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ABSTRACT
While internet communications have been originally all in the clear,
the past decade has seen secure protocols like TLS becoming perva-
sive, significantly improving internet security for individuals and
enterprises. However, encrypted traffic raises new challenges for
intrusion detection and network monitoring. Existing interception
solutions such as Man-In-The-Middle are undesirable in many set-
tings: they tend to lower overall security or are challenging to use at
scale. We present X-Ray-TLS, a new target-agnostic TLS decryption
method that supports TLS 1.2, TLS 1.3, and QUIC. Our method relies
only on existing kernel facilities and does not require a hypervisor
or modification of the target programs, making it easily applicable
at scale. X-Ray-TLS works on major TLS libraries by extracting TLS
secrets from process memory using a memory changes reconstruc-
tion algorithm. It works with TLS hardening, such as certificate
pinning and perfect forward secrecy. We benchmark X-Ray-TLS
on major TLS libraries, CLI tools, and a web browser. We show
that X-Ray-TLS significantly reduces the manual effort required to
decrypt TLS traffic of programs running locally, thus simplifying
security analysis or reverse engineering. We identified several use
cases for X-Ray-TLS, such as large-scale TLS decryption for CI/CD
pipelines to support the detection of software supply chain attacks.

CCS CONCEPTS
• Networks→ Security protocols; • Security and privacy→
Software reverse engineering.
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1 INTRODUCTION
Modern encryption protocols provide confidentiality and integrity
guarantees essential for commercial and private communications
over untrusted channels (e.g., the Internet). In 2022, 97% of pages
loaded by Google Chrome in the USA were over HTTPS [20].
In addition to web traffic (HTTPS), many application protocols
have adopted encryption, for example, emails (IMAP/SMTP) using
STARTTLS or implicit TLS, VoIP, DNS over HTTPS, Virtual Pri-
vate Networks (VPN), and QUIC. While some protocols use custom
encryption, most rely on Transport Layer Security (TLS). Traffic en-
cryption has become pervasive, greatly enhancing communications
security; however, this also raises new challenges for network mon-
itoring and intrusion detection. This creates, for example, a blind
spot for Intrusion Detection Systems (IDS) between the internet
and internal company systems [46]. Multiple solutions have been
proposed to allow network analysis of encrypted traffic. However,
they are often tricky to use in practice as they require target cooper-
ation or break the TLS security model, which is often unacceptable.
Therefore, network administrators must use context-specific so-
lutions that are often costly to implement and maintain or even
impossible to deploy at scale. In this work, we focus on the decryp-
tion of TLS sessions in a generic and non-invasive way to allow
easy real-world usage, e.g., in corporate networks. We propose a
generic mechanism for key extraction from the process memory
to solve this problem. Our approach relies on eBPF, an in-kernel
feature enabling the safe execution of privileged code, to identify
processes that start a TLS connection, taking a process memory
snapshot before and after the TLS key exchange. We then recover
secret keys from the difference between snapshots.

In this paper, we make the following scientific contributions:

• We highlight that previous approaches to TLS traffic inspec-
tion are undesirable in many settings.

• We propose a generic approach to capture key material in
memory with minimal intrusiveness, no static signatures,
and low overhead.

• We implement X-Ray-TLS, a tool that reliably collects TLS
key material on a Linux host that only relies on existing
kernel facilities, allowing easy, large-scale deployment.

• We evaluate X-Ray-TLS on different setups: major TLS li-
braries, CLI tools, and a web browser.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• We identify several use cases where X-Ray-TLS helps to
improve security (e.g., CI/CD pipelines)

The remainder of this paper is organized as follows. Section 2 de-
scribes how TLS protocol works, synthesizing existing approaches
and related work on TLS interception. Section 3 presents X-Ray-
TLS’ approach. In Section 4, we evaluate our approach on an exten-
sive dataset of TLS clients and describe some of its limitations. In
Section 5, we detail real-world use cases of X-Ray-TLS and com-
pare existing interception solutions. Section 6 concludes on TLS
interception approaches and describes potential improvements.

2 BACKGROUND
2.1 TLS Protocol
Transport Layer Security (TLS) is a widely used client-server pro-
tocol that provides confidentiality, server authentication, integrity
protection, and, optionally, client authentication. TLS is often used
to secure communications over untrusted networks such as the
Internet. TLS is used to provide secure HTTP (HTTPS), virtual
private network security (e.g., OpenVPN), or industrial protocols
(e.g., DNP3), among others. TLS 1.3 is also used to secure QUIC [25],
a network transport protocol announced by Google in 2013, which
is based on UDP. It provides layer 4 and layer 6 features as an all-
in-one replacement for TCP and TLS. Therefore, it aims to provide
faster session establishment by reducing required round-trips.

TLS is a transport security protocol that provides security guar-
antees only during transit. Therefore, the local security on each
channel side (i.e., client and server) is outside its scope. There-
fore, accessing encrypted content while having complete control
of either client or server is not considered a security vulnerability
of TLS. TLS 1.0 was first defined in 1999 as an upgrade of SSLv3
(Secure Sockets Layer). Since then, TLS 1.1 (2006), TLS 1.2 (2008),
and TLS 1.3 (2018) have been defined. As of 2022, only TLS 1.2
and TLS 1.3 should be used. Older versions are deprecated and not
supported by major web browsers (e.g., Firefox, Chrome).

A TLS session starts with a handshake. The TLS handshake aims
to agree on a shared secret between the client and the server over an
untrusted channel. First, the client sends 1 a ClientHello message
advertising the supported TLS version, a random number (client
random), and a list of supported cipher suites. The server answers
2 with a ServerHello packet containing the chosen TLS version,
a random number (server random), and the chosen cipher suite.
The following packets are encrypted using handshake-specific keys
agreed upon during the initial ClientHello/ServerHello exchange
using the ECDHE algorithm. The client will verify that the server
certificate is signed by a trusted (i.e., in client trust store) Certificate
Authority. Furthermore, the certificate contains a Subject field. It
represents server names protected by the TLS certificate (e.g., exam-
ple.com, www.example.com, *.apps.examples.com). The certificate
is valid only if the requested hostname matches the certificate’s
Subject. It is up to certificate authorities to ensure that a certificate
requester owns all CNs matched by a certificate before issuing the
certificate. Server certification validation ensures the client con-
nects to a legitimate server for the requested hostname. Then, the
client sends a final Finished message to indicate that the handshake
is finished and that future traffic must be encrypted using appli-
cation traffic secrets. In conclusion, TLS provides confidentiality,

integrity, and server authentication guarantees in transit over an
untrusted channel. Handshake for TLS 1.3 with only server-side au-
thentication is depicted in Figure 8. Beyond the TLS 1.3 handshake
we just described, various variants of TLS secure communication ex-
ist: TLS 1.2, session resumption, middlebox compatibility, or QUIC,
which reuses TLS 1.3 message flow. In the following section, we
describe the challenges when inspecting TLS traffic.

2.2 Related Work
TLS provides security guarantees that are essential to secure com-
munications. However, in some contexts, traffic must be decrypted
to ensure compliance, security, or optimization (e.g., cache). To
this end, multiple approaches were developed. Man-In-The-Middle
(MITM) places a proxy between the client and server. It will relay
traffic and impersonate servers from a client perspective. Therefore,
clients must trust fake certificates emitted by the proxy. Another
approach is to instrument (e.g., function hook, library replacement)
target program to directly retrieve plaintext traffic or disable secu-
rity checks (e.g., certificate validation). While this approach often
works, it is time-consuming and challenging to implement (e.g., stat-
ically linked binaries, large binaries) as it is program-specific. Coop-
erative approaches were developed to enable programs to log TLS
session keys for debugging. The de facto standard SSLKEYLOGFILE
environment variable allows dumping session keys to a text file.
However, support for this feature is limited and often disabled, as
it opens new security vulnerabilities. We detail the benefits and
limitations of each approach in Section 5.1. We present below TLS
inspection approaches in the literature.

