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ABSTRACT

When performing program analysis, loops are one of the
most important aspects that needs to be taken into account.
In the past, many approaches have been proposed to analyze
loops to perform different tasks, ranging from compiler
optimizations to Worst-Case Execution Time (WCET)
analysis. While these approaches are powerful, they focus
on tackling very specific categories of loops and known loop
patterns, such as the ones for which the number of iterations
can be statically determined.

In this work, we developed a static analysis framework
to characterize and analyze generic loops, without relying
on techniques based on pattern matching. For this work,
we focus on the Android platform, and we implemented a
prototype, called CLAPP, that we used to perform the first
large-scale empirical study of the usage of loops in Android
applications. In particular, we used our tool to analyze a
total of 4,110,510 loops found in 11,823 Android applications.
As part of our evaluation, we provide the detailed results of
our empirical study, we show how our analysis was able to de-
termine that the execution of 63.28% of the loops is bounded,
and we discuss several interesting insights related to the per-
formance issues and security aspects associated with loops.
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INTRODUCTION

Over the past few decades, there has been an explosion
in the development and application of program analysis
techniques to achieve a variety of goals. Program analysis
has been used for compilation and optimization purposes, for
studying a variety of program properties, for detecting bugs,
vulnerabilities, malicious functionality, and, ultimately, for
understanding program behavior.
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When performing program analysis, one of most impor-
tant aspects that needs to be taken into account are loops.
Loops are undoubtedly one of the most useful and essential
constructs when writing programs. However, they are also
one of the most challenging ones to handle: In fact, even
answering the simplest questions (e.g., “Is a given loop going
to terminate?”) is, in the general case, undecidable.

Loops also have particular importance when applying
program analysis for optimization or security purposes. One
important observation is that, in certain scenarios, operations
in a loop might have a greater impact than operations which
are not part of any loop. In fact, consider, as an example, an
operation that is performance-intensive (e.g., a GUI-related
operation): while this functionality might not constitute a
problem when executed only occasionally, it could be deemed
as problematic when executed multiple times within a loop.
Similarly, in the case of security, consider a file deletion opera-
tion: this operation is not dangerous per se; however, it could
be deemed as such when the same functionality is executed
within a loop, as the application might have the potential
to wipe all of the user’s data. Another relevant scenario is
a malicious application that implements and executes an
infinite loop with the aim of draining the device’s battery.
While this malicious functionality might not constitute a
serious issue for the average user, it might have disastrous
effects when the application is used in security-critical
scenarios (e.g., by a soldier in the battlefield).

In the past, much research has been focused on the
analysis of loops. For example, research done in the con-
text of compiler-level optimizations has focused on the
analysis of loops to understand, for example, whether it is
possible to unwind their execution — a process known as
loop unrolling [29, 30, 7, 23]. In this scenario, the goal is
to optimize a program’s execution speed at the expense of
its binary size. Another thrust of research has focused on
Worst-Case Execution Time (WCET) analysis [22, 13, 21, 9],
which aims to statically determine how many times a loop
can be executed in the worst possible case. This analysis
is particularly relevant for the design of real-time systems,
where it is critically important to determine a conservative
time estimate of when a given function will terminate its
execution, so that it is possible to know when its output can
be considered as valid, and thus ready to be consumed.

While these approaches are powerful, they focus on
handling only very specific types of loops (e.g., the ones for
which all the relevant information is statically known), and
they would consider as out of scope all loops that do not
satisfy specific requirements. For example, consider a loop
for which the number of iterations directly depends on the



size of a list: since, in the general case, the size of a list cannot
be statically known, this loop cannot be properly analyzed
by existing approaches.

For this work, we developed a generic loop analysis frame-
work (based on static analysis) to characterize loops under
many different aspects. In particular, we focus on the Android
platform, for which a vast amount and variety of applications
are available. Android is fundamentally an event-driven sys-
tem, and the execution of an application should be mainly
driven by the underlying system. However, loops within the
main application are opaque to the framework, and it is not
possible to control them without using performance-intensive,
fine-grained dynamic monitoring systems. These observa-
tions make loops a particularly interesting and relevant con-
struct to be studied in the context of the Android platform.

