38] Wael F Elsersy, Ali Feizollah, and Nor Badrul Anuar. 2022. The rise of obfuscated
Android malware and impacts on detection methods. PeerJ Computer Science 8
(2022), e907.

[39] evilthreads669966. 2021. EvadeMe. https://github.com/evilthreads669966/evade
me. Accessed December 12, 2023.

[40] Farnood Faghihi, Mohammad Zulkernine, and Steven Ding. 2022. CamoDroid:
An Android application analysis environment resilient against sandbox evasion.
Journal of Systems Architecture 125 (2022), 102452.

[41] Parvez Faruki, Rati Bhan, Vinesh Jain, Sajal Bhatia, Nour El Madhoun, and
Rajendra Pamula. 2023. A Survey and Evaluation of Android-Based Malware
Evasion Techniques and Detection Frameworks. Information 14, 7 (2023), 374.

[42] Stichting Cuckoo Foundation. 2023. Cuckoo Sandbox. https://cuckoosandbox.or
g/. Accessed December 12, 2023.

[43] Jyoti Gajrani, Jitendra Sarswat, Meenakshi Tripathi, Vijay Laxmi, Manoj Singh
Gaur, and Mauro Conti. 2015. A robust dynamic analysis system preventing
SandBox detection by Android malware. In Proceedings of the 8th International
Conference on Security of Information and Networks. 290–295.

[44] Nicola Galloro, Mario Polino, Michele Carminati, Andrea Continella, and Stefano
Zanero. 2022. A Systematical and longitudinal study of evasive behaviors in
windows malware. Computers & Security 113 (2022), 102550.

[45] Tal Garfinkel, Keith Adams, Andrew Warfield, Jason Franklin, et al. 2007. Com-
patibility Is Not Transparency: VMM Detection Myths and Realities.. In HotOS.

[46] Genymobile. 2023. Genymotion. https://www.genymotion.com/. Accessed
December 12, 2023.

[47] Google. 2018. Protecting WebView with Safe Browsing. https://android-develo
pers.googleblog.com/2018/04/protecting-webview-with-safe-browsing.html.
Accessed December 12, 2023.

[48] Google. 2023. Configuring ART. https://source.android.com/docs/core/runtime/c
onfigure. Accessed December 12, 2023.

[49] Google. 2023. Google Safe Browsing Service. https://developer.android.com/de
velop/ui/views/layout/webapps/managing-webview#safe-browsing. Accessed
December 12, 2023.

[50] Google. 2023. Play Integrity API. https://developer.android.com/google/play/in
tegrity. Accessed December 12, 2023.

[51] Google. 2023. Protect against security threats with SafetyNet. https://developer.
android.com/training/safetynet. Accessed December 12, 2023.

[52] Skanda Hazarika. 2022. Xposed. https://www.xda-developers.com/best-xposed-
modules/. Accessed December 12, 2023.

[53] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. 2021. Safetynot: on
the usage of the safetynet attestation API in android. In Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and Services.
150–162.

[54] Irdeto. 2023. Denuvo Mobile Games Protection. https://irdeto.com/denuvo/mobi
le-games-protection/. Accessed December 12, 2023.

[55] Sainadh Jamalpur, Yamini Sai Navya, Perla Raja, Gampala Tagore, and
G Rama Koteswara Rao. 2018. Dynamic malware analysis using cuckoo sand-
box. In 2018 Second international conference on inventive communication and
computational technologies (ICICCT). IEEE, 1056–1060.

[56] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. 2014. Morpheus:
automatically generating heuristics to detect android emulators. In Proceedings
of the 30th Annual Computer Security Applications Conference. 216–225.

[57] Michael Kerrisk. 2021. xdr. https://man7.org/linux/man-pages/man3/xdr.3.html.
Accessed December 12, 2023.