Dolan-Gavitt et al. [10] proposed a framework based on PANDA
for memory forensics. They applied their work for TLS 1.2 session
decryption. Each target program must find a tap point that reads or
writes the TLSmaster secret. To this end, they used an instrumented
TLS server that saves the master secret; then, they used a string-
based search to identify the part of the program that wrote the
secret. Therefore, their method requires that the target program
allows connection to an arbitrary server (i.e., instrumented server).
They tried their approach on OpenSSL s_client, Chrome, and
Firefox, among others. For all programs in the experiment, they
found the tap point that wrote the master key. However, it is unclear
if programs should contain a unique tap point to write TLS keys.
Large software like Chrome or Firefox includes multiple subsystems
to establish TLS connections: fetching pages, checking updates,
account synchronization, downloading safe-browsing lists, etc. The
authors did not mention if they succeeded in decrypting all TLS
traffic or only a part of it. Furthermore, their approach requires the
target program to run in a hypervisor: they concede a 5x slowdown
over native execution. While this overhead is fine for some specific
analyses, it is not acceptable for deployment on production systems.

Taubmann et al. [46] propose TLSkex for extracting TLS keys
for processes running inside a virtual machine. They leverage Vir-
tual Machine Introspection (VMI) techniques to snapshot guest
memory, and they further reduce the search space using heuristics:
limit to memory pages that are writable and entropy-based lookup.
Furthermore, they use virtual network interfaces to slow down
(i.e., block for a short period) TLS packets to allow memory snap-
shots to happen. Their method works on TLS 1.2. However, in 2023,
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more than 90% of the traffic to the top content delivery network
provider Cloudflare is encrypted using TLS 1.3 or QUIC [7]. As
TLS 1.3 prevents downgrade attacks, their method can only be used
on 10% of Cloudflare’s traffic. Furthermore, TLS 1.3 uses 4 keys for
handshake and application traffic security instead of 1 master key
for TLS 1.2. Authors support their approach is useful to decrypt
TLS sessions of malicious programs. However, malware tends to act
differently when they detect they are running in a virtual machine,
e.g., they do not run their malicious payload or contact their C&C
servers [5]. In addition, they experiment with their method only
on small client programs (curl, wget, OpenSSL s_client) and one
server program (Apache2). Large programs such as web browsers
or web-based apps (e.g., Electron-based) may be significantly more
challenging, considering their large memory footprint. Finally, the
method has not been tested with simultaneous handshakes. How-
ever, parallel TLS connections are pervasive with such programs.
As TLSkex requires virtualization, large-scale deployment would
significantly impact performance since virtualization implies a 5
times slowdown [10].

Nubeva [24] is a commercial product that allows automated
decryption of TLS traffic in cloud-native environments. To this end,
an agent must be installed on each virtual machine running TLS
clients. They claim to support TLS 1.2 and TLS 1.3. At the start of
the TLS session, the agent extracts the TLS session keys from the
process memory. Their approach relies on a signature database to
locate keys in process memory. The signature database contains
memory patterns, such as memory content located before or after
session secrets, for known programs. Therefore, a signature must
exist for the target program. If no signature is found, TLS sessions
cannot be decrypted. It is unclear whether the signature applies
to the TLS library or the whole target software. To generate new
signatures, Nubeva would need access to the target program for
inspection, which is not always desirable because of confidentiality
or intellectual property constraints. Furthermore, it is unclear if
they require the target program to start a TLS connection to a
complicit server to generate the signature (which is impossible
with some programs, e.g., hard-coded URLs). Finally, there is no
public insight into the manual work required to add support for a
new TLS client. While Nubeva has similarities with our approach,
Nuveba’s approach is not generic (i.e., it does not work on unknown
software), significantly increasing the efforts required to use it at
scale.

DroidKex [45] provides a method for fast data extraction from
process memory applied to Android applications. They demonstrate
their ability to extract TLS ephemeral keys without prior knowledge
of memory structure. However, Android applications tend to have a
smaller memory footprint than desktop apps. Furthermore, the TLS
libraries ecosystem is reduced compared to libraries available for
desktop operating systems. Therefore, this method does not seem
directly applicable to large programs like browsers.

An ideal method would work on TLS 1.2, TLS 1.3, and QUIC.
Furthermore, it should not require the target program to run in a vir-
tual machine or program modification. Finally, the method should
be generic to work on many software, including large programs
such as web browsers.

3 X-RAY-TLS’ APPROACH
X-Ray-TLS allows inspection of TLS sessions made by local pro-
grams. We applied our approach to TLS clients. No fundamental
limitation prevents the application of the same approach on TLS
server programs. However, in the context of the use cases detailed
in Section 5.2, we commonly do not have access to the TLS server
(e.g., remote server over the Internet). Therefore, we focused on
extracting TLS session keys from TLS libraries used in client mode.
For TLS 1.3, inspection targets only application traffic (i.e., not
handshake traffic). Our approach works as follows. When a TLS
handshake starts, the process initiating the connection is frozen
(i.e., SIGSTOP), its memory is dumped, and the process is released
(i.e., SIGCONT). We only dump writable memory regions as TLS
session keys cannot be stored in read-only memory areas. We hy-
pothesize that TLS clients are not re-mapping the memory region
containing TLS secrets from read-write to read-only during the
handshake. When experimenting on common TLS libraries (as de-
scribed in Section 4.1), we did not identify a TLS library that remaps
the memory region containing TLS keys during runtime, thus veri-
fying the hypothesis. Dumping target process memory requires root
privileges on the machine running the target TLS client program.
While root privileges would allow instrumenting the target program
(e.g., to retrieve plaintext using function hook), X-Ray-TLS allows
to achieve the same result with significantly less setup effort. When
the TLS handshake is completed (i.e., first ApplicationData TLS
record), the source process is frozen, memory is dumped, and the
process is released. The two memory dumps are used to generate a
memory difference (i.e., content added between the first and second
memory dumps), which is expected to contain the TLS secret keys.
Looking for session keys in the memory difference instead of the
full memory dump significantly reduces the search space (usually
from GB to KB). We end up with several key candidates as various
data is written between the beginning and end of the handshake,
such as TLS certificates and internal state updates. Finally, we do
an optimized exhaustive key search on key candidates.

We leverage eBPF to detect TLS connections and, therefore, can
identify arbitrary TLS sessions without requiring intrusive instru-
mentation, like program instrumentation or loading a custom Linux
kernel module. X-Ray-TLS requires eBPF features added in Linux
kernel 4.4 (released in 2016), so it can be used on systems with
kernel 4.4 and above. eBPF lets us map network sockets (IPs/ports
tuple) with the PID. Tshark is Wireshark’s command line interface
(CLI). It implements dissectors for TLS (from TLS 1.0 to TLS 1.3),
among many other protocols. We leverage tshark for network traf-
fic monitoring (i.e., dumping traffic to PCAP files) and brute force
key candidates without re-implementing the TLS stack. Finally, we

Method Fully generic Require hypervisor
Dolan-Gavitt et al. [10] no yes

TLSkex [46] yes yes
Nubeva [24] no no
X-Ray-TLS yes no

Table 1: Comparison of methods that extract TLS keys from
process memory.
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Target program TLS server

(54235, 192.168.1.12, 443,142.250.179.78)

PID (sport, saddr, dport, daddr)

PCAP files with TLS keys inserted

MemoryDiff

KeyFinder module

Memdiff module

Network analyzer module
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eBPF events
ClientHello
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[...] PCAP

.../dump.pcap
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Figure 1: Overview of X-Ray-TLS architecture. Memdiff module computes the memory changes between the beginning and
end of the handshake. Network Analyzer dumps network traffic to PCAP files. KeyFinder looks for secrets in the memory
diff. Session decryption works as follows: (1) detection of the TLS session; (2) target process memory is dumped twice; (3)
memory changes between dumps are saved; (4) key candidates are generated using heuristics, and then an exhaustive search is
performed.

leverage Docker to provide an all-in-one, easy-to-use tool that can
be used in corporate and research environments.