We implemented our static analysis techniques in a tool,
called CrLApp. CLAPP works directly on Dalvik bytecode,
and it therefore does not rely on having access to the applica-
tion’s source code. At its core, our analysis extracts detailed
information about the operations that influence and control
the number of iterations of a loop, and the operations that
constitute the loop’s body. This is achieved by combining
several static analysis techniques, such as loop identification,
backward data-flow analysis on use-def chains, selective
abstract interpretation, and code reachability analysis. The
key advantage of our approach is that it is completely generic
and can be applied to any kind of program. Moreover, our
approach does not rely on the identification of known cases
through techniques based on pattern matching.

We used CLAPP to perform the first large-scale empirical
study to characterize, under many different aspects, the
usage of loops in Android applications. In particular, we
analyzed 11,823 Android applications, which cumulatively
contained 4,110,510 loops. As part of our evaluation, we
analyzed the results of our static analysis system to gain
insights related to many interesting aspects of the usage of
loops in Android applications.

As one of the first analysis steps, we perform bound anal-
ysis, which consists in the identification and characterization
of what kinds of operations control the number of iterations
for a given loop. More in general, we try to characterize if
loops are bounded and how often: interestingly, our system
was able to determine that the execution is guaranteed to
terminate for 63.28% of the loops. We also found that it was
possible to statically estimate the number of iterations in
the worst-case only for 2.26% of all loops: this suggests that
existing loop analysis techniques might be applicable only in
a very limited number of cases. As a second step, we perform
body analysis, which consists in characterizing what kinds of
operations are performed for each iteration of the loop. The
results from bound and body analysis are then combined to
increase the precision of the analysis and to gain even more
insights. These results are used as a basis for studying the
different use cases for writing loops in Android applications,
and, more in general, to study the usage of loops under two
main perspectives, performance and security.

First, we evaluated the performance aspect, and we
determined whether loops are written according to the offi-
cial guidelines provided in the Android documentation. For
example, we identified cases in which developers do not use ap-
propriate constructs (e.g., iterators when iterating over alist),
which are known to provide a non-negligible performance
benefit. As another example, we study whether performance-
intensive operations in a loop are executed within the context
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of the main UI thread, in which case the user might perceive
the GUI as stuck and the operating system might consider
the app as non-responsive. As another interesting aspect,
we identified several cases in which the Java compiler itself
misses important optimizations. We also found that develop-
ers often code loops in a risky way, for which a small mistake
might suddenly lead to the introduction of an infinite loop.
Second, we evaluated loops from the security perspective,
and we highlighted cases where high-risk operations are
executed in loops (hence increasing the potential for damage),
or loops for which the number of iterations depends on a
component external to the application (e.g., network data):
depending on the threat model, such external components
could be controlled by an attacker to perform, for example,
a denial-of-service attack through the introduction of a
long-running, potentially-infinite loop in the application.

In summary, this paper makes the following contributions:
We developed a generic loop analysis framework (based
on static analysis) to characterize the usage of loops in
Android applications. Our framework aims to analyze
generic loops, and it does not rely on techniques based on
pattern matching.

We implemented our static analysis in a tool called CLAPP,
and we used it to perform the first large-scale empirical
study to characterize the usage of 4,110,510 loops con-
tained in 11,823 Android applications. Our prototype
operates directly on Dalvik bytecode and, therefore, it
does not rely on the application’s source code.

The results of our large-scale analysis offer interesting in-
sights, such as why and how software developers implement
loops in Android applications. Moreover, we show how it
is possible to automatically identify problematic loops for
what concern both the performance and the security aspect.

2. LOOPS CHARACTERIZATION

Our analysis aims at extracting as much information
as possible about loops. In particular, our analysis first
identifies all loops in a given application, and then focuses
on the loop control aspect (i.e., “How is the number of the
loop’s iterations controlled?”), on the loop body aspect (i.e.,
“Which are the actions performed by each loop’s iteration?”),
and on the dependency between these two aspects.

To determine how a loop is controlled, the analysis first
identifies which are the conditional instructions that can
directly influence whether the loop’s execution terminates.
Then, our analysis performs, for each register used by these
conditional instructions, a combination of backward slicing
and selective abstract interpretation to reconstruct how
the registers’ values are initialized and evolve during the
execution of each iteration of the loop. We characterize the
loop’s body by determining which framework API functions
could be possibly invoked as part of each loop’s iteration.
This analysis is inter-procedural, and it works by analyzing
the inter-procedural call graph of the application.