[58] Brian Kondracki, Babak Amin Azad, Najmeh Miramirkhani, and Nick Nikiforakis.
2022. The droid is in the details: Environment-aware evasion of android sand-
boxes. In Proceedings of the 29th Network and Distributed System Security Sympo-
sium (NDSS).

[59] Lang Liu, Yacong Gu, Qi Li, and Purui Su. 2017. RealDroid: Large-Scale Evasive
Malware Detection on" Real Devices". In 2017 26th International Conference on

https://github.com/Fuzion24/AndroidHostileEnvironmentDetection
https://github.com/Fuzion24/AndroidHostileEnvironmentDetection
https://github.com/GToad/Android_Anti_Debug
https://erev0s.com/blog/3-ways-detect-selinux-status-android-natively/
https://erev0s.com/blog/3-ways-detect-selinux-status-android-natively/
https://github.com/darvincisec/AntiDebugandMemoryDump
https://github.com/darvincisec/AntiDebugandMemoryDump
https://www.zimperium.com/blog/grifthorse-android-trojan-steals-millions-from-over-10-million-victims-globally/
https://www.zimperium.com/blog/grifthorse-android-trojan-steals-millions-from-over-10-million-victims-globally/
https://www.kaspersky.com/about/press-releases/2022_cybercriminals-attack-users-with-400000-new-malicious-files-daily---that-is-5-more-than-in-2021
https://www.kaspersky.com/about/press-releases/2022_cybercriminals-attack-users-with-400000-new-malicious-files-daily---that-is-5-more-than-in-2021
https://www.kaspersky.com/about/press-releases/2022_cybercriminals-attack-users-with-400000-new-malicious-files-daily---that-is-5-more-than-in-2021
https://github.com/muellerberndt/frida-detection
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://github.com/LordNoteworthy/al-khaser
https://github.com/eurecom-s3/AAl-Khaser
https://android.googlesource.com/platform/external/avb/+/master/README.md
https://android.googlesource.com/platform/external/avb/+/master/README.md
https://github.com/EFForg/apkeep
https://www.applovin.com/
https://support.chartboost.com/en
https://www.flurry.com/
https://github.com/brevent/genuine
https://ghidra.re/
https://www.inmobi.com/sdk
https://github.com/topjohnwu/Magisk
https://github.com/MBCProject/mbc-markdown
https://man7.org/linux/man-pages/man1/readelf.1.html
https://www.qemu.org/
https://attack.mitre.org/techniques/T1633/001/
https://attack.mitre.org/techniques/T1633/001/
https://www.cryptomathic.com/news-events/blog/app-hardening-for-mobile-banking-and-payment-apps-emulator-detection
https://www.cryptomathic.com/news-events/blog/app-hardening-for-mobile-banking-and-payment-apps-emulator-detection
https://www.cryptomathic.com/news-events/blog/app-hardening-for-mobile-banking-and-payment-apps-emulator-detection
https://github.com/evilthreads669966/evademe
https://github.com/evilthreads669966/evademe
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://www.genymotion.com/
https://android-developers.googleblog.com/2018/04/protecting-webview-with-safe-browsing.html
https://android-developers.googleblog.com/2018/04/protecting-webview-with-safe-browsing.html
https://source.android.com/docs/core/runtime/configure
https://source.android.com/docs/core/runtime/configure
https://developer.android.com/develop/ui/views/layout/webapps/managing-webview#safe-browsing
https://developer.android.com/develop/ui/views/layout/webapps/managing-webview#safe-browsing
https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity
https://developer.android.com/training/safetynet
https://developer.android.com/training/safetynet
https://www.xda-developers.com/best-xposed-modules/
https://www.xda-developers.com/best-xposed-modules/
https://irdeto.com/denuvo/mobile-games-protection/
https://irdeto.com/denuvo/mobile-games-protection/
https://man7.org/linux/man-pages/man3/xdr.3.html