We detail in Section 3.1 how we detect TLS sessions and map
them to the source program. Then, we detail in Section 3.2 how
to generate key candidates from memory snapshots. Finally, Sec-
tion 3.3 details how to test key candidates and find session keys.

3.1 TLS Session Detection
To intercept TLS sessions, we first need to reliably detect when
TLS sessions are started and identify the source program. To this
end, we leverage eBPF to safely run custom code in a privileged
context (e.g., kernel space). Therefore, our method does not require
a kernel module or patch. We use BCC [40] to compile and load
eBPF code and set up a shared ring buffer between eBPF code and a
managing user-space program. Ring buffers allow triggering events
in the user-space program from eBPF code efficiently. We detail
the performance of event triggering in Section 4.3. We attach ker-
nel probes [26] (kprobes) on two system calls: tcp_v4_connect for
TCP sockets and ip4_datagram_connect for UDP sockets. Kprobes
are breakpoints set on any kernel system call (syscall). Therefore,
they allow running eBPF code when a new TCP or UDP socket
opens. Kprobes are run before the execution of the syscall, while
kretprobes are run when the syscall returns. Kprobes allows re-
trieval of initial syscall arguments (before the system call might
modify them). Kretprobes allow retrieving results of the syscall,
e.g., socket remote peer information after socket initialization. We
used kernel probes to create the mapping between sockets and the
corresponding PID. Sockets are defined by the attributes of the con-
nection: source IP, source port, destination IP, and destination port.
Therefore, it allows us to map arbitrary packets on the network to
the originating process.

We also leverage eBPF to attach a function in SOCKET_FILTER
mode to a network interface. The interface should be the one used
by target programs. Then the function is executed for any packet
transmitted over the network interface. The processing time of the
function does not impact network latency as the function works on
a copy of the original packet. We detect if the packet contains an
Ethernet header (which is not mandatory, e.g., layer 3 tun interface)
for each packet. Then we parse TCP or UDP headers (i.e., for TLS
over TCP or QUIC). Finally, when relevant packets are detected,
we return events to user space over a ring buffer. Packet matching
will be used to trigger memory snapshots. Therefore, we have to
distinguish between initial and final snapshots. An initial snapshot
should be triggered before session keys are stored in memory. For
TLS, we identify ClientHello record by checking the first 6 bytes
of the packet. For QUIC, we identify QUIC Initial record. The
final snapshot should be triggered when session keys are stored
in memory. For example, this condition is valid when the client
sends packets encrypted with traffic secrets. Therefore, we detect
the first ApplicationData packet from client to server as the final
snapshot trigger. We store session states in a hash table to avoid
triggering a memory snapshot for each ApplicationData packet.

In conclusion, the eBPF code allows us to map each network
packet to its originating process and to trigger memory snapshots
before and after session secrets are written to memory. In the follow-
ing section, we will detail how we generate a list of key candidates
from memory snapshots.

3.2 Key Candidates Generation
X-Ray-TLS extracts TLS session secrets from the target process
memory. Unfortunately, there is no standard way to store such
keys in memory. Therefore, the in-memory structure of the keys
depends on the cryptography library used, and thememory location
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is execution-specific. A naive approach is to generate key candidates
from memory content using a sliding window of secret length over
memory. Finding naively 2 secrets in memory of size 𝑛 bytes have a
complexity of𝑛2: this is huge considering typical values of𝑛 ranging
fromMB to GB, i.e., 106 to 109. Therefore, the memory range should
be as small as possible. To this end, simple optimizations can be
used. First, the session keys should be in writable memory regions.
Dumping only writable regions (i.e., region with w flag) significantly
reduces dump size. Second, the keys are aligned with CPU word
size (often 8 bytes). Therefore, only memory addresses that can
be divided by the CPU word size will be considered. This helps
to divide by 8 the search space. Third, keys are high-entropy byte
sequences. Entropy filtering excludes low-entropy parts of memory
that are unlikely to be cryptographic keys. However, large programs
tend to have a large memory footprint. They often open multiple
concurrent TLS connections (which store in memory session keys,
certificate chains, etc.) or load in memory content that can have
high entropy (e.g., images, compressed archives). Therefore, entropy
filtering performs poorly in this context.

In this work, we propose to use those techniques but also fur-
ther reduce the search space by computing the difference between
two memory snapshots. Figure 2 illustrates a TLS handshake and
memory dumps. The target program starts by sending a ClientHello
packet over the network. Note that for TLS over TCP, we do not
consider the transport handshake (i.e., 3-way TCP handshake) as
part of the TLS handshake. We define 𝑇𝑆𝑒𝑐𝐺𝑒𝑛 as the duration be-
tween detecting the ClientHello packet by network traffic analysis
and when traffic secrets are stored in memory. Similarly, we define
𝑇𝑠𝑡𝑜𝑝 as the duration between the detection of the ClientHello and
when the target process is frozen to be snapshot. We discuss in
Section 3.2.1 different strategies for memory snapshotting. After
secrets are stored in memory, the program continues processing
and storing data (e.g., downloading a resource). Therefore, 𝑇𝑛𝑜𝑖𝑠𝑒
should be the lowest possible value. While a low 𝑇𝑛𝑜𝑖𝑠𝑒 is not re-
quired by design, it helps to reduce the number of key candidates
and, ultimately, the key search time.

The secrets will be present in the difference between the two
snapshots when the secrets do not appear in the first memory
snapshot (Initial dump) but are present in the second memory
snapshot (Final dump). This condition is validated if and only if
𝑇𝑠𝑡𝑜𝑝 < 𝑇𝑆𝑒𝑐𝐺𝑒𝑛 . We detail in Section 4.3 the validity of this hypoth-
esis. We emphasize that 𝑇𝑆𝑒𝑐𝐺𝑒𝑛 is larger than the round-trip time
of the network. Indeed, session secrets cannot be generated on the
client side before receiving ServerHello (among others) records.

Method First event Following events Intrapage
full-full full dump full dump yes
rst-partial RST partial dump no
rst-partial-rst RST partial dump + RST no
full-partial full dump + RST partial dump yes
full-partial-rst full dump + RST partial dump + RST yes

Table 2: Memory snapshot methodologies. Partial dumping
consists of dumping only the pages with dirty flags. The
notion of first event/following events is per PID.
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Tstop
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Figure 2: Memory dump cinematics in TLS handshake. 𝑇𝑠𝑡𝑜𝑝
represents the time to stop the process from a trigger event.
𝑇𝑆𝑒𝑐𝐺𝑒𝑛 represents the time to generate session secrets from
the initial trigger. 𝑇𝑛𝑜𝑖𝑠𝑒 represents the time between when
secrets are stored in memory and when the final snapshot is
performed.