Additionally, our analysis takes into account the relation-
ship between the operations performed in the loop, and how
the loop is controlled. This allows for a more comprehensive
characterization of loops. In fact, as an example, consider a
loop that is bounded by the value returned by an API func-
tion call: in the general case, it is impossible to characterize
how this value changes during each loop’s iteration. However,
in some cases, it is possible to establish that the API function
call’s return value would not change if, for example, the loop’s



CLAPP

Preliminary Analyses Bound Analysis ( . )
o Termination
o Analysis
Control Flow . .
Graph Expression Tree Construction
)
—>] o Large-scale
Bytecode IR Loop "| Empirical Study
Android (SSA) Identification Selective Abstract Interpretation
App ——
)
T Exit Paths _ Performance
all Grap Identification . - Analysis
1L Body Analysis v
)
Class ~ - .
Hierarchy 1 [ Reach DAl ] »| Security Analysis
| S —

Figure 1: Overview of our loop analysis framework.

1 public void £() {

2 List 1 = ...

3 bool skipFirst = ...

4 int startIdx, i;

5

6 startIdx = skipFirst ? 1 : 0;
7

8 for (i = startIdx; i < 1l.size(); i += 2) {
9 Elem e = l.get(i);

10 if (e == null) {

11 break;

12 }

13 processElem(e);

14 }

15 }

Figure 2: A sample program containing a loop.

body is only constituted by math-related operations. For
this reason, we extract additional information from the body
of the loop, and we combine them with information extracted
during the bound analysis step to determine, for example,
if the value returned by a given API function call can be
assumed to be constant. As two concrete examples, consider
the List.size() and String.length() methods: if the
body of the loop does not perform any significant operations
on these objects, their return values will not change after
each iteration of the loop. In certain cases, this additional
information is critical to prove a given loop’s termination.

3. STATIC ANALYSIS FRAMEWORK

This section discusses the details of our static analysis
framework, whose overview is shown in Figure 1. As input,
the framework takes the APK file of an Android application
(an APK is the archive format used in Android to deliver
applications’ code and resources), and it extracts its Dalvik
bytecode, a register-based representation of the program
that is executed by the so-called Dalvik Virtual Machine
(DVM). Then, the analysis performs several steps, based on
static analysis, that extract detailed information about the
control and body aspects of each loop. These results are
then post-processed to perform, for example, bound analysis
and to gain insights related to the performance and security
aspects. The remainder of this section describes in details
all these analysis steps. Throughout our description, we will
use the snippet of code in Figure 2 as a running example.
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3.1 Preliminary Analysis Steps

The analysis begins by performing several preliminary
steps. These steps have the goal of extracting the information
on top of which our loop analysis framework is built. First,
the Dalvik bytecode (DEX) of the application is parsed and
disassembled. For this step, we rely on Androguard [11]
to convert Dalvik bytecode into easily-accessible Python
objects. After this step, we compute the Control-Flow Graph
(CFQG), and we lift the bytecode to an internally-developed
Intermediate Representation (IR) that is more suitable for
performing static analysis. One of the main features of this IR
is that it comes in Static Single Assignment (SSA) form [10].
Figure 3 shows the CFG and the bytecode representation, in
SSA form, corresponding to the example in Figure 2.

After this step, we perform Class Hierarchy Analysis
(CHA), which reconstructs the inheritance relationship
among all classes and interfaces defined in the application
and the Android framework. The last of these preliminary
steps is the computation of a coarse over-approximation
of the inter-procedural call graph. This is performed by
first identifying all the invoke bytecode instructions in the
application code base. Then, for each of them, the analysis
first determines the set of possible dynamic types of the
object receiving the method invocation (this is done by
using the results from the CHA step and other type-related
information), and then it simulates the dynamic dispatch
mechanism to compute all possible targets.

3.2 Loop Identification

After these preliminary steps, our analysis proceeds to iden-
tifying all loops in the given Android application. To do this,
we implemented the algorithms proposed by Wei et al. [28].
In the context of our work, a loop is represented as a set of
basic blocks. Among these basic blocks, the analysis then
identifies the header, which can be seen as the entry point of
the loop. More formally, the header is the basic block that
dominates the execution of all the other blocks belonging
to the loop. The algorithm proposed by Wei et al. can also
identify and correctly handle nested loops. In our work,
nested loops are treated exactly as non-nested loops, with the
only difference that we annotate which inner loop belongs to
which outer loop. For our example in Figure 2 and 3, the loop
header is B4 and the body is constituted by B4, B5, and B6.