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

Computer Communication and Networks (ICCCN). IEEE, 1–8.
[60] Check Point Software Technologies LTD. 2017. CuckooDroid. https://github.c

om/idanr1986/cuckoo-droid. Accessed December 12, 2023.
[61] Jining Luohe Network Technology Co. Ltd. 2020. VirtualApp. https://github.c

om/asLody/VirtualApp Accessed online: December 12, 2023.
[62] Tongbo Luo, Cong Zheng, Zhi Xu, and Xin Ouyang. 2017. Anti-plugin: Don’t let

your app play as an android plugin. Proceedings of Blackhat Asia (2017).
[63] Lorenzo Maffia, Dario Nisi, Platon Kotzias, Giovanni Lagorio, Simone Aonzo,

and Davide Balzarotti. 2021. Longitudinal Study of the Prevalence of Malware
Evasive Techniques. arXiv preprint arXiv:2112.11289 (2021).

[64] Dominik Maier, Tilo Müller, and Mykola Protsenko. 2014. Divide-and-conquer:
Why android malware cannot be stopped. In 2014 Ninth International Conference
on Availability, Reliability and Security. IEEE, 30–39.

[65] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, Annamalai Narayanan,
Yang Liu, Jie Zhang, and Tieming Chen. 2016. Mystique: Evolving android
malware for auditing anti-malware tools. In Proceedings of the 11th ACM on Asia
conference on computer and communications security. 365–376.

[66] Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. 2021. You
shall not repackage! demystifying anti-repackaging on android. Computers &
Security 103 (2021), 102181.

[67] Najmeh Miramirkhani, Mahathi Priya Appini, Nick Nikiforakis, and Michalis
Polychronakis. [n. d.]. Spotless sandboxes: Evading malware analysis systems
using wear-and-tear artifacts. In 2017 IEEE Symposium on Security and Privacy
(SP). 1009–1024.

[68] Samrah Mirza, Haider Abbas, Waleed Bin Shahid, Narmeen Shafqat, Mariagrazia
Fugini, Zafar Iqbal, and Zia Muhammad. 2021. A malware evasion technique
for auditing android anti-malware solutions. In 2021 IEEE 30th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). IEEE, 125–130.

[69] Dario Nisi, Antonio Bianchi, and Yanick Fratantonio. 2019. Exploring {Syscall-
Based} Semantics Reconstruction of Android Applications. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). 517–531.

[70] NowSecure. 2023. Frida. https://frida.re/. Accessed December 12, 2023.
[71] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.

2009. A fistful of red-pills: How to automatically generate procedures to detect
CPU emulators. In Proceedings of the USENIX Workshop on Offensive Technologies
(WOOT), Vol. 41. 86.

[72] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis. 2014. Rage against the virtual machine: hindering dynamic
analysis of android malware. In Proceedings of the seventh european workshop on
system security. 1–6.

[73] Andrey Petukhov and Dmitry Kozlov. 2008. Detecting security vulnerabilities in
web applications using dynamic analysis with penetration testing. Computing
Systems Lab, Department of Computer Science, Moscow State University (2008),
1–120.

[74] pjlantz. 2019. DroidBox. https://github.com/pjlantz/droidbox. Accessed
December 12, 2023.

[75] Zhengyang Qu, Shahid Alam, Yan Chen, Xiaoyong Zhou, Wangjun Hong, and
Ryan Riley. 2017. DyDroid: Measuring dynamic code loading and its security
implications in Android applications. In 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 415–426.

[76] rednaga. 2023. APKiD. https://github.com/rednaga/APKiD. Accessed December
12, 2023.

[77] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022.
Deep reinforcement learning for black-box testing of android apps. ACM Trans-
actions on Software Engineering and Methodology (2022).

[78] Antonio Ruggia, Andrea Possemato, Alessio Merlo, Dario Nisi, and Simone Aonzo.
2023. Android, Notify Me When It Is Time To Go Phishing. In EUROS&P 2023,
8th IEEE European Symposium on Security and Privacy.