3.2.1 Memory Snapshot Methods. Extracting memory writes with-
out a hypervisor is more challenging due to the lack of Virtual Ma-
chine Introspection (VMI) techniques. X-Ray-TLS dumps process
memory by copying pages along with page addresses by reading
pseudo-files /proc/{pid}/pagemap and /proc/{pid}/mem. For pro-
grams with large memory space or many TLS connections, doing
full memory dumps twice per TLS handshake tends to slow down
program execution. Therefore, we leverage a kernel feature to track
memory changes. Memory tracking [15] was initially introduced
in Linux kernel v3.9 (2013) to support process checkpoint-restore
project CRIU [14]. Soft-dirty bit concept helps to track changed user
memory pages between a reference point (reset) and a snapshot
point. Therefore, tracking memory changes requires two steps: (i)
reset soft-dirty bits (ii) read the pagemap and check the soft-dirty
bit for each page: if set, the respective page was written to since
the last reset. Therefore, in case of multiple memory dumps, the
following dumps will only dump modified pages since the initial
dump. This allows a significant reduction of the following dump
sizes. Therefore, we developed 5 memory snapshot strategies that
leverage the soft-dirty bit concept. Methods are presented in Ta-
ble 2. The intra-page column refers to the ability to do intra-page
differentiation. This is possible only when the first event comprises
a full dump. In most cases, memory pages are 4kB in size. Then in
the absence of intra-page differentiation, the memory difference
can only be made with a 4kB increment (i.e., adding an entire page
to the difference). Memory snapshot strategies are listed below:

• Full-full method takes 2 complete (i.e., all pages) process
memory dumps. This method is the most straightforward,
allowing fine-grained difference (i.e., intra-page). However,
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it has the most impact on the target program with a high
freeze time.

• Rst-partial method resets dirty flags on the first event and
then uses partial dumps (i.e., pages with soft-dirty flag only)
without resetting dirty flags. However, this approach tends
to accumulate pages to be dumped as soft-dirty flags are not
reset.

• Rst-partial-rst is similar to rst-partial with the addition of
resetting soft-dirty bits after every partial dump.

• Full-partial allows fine-grained differences at the expense of
a full initial dump.

• Full-partial-rst allows intra-page difference while reducing
freeze time by dumping soft-dirty pages only for events after
the first one. Resetting soft-dirty bits after partial dumps
helps to keep the number of pages to dump low. However, a
reconstruction algorithm must be used to retrieve memory
changes between two arbitrary dumps.

The dump strategy’s benefits and limitations will depend on the tar-
get program, particularly the number of TLS sessions. For programs
that do only one TLS session and exit, resetting soft-dirty flags after
the final dump will have no impact as the program will exit. We
detail in Section 4 the performance of memory dump strategies.

Figure 3 illustrates two overlapping handshakes. In the case of
a dumping strategy that resets soft-dirty bits after dump (namely
full-partial-rst and rst-partial-rst), special care should be taken in
case of overlapping handshakes. Indeed, memory dump 2 triggers
a reset of soft-dirty bits. Therefore, memory dump 3 will not
contain memory pages modified between memory dump 1 and
2 . If secrets of session 1 are written to memory between 1
and 2 , they will not appear in memory difference. This might
happen depending on network RTT and the start time difference
between session 1 and session 2. To avoid this problem, we develop a
reconstruction algorithm to identify memory changes between two
arbitrary snapshots (i.e., point in time) without requiring full dumps
for all events. For the context of Figure 3, memory changes for
session 1 are recovered as follows. Memory pages modified between
1 and 2 are present in partial dump 2 (and similarly for 3 ).
Memory changes are reconstructed by taking partial dump 2 and
overloading it with partial dump 3 . Overloading a memory dump
refers to replacing pages that appear in both dumps with pages of
the most recent dump. Generally, changes between dumps 𝑖 and 𝑗 ,
where 𝑗 > 𝑖 +1, are reconstructed by starting at dump 𝑖 +1 and then
overloading every dump by the next dump ranging from 𝑖 + 2 to 𝑗

(excluded).When the first dump for the session is not a full dump but
a partial dump, we go backward until we find a full dump or a reset.
To avoid having a continuously growing set of memory snapshots
for long-lived programs, a full dump along with an RST is done
when there is no in-flight TLS handshakes (as illustrated as 5 ). This
algorithm allows the reconstruction of memory changes between
two arbitrary points during process execution by only requiring
soft-dirty flags kernel feature (i.e., without fine-grained memory
tracking such as using a hypervisor). Memory changes between the
beginning and the end of the handshake are not only composed of
traffic secrets (that we are interested in). Indeed, memory changes
(i.e., memory difference) are often an order of magnitude bigger
than the secret size (e.g., kB compared to the secret size of 2 × 48

// Time
1 2 3 4

S1 start
full dump 

RST 
partial dump

S2 start S1 end S2 end 

RST 
partial dump

RST 
partial dump

RST 
full dump 

5

Figure 3: Illustration of changes reconstruction algorithm
with the full-partial-rst method. Memory snapshots differ-
ence for session 1 (S1) is represented using a green dotted
line. Memory snapshots difference for session 2 (S2) is repre-
sented using a red dotted line.

bytes). Therefore, we describe in the following section how we look
for secrets in memory differences.

3.3 Exhaustive Key Search
Heuristics help to reduce the key search space significantly. How-
ever, depending on the target program, we still end up with po-
tentially thousands of key candidates. We modified tshark to brute
force TLS session keys to test key candidates efficiently. This task
is managed by the KeyFinder module illustrated in Figure 1. Our
modified version of tshark takes a path to a binary file containing
key candidates (concatenated) and a path to a PCAP file containing
encrypted traffic. Tshark will read packet by packet the PCAP file,
and as soon as all required material is available (e.g., client random,
server random, cipher suite), a brute force loop will start. The brute
force loop stops when all secrets are found: client-to-server and
server-to-client traffic secrets for TLS 1.3 and master secret for
TLS 1.2. Finally, results are printed, and tshark exits. Our patch
to tshark is less than 200 lines and allows brute force TLS keys
without re-implementing a TLS decryption stack, which is complex
and challenging to implement correctly. This approach should also
simplify the implementation of new TLS versions or new protocols
in the future. The next section will evaluate X-Ray-TLS on different
settings.

4 EVALUATION
4.1 Benchmark
Experiments were done on a laptop with Intel(R) Core(TM) i7-
8665U CPU @ 1.90GHz with 16GB of RAM. The operating system
was Ubuntu 20.04.5 LTS with Docker 20.10.21. Software versions
(e.g., TLS library versions) are hardcoded in benchmark source files.
We present in the following section a benchmark of our tool on
different programs and contexts. Then we evaluate conditions for
X-Ray-TLS to work.

4.1.1 Baseline. We define a baseline approach as generating key
candidates from the memory contents using a sliding window of
secret length over the memory. The number of key candidates is
proportional to the size of the memory contents. Therefore, the
memory extent should be as short as possible. To this end, we con-
sider optimizations detailed in Section 3.2: dumping only writable
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regions, leveraging memory alignment, and excluding low-entropy
areas of memory. The entropy threshold is determined using Fig-
ure 11. We will compare our method against this baseline.

4.1.2 TLS libraries. To ensure our approach works on major TLS
libraries, we leverage curl support for different TLS backends. This
allows us to easily test different TLS libraries with the same interface
(i.e., same CLI). We built curl using the following TLS libraries [41]:
OpenSSL, GnuTLS, NSS, WoflSSL, mBedTLS, and BearSSL. We have
not found studies that estimate the usage of each TLS library. Based
on discussions with experts and considering that software rarely
implements by themselves the TLS protocol, we estimate that the
6 libraries we tested represent a significant proportion of the TLS
libraries used by open-source and commercial software. We also
compile curl with QUIC support using GnuTLS. For each program
under test, we target 2 HTTPS URLs: a TLS 1.2-only server and a
TLS 1.3-capable server. We choose TLS servers we do not control
(i.e., on the internet) to highlight that X-Ray-TLS does not require
any server collaboration. As X-Ray-TLS supports different memory
snapshotting strategies, we benchmarked each strategy indepen-
dently. Finally, we end with a test matrix of TLS library × memory
snapshot strategy × URL. It shows that X-Ray-TLS can intercept
TLS sessions from all major TLS libraries listed above for TLS 1.2
and TLS 1.3. We benchmarked X-Ray-TLS on CLI programs: wget,
OpenSSL s_client, Python (requests module), and pip. We obtained
the same results as on curl: TLS secrets extraction is successful
for all snapshot strategies. To assess if our approach works on
QUIC, we manually check if QUIC secrets are in memory difference
generated by X-Ray-TLS when curl using the GnuTLS backend
connects to a QUIC server. We used a complicit QUIC server to
dump QUIC secrets. We have successfully validated the presence of
QUIC secrets in the memory difference, indicating that X-Ray-TLS
also works on QUIC. Therefore, all memory snapshot strategies
were successful in retrieving TLS secrets. However, they differ in
terms of key extraction speed.