//List 1 = new Arraylist<>();
new-instance RO, Arraylist;
invoke {RO}, ArraylList;-><init>()
//if (skipFirst)

if-eqz R1, :B7 BO

//startIdx=0
move R3, #0
B1

//merging possible values of
//'startIdx’
R4 = phi(R2,R3)

//skipFirst = ...
move R1, ...

//startIdx=1
move R2, #1

(o

goto :B3

move R5, R4

//merging possible values of ‘i’
//from inside/outside the loop
R7 = phi(R5,R10)

//for(...;i<l.size();...){
invoke {RO}, List;->size()I
move-result R6

if-ge R7, R6, :B7

(o]

//Elem e = 1.get(1i)
invoke {RO, R7}, List;->get();
move-result R8

//if(e == null){ break;}
if-eqz R8, :B7

l

//1oop body

move R9, #2
add R10, R7, R9
goto :B4

return-void

(oo |
(oo |
(o |

Figure 3: Annotated control-flow graph of the function in Figure 2.
The loop header is B4, and the loop’s body is constituted
by B4, B5, and B6.

Exit Paths Identification. The next step is to identify all
possible ezit paths. We define an exit path as a set of condi-
tional instructions (or conditions) that need to be satisfied so
that the execution of the loop terminates. Naturally, a loop
might have multiple exit paths. For example, the snippet of
code in Figure 2 has two exit paths: 1) {i >= 1.size()}; 2)
{i < i.size(), e == null}.

To determine all exit paths, we first identify all basic blocks
(belonging to the loop’s body) for which at least one of their
successors is a basic block that is not part of the loop. These
are the basic blocks that contain conditional instructions
(i.e., if-* bytecode instructions) directly guarding the loop’s
exit. Then, the analysis computes all control dependence
paths to each of these basic blocks from the loop header,
by using the algorithm proposed in [17]. The resulting set
of paths constitutes all possible loop exit paths. For our
example in Figure 3, the exit paths are: 1) {(if-ge R7,R6)};
2){('if-ge R7,R6), (if-eqz R8)}.

3.3 Loop Control Characterization
One of the main aspects that our analysis characterizes is

690

the control aspect. That is, we are interested in characteriz-
ing which are the factors that control the number of iterations
of the loop to determine, for example, if it is possible to
statically guarantee that the loop (eventually) terminates.
This analysis step operates on the exit paths identified as
part of the previous preliminary steps. Depending on the
number of exit paths and their type, we label a loop as
simple or complex. In particular, we consider a loop as
simple if it has only one exit path constituted by only one
condition. In other words, a loop is simple if there is only one
if-* bytecode instruction that determines whether the loop
should terminate its execution or perform another iteration.
Instead, all loops that have more than one exit path, or
that have only one exit path but multiple conditions, are
considered as complex. Given this definition, the loop in
Figure 2 is considered complex, since it has two different exit
paths. Note that it is possible that a loop might not have
any (explicit) exit path: in these cases, the loop is labeled as
Potentially Infinite. We discuss this last case in Section 4.

3.3.1 Overview

From a high-level point of view, our analysis works by
characterizing each if-* bytecode instruction independently.
More precisely, our analysis works by first determining which
are the relevant registers (for each of these instructions), and
by then analyzing how the registers’ values are initialized
and how they evolve during the iterations of the loop. This is
done by first reconstructing the expression tree that encodes
how the value contained in a register is updated after each
iteration, and by then performing selective abstract interpre-
tation to extract some relevant properties. This information
is then used to establish if it is possible to statically determine
whether the condition specified in the if-* instruction will be
eventually satisfied (in other words, if it possible to determine
whether the loop will terminate), and to characterize which
kind of operations influence the control. These analysis steps
are described in Section 3.3.2, 3.3.3, and 3.3.4.

The described analysis steps focus on the analysis of a single
if-*instruction, which is enough to characterize simple loops.
For complex loops, the analysis first studies all the relevant
if-* instructions independently, and then it combines the
extracted information together, as explained in Section 3.3.5.

3.3.2  Expression Trees

For each if-* bytecode instruction, the analysis first
determines used registers, and reconstructs the operations
that update their values after each iteration.! In particular,
the analysis creates, for each register, an expression tree
that encodes how the register is updated after each iteration.
Specifically, each node of the tree is characterized by a type
of operation (e.g., scalar addition) and by its operands,
which, in turn, can be a value (e.g., a scalar value, the return
value of a method invocation), or another expression tree.
The expression trees computed by our analysis are intra-
procedural, and they are obtained by performing a backward
traversal of the use-def chains (provided by the SSA form).
It is important to note that, since we work with an IR in SSA
form, each assignment to a Dalvik register will produce a new
register in the SSA form. Thus, in our representation, each
register is associated with one and only one expression tree.