[79] Onur Sahin, Ayse K Coskun, and Manuel Egele. 2018. Proteus: Detecting an-
droid emulators from instruction-level profiles. In Research in Attacks, Intrusions,
and Defenses: 21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings 21. Springer, 3–24.

[80] samohyes. 2018. Anti-vm-in-Android. https://github.com/samohyes/Anti-vm-
in-android. Accessed December 12, 2023.

[81] scottyab. 2021. RootBeer. https://github.com/scottyab/rootbeer. Accessed
December 12, 2023.

[82] Silvia Sebastián and Juan Caballero. 2020. Avclass2: Massive malware tag ex-
traction from av labels. In Annual Computer Security Applications Conference.
42–53.

[83] OWASP Mobile Application Security. 2023. Android Anti-Reversing Defenses.
https://mas.owasp.org/MASTG/Android/0x05j-Testing-Resiliency-Against-
Reverse-Engineering/. Accessed December 12, 2023.

[84] Luman Shi, Jianming Fu, Zhengwei Guo, and Jiang Ming. 2019. " Jekyll and
Hyde" is Risky: Shared-Everything Threat Mitigation in Dual-Instance Apps.
In Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services. 222–235.

[85] IBM Mobile Enterprise Software. 2018. evadroid. https://bitbucket.org/IBMmobil
e/evadroid/src/master/. Accessed December 12, 2023.

[86] Wenna Song, Jiang Ming, Lin Jiang, Yi Xiang, Xuanchen Pan, Jianming Fu, and
Guojun Peng. 2021. Towards transparent and stealthy android os sandboxing
via customizable container-based virtualization. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2858–2874.

[87] San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. 2015. Android rooting:
Methods, detection, and evasion. In Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices. 3–14.

[88] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and Lorenzo Cavallaro. 2015.
Copperdroid: Automatic reconstruction of android malware behaviors. In NDSS
Symposium 2015. 1–15.

[89] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 1–41.

[90] DroidPlugin Team. 2020. DroidPlugin. https://github.com/DroidPluginTeam/D
roidPlugin Accessed online: December 12, 2023.

[91] Timothy Vidas and Nicolas Christin. 2014. Evading android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM symposium on Information,
computer and communications security. 447–458.

[92] VirusTotal. 2023. VirusTotal. https://www.virustotal.com. Accessed December
12, 2023.

[93] Jue Wang, Yepang Liu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2016. E-greenDroid:
effective energy inefficiency analysis for android applications. In proceedings of
the 8th Asia-Pacific Symposium on Internetware. 71–80.

[94] Yifang Wu, Jianjun Huang, Bin Liang, and Wenchang Shi. 2020. Do not jail
my app: Detecting the Android plugin environments by time lag contradiction.
Journal of Computer Security 28, 2 (2020), 269–293.

[95] Lei Xu, Guoxi Li, Chuan Li, Weijie Sun, Wenzhi Chen, and Zonghui Wang. 2015.
Condroid: a container-based virtualization solution adapted for android devices.
In 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering. IEEE, 81–88.

[96] Lok-Kwong Yan and Heng Yin. 2012. Droidscope: seamlessly reconstructing the
os and dalvik semantic views for dynamic android malware analysis.. In USENIX
security symposium. 569–584.

[97] Lei Zhang, Zhemin Yang, Yuyu He, Mingqi Li, Sen Yang, Min Yang, Yuan Zhang,
and Zhiyun Qian. 2019. App in the middle: Demystify application virtualization
in Android and its security threats. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 3, 1 (2019), 1–24.