4.1.3 Large programs. We applied both X-Ray-TLS and baseline ap-
proach on Firefox, a large software with a large memory footprint.
Our approach based on memory difference generates a search space
of 13MB compared to 41MB using the baseline approach. This is a
reduction by 70% of key search space, leading to reduced key search
time and smaller memory consumption. Therefore, X-Ray-TLS per-
forms significantly better than naive search on large programs.

4.1.4 Continuous Integration build server. Continuous Integration
(CI) is a software development practice that promotes running a
regular set of checks on code change (e.g., commit). In practice, a
CI orchestrator (e.g., Github Actions, Gitlab CI, Travis CI, Drone)
starts a new container that will execute a set of commands to en-
sure updated code still meet quality requirement. Common steps
are to download dependencies, compile source code and send arti-
facts to a remote registry. Continuous Integration systems are often
used to build artifacts that will later be deployed to production
systems. It is, therefore, a critical system for the security of the
overall infrastructure. We discuss in Section 5.2 security considera-
tions of CI/CD pipelines. CI builds are often managed directly by
development teams, and many software stacks are used (e.g., code
scanners, package managers, container image builders). Therefore,

existing TLS interception methods such as Man-In-The-Middle, SS-
LKEYLOGFILE, or instrumentation are not usable at scale as they
require deep modifications of CI builds, e.g., trusting a new CA
for all programs running in the build container, or are not easily
applicable to a wide range of programs (e.g., instrumentation, SS-
LKEYLOGFILE). Furthermore, existing solutions in the literature
require virtualization: this causes a slowdown of up to 5 times [10]
compared to the native execution.

To show to which extend X-Ray-TLS can be used to support
continuous integration security, we used [30] to runCI builds locally.
We focused on a Python-based project. The CI of the project installs
development dependencies (i.e., code linter), builds a Docker image,
and pushes it to a remote registry. All TLS connections made by
the build container were successfully inspected. Furthermore, TLS
inspection does not lead to a statistically significant build duration
increase. X-Ray-TLS allows us to detect:

• Information disclosure: pip package manager adds various
information in HTTP User-Agent header (e.g., in requests
to files.pythonhosted.org). The header value is a JSON
containing the kernel and OpenSSL versions (including patch
number), OS, and glib versions, among others. This allows
the remote HTTP server to detect if outdated packages
(i.e., that might be vulnerable) are in use.

• Build dependencies: we were able to identify and record all
resources fetched over the network. This helps to support
reproducible builds even if resources are not available in the
future (e.g., resources on the Internet). Being able to repro-
duce builds helps to detect altered artifacts by a malicious
CI server.

• Artifacts traceability: detecting uploads of artifacts helps to
identify the source of artifacts in the artifact registry. This
helps to ensure end-to-end traceability between CI servers,
artifact registry, and production systems.

• Support root cause analysis: in case of CI build failure, iden-
tifying the root cause from the build log may be challenging
(many different logging formats). Decrypting HTTPS traffic
allows the recovery of error messages in the HTTP body and
status codes directly by parsing HTTP packets. For instance,
we could identify that pip was trying to fetch a non-existing
package by checking for HTTP 404 responses.

Therefore, we show that X-Ray-TLS allows TLS traffic decryp-
tion of CI build containers in a simpler and easy-to-use approach
than existing solutions. Decrypting TLS traffic helps to identify
information disclosure, build dependencies, artifacts traceability,
or support root cause analysis in case of build failure.

4.2 Memory strategies comparison
After demonstrating different real-world scenarios of X-Ray-TLS,
we detail the performance impact of the different parameters, such
as the memory strategy. To compare the performance of snapshot
strategies, we target a Python-based program that opens 10 consec-
utive TLS connections. It stores 100kB of random data between TLS
sessions in memory to simulate parallel data processing. We de-
scribe below the interception performance of the 10th TLS session
made by the target program (even if all sessions were successfully
intercepted). We repeated the experiment 10 times. For programs
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Figure 4: Size of memory snapshots difference for each mem-
ory dump strategy. Lower is better. Methods with intra-pages
diff outperform per-page diff methods.

Figure 5: Duration of each step of session interception for
memory snapshots strategies. Lower is better.

that open only one TLS connection and exits, dump strategies can
be merged into 2 categories as shown in Figure 10. Figure 4 shows
memory snapshots difference size for each memory strategy. Fig-
ure 5 shows the duration of each step of TLS interception. Memory
strategies that reset soft-dirty flags have the lowest dump time be-
cause they only dump pages modified since the previous snapshot,
compared to rst-partial or full-partial, which accumulate modified
pages since the initial full dump. An entropy-filtering step is done
in Python on the hex-representation of memory diff. Therefore, the
performance of this step might be significantly improved with an
optimized module (e.g., C binding). Figure 6 shows the target pro-
gram freeze time. Reducing the number of pages to dump reduces
the target program freeze time and performance impact. However,
even the worst performing method (full-full) has frozen the target
program for up to 900ms, which is often negligible compared to the
total execution of the target program.

Figure 6: Target program freeze time for memory snapshots
strategies. Lower is better. Strategies with partial dumps -
only pages with soft-dirty bits - outperform methods with
one or two full dumps.

Figure 7: Number of key candidates for memory snapshot
strategies. Lower is better. Strategies with smaller diff tend
to have fewer key candidates. Note this is not linear because
of entropy filtering (i.e., larger diff does not necessarily lead
to a larger number of key candidates).

4.3 Measuring Time to Stop
As stated in Section 3.2,𝑇𝑆𝑒𝑐𝐺𝑒𝑛 is always greater than the network
RTT. Our approach requires 𝑇𝑠𝑡𝑜𝑝 < 𝑇𝑆𝑒𝑐𝐺𝑒𝑛 . We can either in-
crease 𝑇𝑆𝑒𝑐𝐺𝑒𝑛 or lower 𝑇𝑠𝑡𝑜𝑝 to ensure the condition is met. 𝑇𝑠𝑡𝑜𝑝
depends on the ClientHello detection method. X-Ray-TLS relies
on eBPF to monitor network traffic and push events to a Python
user-space program over a ring buffer. Then the Python program
will freeze the target program with a SIGSTOP signal to allow a
consistent memory snapshot. We use BCC’s ring_buffer_consume()
method to reduce latency by continuously polling the ring buffer at
the expense of higher CPU consumption. We estimate 𝑇𝑠𝑡𝑜𝑝 with
the following methodology: after opening a TCP socket, we start
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a TLS handshake using Python’s SSL module. We save the time
when the handshake was started using time.perf_counter_ns(). Then
we save time when the event is received from the eBPF code. Fi-
nally, we measure 𝑇𝑠𝑡𝑜𝑝 by taking the difference between the two
measured times. We measure with different 1-minute system load
averages [21] (from 1 to CPU count) generated using the stress tool.
The experiment shows that the time to stop is close to 1 ms when
the load average is smaller than the number of CPU cores. When
the system is overloaded (load average > CPU cores), the time to
stop increases to a dozen ms (95%-percentile < 35ms). Results are
shown in Figure 9. We believe this is because the scheduler does
not have enough resources to run tasks as soon as they are ready,
thus leading to delays. Considering overloading negatively impacts
the performance of applications, production systems are rarely
overloaded for long periods of time. Høiland-Jørgensen et al. [22]
measure latency variations on internet. They showed that minimal
RTT is above 20ms for 90% of Internet users. Therefore, for non-
overloaded systems, the approach will work for more than 90% of
internet users. However, Round Trip Time (RTT) might be very low
(e.g., on the local network, it can be less than 0.2ms). Optimizing
the pipeline to lower𝑇𝑠𝑡𝑜𝑝 might not be enough. Therefore, another
way to ensure the condition is met is to increase 𝑇𝑆𝑒𝑐𝐺𝑒𝑛 . This can
be done by artificially delaying ClientHello or ServerHello packets.
Delaying ClientHello packets brings an implementation challenge.
Indeed, ClientHello is used to trigger memory snapshots. Therefore,
delaying ClientHello will delay the initial memory snapshot trigger
as well. Therefore, it is preferable to delay ServerHello packets.
In the case of domains with multiple A/AAAA DNS records, TLS
clients might try to use a different IP address if the first IP does not
answer before TLS timeout (i.e., as defined in the program code).
This is unlikely to happen with a delay of a dozen milliseconds.
However, if it happens, this is not an issue, as the client will initiate
a new TLS session that will also be processed. We have verified us-
ing a proof of concept implementation that packet delaying might
be implemented using the Linux traffic control subsystem. Fur-
thermore, it allows fine-grained packet classification using eBPF
classifiers to target ServerHello records only.

4.4 Limitations
We describe in the following paragraphs the limitations and pos-
sible improvements to overcome them. Limitations can be either
fundamental, related to implementation choices, or weaknesses
(i.e., that can become limitations if TLS libraries evolve).

Key availability. By retrieving keys from process memory, our
method is limited to TLS libraries that store keys in memory. At
the time of writing, this is how major TLS libraries work. However,
libraries could update their threat model to protect against the ex-
traction of secrets from process memory. That would make key
extraction with X-Ray-TLS more challenging or even impossible.
We detail below mechanisms that can negatively impact the ability
of our method to work. TLS 1.3 RFC [23] encourages (SHOULD)
TLS implementations to remove secrets from memory as soon as
they are not required anymore: "Once all the values to be derived
from a given secret have been computed, that secret SHOULD be
erased." For instance, handshake secrets should be removed from
memory when the handshake ends. Likewise, old keys should be

removed from memory on traffic key rotation. Therefore, we expect
to find in memory only keys in use (i.e., application traffic secrets
after the handshake) or that will be used in the future (i.e., session
resumption) and not keys used in the past (i.e., pre-master secret,
master secret, handshake secrets). Instead of storing raw secrets
in memory, TLS clients can store XOR-ed versions of secrets in
memory. In a different context, this approach is used by rclone to
obfuscate credentials in the configuration file: secrets are XOR-ed
with a random constant key defined in rclone’s source code [42].
While it does not prevent an attacker from decrypting secrets, it
still forces the attacker to write custom code to handle rclone’s
approach. TLS libraries could use a similar approach by XOR-ing
TLS secrets with a random key. This key may even be randomly
generated at the TLS client process startup. However, if session
resumption is expected between runs, the random key should be
saved along with the session keys. This would significantly increase
the complexity of finding keys in memory as it will not be possible
anymore to test keys by trying to decrypt a TLS-encrypted packet.
However, the approach might impact the speed of cryptographic
operations. TRESOR [34] proposes storing AES symmetric keys
in processor registers to limit key availability to attackers. How-
ever, TRESOR does not protect keys during handshakes. Therefore,
promptly dumping the process’s memory can still allow for key
recovery. As Taubmann et al. [46] state, a program can outsource
cryptographic operations to another process and communicate over
a named pipe or equivalent mechanism. Therefore, the process ini-
tiating the connection does not store keys in memory. To overcome
this limitation, future work would identify linked processes (file
descriptor, pipe, shared memory, etc.) and then dump the memory
of all processes. Linux kernel allows offloading TLS operations di-
rectly to the kernel by using TLS offload feature [27]. Therefore,
keys will not be accessible from a user-space process. However,
a custom kernel will still allow access to keys at the expense of
an increased setup effort. Furthermore, code isolation mechanisms
such as Flicker [31] can run TLS code in a secure environment.
Hardware-enforced secure memory could also be considered to
secure keys in memory from other programs.

Performance impact. Ourmethod requires freezing the target pro-
gram for a short period to ensure a consistent memory dump. The
memory dump might be large for large multi-threaded programs,
leading to high freeze time.

Short-lived process. When the target program is short-lived, we
might not have enough time to dump process memory. In other
words, the process has gone before we could freeze it to dump mem-
ory content. We discovered this limitation with OpenSSL s_client
without any request body: the program exits immediately after the
TLS handshake. We were not able to find another example of this
limitation. However, opening a TLS connection without any data
transfer is unlikely to happen in real-world usage. This limitation
might be mitigated by freezing the target process directly from
eBPF or a kernel module.

Security impact. Our method requires to have root privilege on
the client machine. Therefore, only privileged users can access TLS
traffic in plaintext. When inspecting traffic from programs running
in Docker containers, our program binds to the container’s network
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namespace. This is required to intercept network-related system
calls (e.g., connect()). This approach might introduce vulnerabilities.
However, containers should not be considered secure sandboxes.
Therefore, the security impact should be low.

Session resumption. Session resumption is supported for TLS 1.2
if the initial session was decrypted. Indeed, the same master secret
will be reused. In the context of TLS 1.3, the session resumption
secret is independent of traffic secrets. Furthermore, we cannot
extract this secret before a session resumption: we can not test
key candidates to find the resumption key. Therefore, to support
session resumption for TLS 1.3, we should keep in memory all the
key candidates until session resumption. Unfortunately, this would
significantly increase the storage requirement of our method.

Proof of Concept implementation. We presented here a Proof of
Concept (PoC) implementation of X-Ray-TLS in Python with com-
plete support for TLS 1.2 and TLS 1.3. However, we did not fully
optimize the performance of this implementation to reduce process-
ing time (e.g., entropy filtering time, brute force time). Therefore,
performance measurements presented in Section 4 could be signifi-
cantly improved (e.g., by writing time-critical sections in C). QUIC
support is limited to memory snapshots, but the key oracle test has
not been implemented yet. Therefore, we ensured our approach
works with QUIC by testing if QUIC session secrets were present
in memory diff. In this specific experience, secrets were obtained
using a complicit server. QUIC supports live migration of endpoints
(e.g., client IP update) using a network-independent connection ID.
We did not implement session tracking; we only relied on session
tracking through network attributes (IPs, ports). Finally, X-Ray-TLS
allows retrieving application secrets only. While this is enough for
traffic inspection, Wireshark 3.6.7 cannot decrypt PCAP files with
such a key file (i.e., traffic secrets only). We provided a patch to
allow easy exploration of PCAP files with Wireshark. We make
our proof-of-concept implementation of X-Ray-TLS available at
https://github.com/eurecom-s3/x-ray-tls. While our implementa-
tion targets Linux, there is no fundamental limitation to porting
the approach to other systems (e.g., Windows, Darwin, OpenBSD)
as long as they provide the same underlying features: a mechanism
to detect the beginning of a TLS session and a mechanism to dump
process memory. As TLS is not directly aware of the IP version in
use (IPv4, IPv6), our approach can also be adapted to work for IPv6.

The following section will discuss existing TLS inspection meth-
ods and use cases where traffic inspection is desirable.

5 DISCUSSION
TLS inspection solutions are widely deployed [12] and thus raise
new questions about TLS security. This section compares existing
TLS inspection approaches considering their properties, merits, and
limitations. Then we present different use cases where TLS traffic
inspection is used.