[98] Cong Zheng, Tongbo Luo, Zhi Xu, Wenjun Hu, and Xin Ouyang. 2018. Android
plugin becomes a catastrophe to Android ecosystem. In Proceedings of the First
Workshop on Radical and Experiential Security. 61–64.

https://github.com/idanr1986/cuckoo-droid
https://github.com/idanr1986/cuckoo-droid
https://github.com/asLody/VirtualApp
https://github.com/asLody/VirtualApp
https://frida.re/
https://github.com/pjlantz/droidbox
https://github.com/rednaga/APKiD
https://github.com/samohyes/Anti-vm-in-android
https://github.com/samohyes/Anti-vm-in-android
https://github.com/scottyab/rootbeer
https://mas.owasp.org/MASTG/Android/0x05j-Testing-Resiliency-Against-Reverse-Engineering/
https://mas.owasp.org/MASTG/Android/0x05j-Testing-Resiliency-Against-Reverse-Engineering/
https://bitbucket.org/IBMmobile/evadroid/src/master/
https://bitbucket.org/IBMmobile/evadroid/src/master/
https://github.com/DroidPluginTeam/DroidPlugin
https://github.com/DroidPluginTeam/DroidPlugin
https://www.virustotal.com

Unmasking the Veiled:
A Comprehensive Analysis of Android Evasive Malware ACM AsiaCCS 2024, 1-5 July 2024, Singapore

Figure 2: Kernel Density Estimation for the timing of DET
and IET controls in malware and goodware.

A APPENDIX

Table 2: Category to system calls

Syscall category System call

ACCESS_FILE (f)access(at), open(at), *stat*,
readlink(at), getdents64

EXE_COMMAND execve(at)

PROCESS_MNG
clone, (v)fork, kill, wait(id |4),
ptrace, pipe(2), tee, mq_*, sched_*,
rt_sigaction, signalfd(64)

FS_MNG

getcwd, (f)chdir, renameat(2), mkdir(at),
rmdir, *link*, *chmod*, mknod(at),
inotify_add_watch, fanotify_mark,
(p)poll, *xattr, flock, mount

NETWORK

socket, binde, accept(4), connect,
getsockname, listen, getpeername,
sendto, recvfrom, sendmsg, socketpair,
setsockopt

SYSTEM reboot, getcpu, sys*, uname,
time*, clock_*

IDENTITY *gid, *pid, *uid, *sid
MEMORY_MNG mmap, *mprotect

Table 3: Mapping between SafetyNet Binder and high-level
security mechanisms.

Id High-level check Retrived data

7 Attestation API AttestationResponse

4

Verify Apps API
VerifyAppsUserResponse14

5
HarmfulAppsResponse13

12 Safe Browsing API InitSafeBrowsingResponse
3 SafeBrowsingResponse

6 reCAPTCHA API RecaptchaTokenResponse

Listing 1: Android kernel modification to enable system call
tracepoint in an external kernel module.
1 // register_trace_sys_enter
2 EXPORT_TRACEPOINT_SYMBOL_GPL (s y s _ e n t e r) ;
3 // register_trace_sys_exit
4 EXPORT_TRACEPOINT_SYMBOL_GPL (s y s _ e x i t) ;

ACM AsiaCCS 2024, 1-5 July 2024, Singapore Ruggia et al.

Table 4: Best correlation between evasive techniques and packers.

Packer % packed apps # evasive Most used evasive

APKProtect 5.2% 43 EMU-SYSTEM-PROPS 92%
ApkEncryptor 4.0% 55 SIGNATURE-ZIP-FILE 87%
Baidu 5.8% 37 HOOK-PROC_ART-MAPS 87%
Bangcle 3.3% 9 HOOK-FRIDA-FILE 65%
Bangcle (SecShell) 1.6% 12 HOOK-FRIDA-FILE 84%
DexProtector 4.1% 51 HOOK-STACKTRACE-API 88%
DexProtector for AIDE 1.2% 48 NET-SSL_PINNING-API 88%
Ijiami 4.3% 27 SIGNATURE-ZIP-FILE 90%
Jiagu 43.0% 56 HOOK-FRIDA-FILE 69%
Mobile Tencent Protect 9.9% 43 HOOK-FRIDA-FILE 88%
MultidexPacker 5.3% 26 SIGNATURE-ZIP-FILE 100%
SecNeo.A 1.9% 24 HOOK-PROC_ART-MAPS 58%
Tencent’s Legu 2.3% 29 SIGNATURE-ZIP-FILE 93%
Unicom SDK Loader 5.1% 46 HOOK-STACKTRACE-API 50%