5.1 TLS Inspection Solutions and their
Limitations

Different approaches were developed to allow TLS traffic inspec-
tion. Commercial products (e.g., Netskope [35], Avast [4]) provide

Method E2E security Generic Cooperative Setup effort
Man-In-The-Middle no yes yes low

HTTPS Proxy no no yes low
Instrumentation yes no no high
SSLKEYLOGFILE yes no yes low
Memory analysis yes yes no medium
Table 3: Comparison of TLS inspection method families.

easy-to-use monitoring solutions for TLS traffic to support secu-
rity systems such as intrusion detection, information leak detec-
tion, or web anti-tracking solutions. Open-source implementations
(e.g., MITMproxy [3], Snuffy [1]) provide interception solutions
mostly targeting advanced users. We describe in the following sec-
tions interception approaches along with their limitations.

TLS interception methods can be significantly different and can
be defined by the following properties:

(1) E2E security: no third-party have access to plaintext traffic.
(2) Generic: work on TLS libraries without prior knowledge of

library internals (e.g., without signature database or instru-
mentation).

(3) No cooperation: the target program is not required to coop-
erate with interception such as dumping TLS keys by itself
(i.e., SSLKEYLOGFILE), trusting a Certificate Authority, or
using another hostname. We further discuss cooperative vs.
malicious programs in Section 4.4.

(4) Protocols support: support forwidely used protocols: TLS 1.2,
TLS 1.3 and QUIC.

(5) TLS hardening: work with certificate pinning and Perfect
Forward Secrecy.

(6) Setup effort: does not require virtualisation or kernel modi-
fication. It can be deployed in minutes (e.g., containers).

(7) Decryption speed: allow near real-time analysis.
We summarize in Table 3 a comparison of the main properties of ex-
isting methods. X-Ray-TLS is part of memory analysis methods. We
observe that only methods based on memory analysis are generic
and do not require target program cooperation. In the following
sections, we will describe how existing approaches work.

5.1.1 Man-In-The-Middle (MITM). MITM approach involves an
attacker placing himself between the server and the client. The
attacker pretends to be a legitimate server to the client and a le-
gitimate client to the server. Therefore, this attack requires to be
an active network attacker. This can be achieved using several
methods, such as ARP spoofing, DNS poisoning, or tampering with
local network parameters. This approach is commonly used by
network security administrators that manage network and user de-
vices (e.g., corporate network with corporate laptops) or by locally
installed software such as anti-viruses. In this context, the attacker
is often called a MITM proxy. However, this method has serious
limitations in terms of usability and security.

MITM allows third-party software (i.e., other than client and
server) to access plaintext data. In comparison, some methods only
allow the recovery of encryption keys and store them securely,
which reduces the risk of plaintext leaks.

Clients must trust certificates emitted by the MITM proxy. They
are generated on the fly to match the requested common names and

https://github.com/eurecom-s3/x-ray-tls
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signed by the proxy’s CA. It requires adding the proxy’s CA to the
trust store to avoid breaking certificate validation (i.e., preventing
TLS connections from working). However, since some programs,
such as Java, rely on their own trust store, enumerating all the
relevant trust stores can be tiresome and lead to a significant issue
in environments with much different software, such as continuous
integration build servers.

Since the connection is now split into two connections, the client
relies blindly on the proxy to validate the real server certificate. In
the past, multiple examples of vulnerabilities introduced by MITM
proxies were discovered [12]. Kaspersky [38] used a 32-bit key to
identify generated certificates per website. Collisions enabled by-
passing server certificate validation by MITM proxy, thus allowing
MITM attacks between the proxy and the remote server. Avast
Antitrack acts as a MITM proxy to block website trackers and ads.
However, it was subject to many vulnerabilities [13], such as: not
checking server certificates (which then allows trivial MITM at-
tacks), downgrading TLS to version 1.0, and preventing the use of
modern encryption algorithms, e.g., that provide Perfect Forward
Secrecy. Therefore, when MITM is used, the client depends on the
MITM proxy for overall session security. MITM proxy’s CA allows
the generation of valid certificates for any website. Therefore, it
is sensitive and should be protected while generating on-the-fly
certificates. Unfortunately, Kaspersky [37] failed to do so correctly.
Finally, MITM will not work when a client uses certificate pinning.

Ensuring remote peer (i.e., the server from a client point of
view) is legitimate can be challenging. Indeed, attackers can obtain
valid certificates using a rogue or stolen certificate trusted by the
client [18, 44]. Furthermore, without certificate pinning, full TLS
compromise only requires the attacker to add a self-signed CA in
the trust store. To address these concerns, certificate pinning is a
client-side mechanism binding a host with a certificate fingerprint,
whether the certificate is considered valid or not, with respect to
the CA trust store. The expected certificate can refer to the server
or any certificate in the chain (notably the root certificate, i.e., CA’s
certificate). The association can be static (defined in TLS client
source code or local storage) or dynamic (discovered on the first
connection). This approach is often used when the same entity man-
ages the client and server (e.g., a mobile application connecting to
the owner’s servers). Special care should be taken when certificates
are rotated unexpectedly (i.e., revoked due to suspected compro-
mise). The HTTP Public Key Pinning (HPKP) [16] added certificate
pinning support to HTTP. However, this is now deprecated because
of its low adoption and the added complexity [39]. Instead of stor-
ing expected fingerprints in TLS clients or discovered on the first
connection, they can be stored in the DNS, as defined in DNS-based
Authentication of Named Entities (DANE [11]). It requires DNS
records to be signed by DNSSEC. In conclusion, certificate pining
prevents MITM by ensuring the client will receive a real server
certificate instead of another certificate by MITM proxy (although
valid). For instance, we discovered that VSCode’s extension Copilot
uses certificate pinning to connect to Microsoft’s cloud. Certificate
pinning is also widely used by Android applications [45].

5.1.2 HTTPS Proxy. Instead of opening a connection directly to
a remote server, the client can be modified to open a connection
to an operator-controlled domain that will act as a layer-7 proxy.

For instance, a Docker client will connect to docker.io to fetch
Docker images when using docker pull image. However, by using
docker pull dockerio.mydomain.com/image, the docker client
will connect to dockerio.mydomain.com, the operator-controlled
domain. The controlled domain should be an HTTP proxy to for-
ward HTTP requests and responses between the client and the
original domain. However, the main limitation of this approach is
that the target program must allow using the different hostnames
to access the resource. This is often impossible for features such as
telemetry or other hard-coded URLs of proprietary programs. This
approach breaks end-to-end security like with MITM, lowering
overall security [9].

5.1.3 Server Key Extraction. A TLS session can be decrypted by
retrieving session keys. Without Perfect Forward Secrecy (PFS),
session keys are encrypted using the server’s public key. Therefore,
by retrieving the server private key (e.g., owner cooperation, server
compromise), an attacker can decrypt TLS sessions. However, this
approach can only be used when the attacker controls the remote
server (e.g., internet website). Furthermore, this approach does not
work with TLS 1.3: PFS is optional in TLS 1.2 but mandatory in
TLS 1.3. To ensure PFS, TLS decorrelates the session secret from
the long-term secret (the server’s private key) using an (EC)DHE
key exchange signed using the private key. Thus, disclosing the
private key does not reveal session keys from past sessions.

5.1.4 Instrumentation. Instrumenting target programs almost al-
ways allows retrieving plaintext traffic. Function hooks can retrieve
plaintext traffic before the TLS library encrypts it. Instrumentation
can also reduce connection security (e.g., disable certificate pin-
ning [45]). However, function hooks are hard to use for programs
statically linked with symbol stripped [2]. Indeed, the memory off-
set of relevant functions in the code should be determined manually.
This is often the approach taken when performing malware analy-
sis, where obfuscations prevent the usage of any other approach,
and manual interaction becomes necessary. The instrumentation
is challenging for software with large memory footprints, such as
electron-based applications. Furthermore, the instrumentation is
specific to each target program, thus increasing the setup effort and
making it unrealistic for environments with many different soft-
ware. Finally, hooking program internals adds a risk of introducing
instabilities.