Table 5: Stats about trace comparison in evasive samples, all numbers are in percentage %

Malware Goodware

𝑅 = 𝐵 𝑅 ⊂ 𝐵
|𝐵 \ 𝑅 |

>
|𝑅 \ 𝐵 |

|𝐵 | > 0
∧

|𝑅 | = 0

𝑎𝑣𝑔
|𝑅 \ 𝐵 |

÷
|𝐵 \ 𝑅 |

𝑅 = 𝐵 𝑅 ⊂ 𝐵
|𝐵 \ 𝑅 |

>
|𝑅 \ 𝐵 |

|𝐵 | > 0
∧

|𝑅 | = 0

𝑎𝑣𝑔
|𝑅 \ 𝐵 |

÷
|𝐵 \ 𝑅 |

a11y 68.01% 10.70% 1.62% 0.00% 62.98 89.27% 4.43% 0.42% 0.00% 61.08
BR 85.90% 9.37% 0.65% 0.14% 93.84 92.38% 4.31% 0.00% 2.94% 0.00
CLI 90.78% 3.65% 1.82% 0.30% 97.22 98.19% 0.00% 1.20% 0.00% 100.0
CP 79.79% 13.28% 1.08% 0.03% 72.14 88.68% 6.23% 0.21% 0.21% 90.00
DAPI 73.60% 9.97% 6.96% 0.37% 83.01 95.56% 1.50% 0.06% 0.17% 100.0
DCL 86.92% 1.88% 0.21% 0.05% 87.50 80.22% 0.86% 0.00% 0.24% 0.00
FS 23.21% 10.47% 34.78% 0.00% 61.43 26.63% 5.69% 28.19% 0.00% 73.46
IPC 74.58% 10.77% 2.96% 0.25% 83.11 78.87% 9.73% 0.56% 0.45% 91.70
NET 48.50% 6.03% 31.48% 0.46% 87.45 29.74% 2.85% 52.45% 0.86% 93.93
PERM 80.37% 10.27% 1.68% 0.00% 83.72 80.01% 4.44% 1.92% 0.00% 90.74
SS 67.59% 25.35% 1.32% 0.03% 84.72 80.15% 4.54% 0.18% 0.00% 100.0

Table 6: Comparison with SOTA w.r.t. the anti-evasion, maintainability, and scalability criteria.

Requirement Container-Based Emulator-Based

Cells [25] Condroid [95] VPBox [86] VMI-based [88, 96] Framework
mod. [59, 74]

Hook-based
[30, 34, 40, 43, 60] DroidDungeon

Anti-evasion G# G# # G#
Maintenability # # # G# # G#
Scalability # # # G#

	Abstract
	1 Introduction
	2 Background
	3 Taxonomy of Android Evasive Controls
	3.1 Environment verification
	3.2 APK tampering verification
	3.3 High-level verification
	3.4 Behaviors and Methods

	4 DroidDungeon
	4.1 CustomKernelModule: Implementation Details, Technical Challenges & Solutions
	4.2 UserspaceCompanionApp
	4.3 Anti-evasive Policy

	5 Experimental Setup
	6 Results of the measurement
	6.1 Prevalence
	6.2 Evasive w.r.t. Packers & Protectors
	6.3 BlueRun vs. RedRun

	7 Related Work on Android Sandboxes
	8 Limitations and Conclusion
	Acknowledgments
	References
	A Appendix