5.1.5 SSLKEYLOGFILE. Mozilla proposed the text-based file for-
mat NSS Key Log [33] to store TLS session secrets. It aims to provide
a standard format for logging TLS secrets across programs. Wire-
shark supports the NSS Key Log format to decrypt TLS traffic. With
compatible applications, dumping session keys is enabled using an
environment variable called SSLKEYLOGFILE (de facto standard en-
vironment variable name). However, target programs must support
the feature to allow TLS interception. It is up to programs to decide
whether they allow TLS key logging: this is a cooperative approach.
There is no guarantee that all TLS session secrets will be logged.
This feature is often disabled by default at compile time (e.g., Debian
packages). Indeed, it might lower TLS security. An unprivileged
process running under the same user can set the environment vari-
able (e.g., in shell startup script) and retrieve plaintext TLS traffic.
Therefore, it raises a major issue for large-scale deployment.
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5.1.6 Memory Analysis. TLS clients and servers must keep track
of session keys in secure and fast storage. As shown in Section 4,
major TLS libraries store TLS keys in process memory. X-Ray-TLS
leverages this property to extract keys directly from memory. How-
ever, each TLS implementation has its own code architecture and
way of storing keys in memory. Multiple TLS libraries are avail-
able [47], both open-source and closed-source. Having different TLS
implementations increases the overall resiliency as a vulnerability
in one implementation might not impact another implementation.
In the context of session decryption using process memory, it in-
creases the complexity as the method should be generic enough
to work with different TLS stacks. Furthermore, the TLS 1.3 spec-
ification specifies that secrets should be removed from memory
as soon as they are not required anymore. In particular, we ob-
served that this recommendation is followed by the widely-used
library OpenSSL. For instance, handshake secrets are removed from
memory as soon as the handshake is completed. Therefore, memory
snapshots should be done promptly to extract secrets. The operating
system can also protect process memory from undesirable access
with different mechanisms. For instance, Address Space Layout
Randomization (ASLR) or Akamai’s secure heap [8] help to pre-
vent unauthorized access to memory containing secrets. However,
these protections do not impact X-Ray-TLS as we leverage kernel
pseudo-file /proc/{pid}/mem to access process memory, which is
an interface provided by the kernel to provide access to processes
memory for users with enough permissions.

TLS clients may use multiple independent TLS connections to
fetch resources (e.g., web pages). Usually, there is one TLS connec-
tion per host (i.e., IP and port). For instance, Singanamalla et al.
show that loading one page generates an additional median of 16
TLS handshakes [43]. Therefore, interception methods should be
able to decrypt TLS sessions to allow near-real-time traffic analysis
quickly. Furthermore, TLS sessions can be started simultaneously
(i.e., in a lower delay than network round trip), so handshakes may
overlap. This might impact, especially for methods that rely on
incremental memory snapshots (e.g., using soft-dirty flags). The
following section will focus on different use cases where TLS in-
spection by extracting session keys from memory is desirable.

5.2 Use Cases
TLS inspection can be used in multiple contexts: security analysis,
to support root cause analysis, or to assist the program’s internal dis-
covery (e.g., reverse engineering). For corporate network analysis,
MITM is commonly used. Instrumentation is preferred for analysis
of obfuscated programs (e.g., malware) despite its complexity. Using
SSLKEYLOGFILE or HTTP proxy is the easiest option when target
programs are cooperative. Finally, for local non-cooperative pro-
grams, X-Ray-TLS is an appropriate option with little setup effort.
We detail below different contexts where X-Ray-TLS is relevant.

Security analysis of non-cooperative programs. For security and
privacy researchers, inspecting TLS traffic can help better under-
stand how programs work. Encrypted traffic from programs us-
ing TLS hardening, such as certificate pinning, cannot be easily
decrypted: MITM will not work, and instrumentation is a time-
consuming and complex task. For instance, Copilot [17] is an AI-
based peer programming assistant. It relies on Microsoft’s cloud

(over HTTPS) for making code predictions based on user devel-
opment workspace. Inspecting TLS traffic allows assessing what
data is sent to the cloud for code predictions. Similarly, Google
Chrome processes various personally identifiable information (PII)
as stated in their privacy policy [19]. Identifying which data is sent
to Google may be challenging. While Chrome currently supports
SSLKEYLOGFILE, there is no guarantee that all TLS keys are logged
(e.g., telemetry) or that they will continue to work in the future.

Container hosting. X-Ray-TLS allows container hosting providers
to decrypt customer traffic for security purposes without prior
knowledge or modification of the container. For instance, 5G net-
works are composed of containers managed by customers. Network
providers have little knowledge about what is running in contain-
ers. Decrypting TLS traffic without requiring any change from the
customer side and with minimum overhead can be leveraged to
detect service abuse, information leaks, or network threats.

Improving security of CI/CD pipelines. CI systems have become
a target [29, 36] for compromising production systems. Indeed,
gaining access to CI environment allows attackers to gain signif-
icant privileges such as altering production artifacts, accessing
pipeline secrets such as access tokens (that are very often over-
privileged [28]), or scanning the local network of CI/CD work-
ers nodes. For instance, dependency confusion [6] is an effective
method to run malicious code in a CI environment from the internet
(i.e., without access to source code management systems or internal
network). Furthermore, a one-time compromise of a CI/CD pipeline
can enable long-term compromise using a self-replicating mecha-
nism without leaving any trace in the source code [32]. Therefore,
there is a strong interest in solutions that allow the monitoring
of network traffic in CI/CD environments. As discussed in Sec-
tion 4.1.4, existing methods for TLS inspection are difficult to use
at scale, considering the high diversity of software used in CI/CD
pipelines. X-Ray-TLS can be deployed on CI/CD worker nodes to
allow decryption of TLS sessions made by CI/CD environments
without requiring any modification of pipelines and with low over-
head. Then, plaintext traffic can be saved for post-attack analysis or
forwarded to an intrusion detection system for live threat detection.

6 CONCLUSION AND FUTUREWORK
We presented X-Ray-TLS, a new approach for generic and auto-
mated inspection of TLS traffic of local programs. It requires little
setup effort and does not directly interact with the target program
for minimum intrusiveness. X-Ray-TLS works on major TLS li-
braries and large software such as Firefox, does not require virtual-
ization, and is fully generic to support current and future applica-
tions. Therefore, it directly applies to environments where many
different software are used, such as CI/CD environments. To sup-
port future work using data-driven approaches, X-Ray-TLS collects
pre-key and post-key memory content (i.e., content before and after
secret keys) and memory offset of keys for each run. Data-driven
approaches would help to reduce the search space by automatically
discovering key storage patterns and therefore help to focus the
key search on specific memory areas. Data-driven pattern detection
would combine the effectiveness of signature-based approaches
while still being generic.
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7 APPENDICES
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Figure 8: Illustration of TLS 1.3 handshake. TLS 1.3 requires
only one round-trip for cold-start compared to TLS 1.2.

Figure 9: Evolution of the time needed to stop a target pro-
gram (𝑇𝑑𝑢𝑚𝑝 ) concerning system 1-minute load average.

Figure 10: Illustration of memory difference size for each
memory snapshot strategy for curl with 1 TLS session. Strate-
gies can be divided into two groups: strategies with a full
dump allow intra-page granularity, while strategies without
a full dump are limited to page-by-page differences.

Figure 11: TLS secrets entropy per TLS library (computed on
hexadecimal representation, thus maximum entropy is 4).
We see a threshold (3.75) that can be used for entropy filtering.
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