In Dalvik bytecode, conditional instructions have either one
or two registers as their operands. In case the conditional
instruction has only one register, the comparison is implicitly
performed against the value zero.
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Figure 4: Expression tree associated with register R7 of the
function f defined in Figure 2 and 3. The * suffix
identifies a cyclic dependency in the tree: in fact, the
next value of R7 depends on the current one.

Note that while performing the backward traversal, the
analysis will inevitably encounter loops in the use-def chains.
Intuitively, a loop in the use-def chain encodes the fact that
a register’s value depends on a previous version of itself. Our
analysis handles these cyclic dependencies by not continuing
the exploration of registers that have already been processed
(i.e., those registers that are already present in a path from
the root of the expression tree to the current node). Of
course, the analysis will annotate the non-explored registers
with a special flag, so that the subsequent analysis step (i.e.,
the selective abstract interpretation) can properly handle
this situation. As an explanatory example on what the
output of this step looks like, we report in Figure 4 the
expression tree associated to register R7.

3.3.3 Selective Abstract Interpretation

The next step of the analysis consists in performing selec-
tive abstract interpretation on top of the expression trees
computed for each register. In particular, this analysis step
annotates each node of the expression tree to characterize
how the value of a given register is initialized, how it evolves
during each iteration, and the trend of the value, which
consists in studying whether the value a register can assume
is bounded, regardless on the number of iterations. The result
of this step is an annotated expression tree. In the remainder
of this section, we first describe our annotation system, and
we then discuss how these annotations are computed.

An annotation for a node consists of a set of labels. We
now define each of these labels, we discuss the possible values
they can assume, and, for each of them, we provide both
an intuitive and formal definition. In this section, we will
use the notation (Ry)™ to indicate the value assumed by the
register R, after n iterations of the loop.

Statically bounded. This label can be set to true or false
depending on whether the value stored in the target register
Ry can be statically determined as bounded. In other words,
this flag is set to true if it is possible to statically extract two
values &,&5 such that Vn:&; < (R )" < é&s.

Fixed. This label can be set to true or false depending on
whether the value of the target register R, does not change
during the execution of the loop. Formally, this flag is set to
true if the analysis can guarantee that 3¢ Vn: (R, )™ =£. Note
the difference from the previous case, the value & must exist,
but it is not required to be statically computable. This label
is set to true for any register that is defined outside the loop,
since their value is guaranteed to not change during the loop’s
iterations: In fact, the SSA form guarantees that a register
can be defined only once, and, in case of a re-assignment
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within the loop’s body, a new register would be created.

Sign. This label can be set to one of the following values: pos-
itive, zero, negative, or unknown. This label encodes infor-
mation related to the sign assumed by the register’s value. For
example, the label will be set to positive if the analysis is able
to determine that Vn:(R,)™ >0. Instead, if the analysis can-
not determine the sign of the value, this label is set to unknown.

Value Trend. This label indicates how the value of a register
Ry evolves at the limit. In particular, this label indicates
whether it is possible to guarantee (through static analysis)
that a value will eventually increase (or decrease), that a
value is bounded, or that a value will be eventually zero.?
Concretely, this label will be set to one of the following values:
e Increasing (>). This indicates that the register’s value
will eventually increase. Intuitively, this implies that, given
a sufficient number of iterations, the value in the target
register will necessary be greater than any arbitrary value.
Formally, the following condition needs to be satisfied:
VE In: (Ry)™ > &. Note that this definition is weaker than
the classic definition of monotonically increasing. Thisis in-
tentional, as in most cases our (weaker) definition is enough
to extract useful properties about the bound of the loop.
Decreasing (<). Similar to the previous case, this
indicates that the value in the register will eventually
decrease. Formally, V& In: (R, )™ <&.

Bounded (=). This indicates that the value assumed
by the given register is bounded. Intuitively, this indicates
that there exist two values such that it is guaranteed
that the value of the register will always be between them.
Formally, 3&1,&, Vn:&; < (R )™ < &s. Note that this value
indicates something different than the Statically Bounded
label. In fact, the values &1,&5 must exist, but they are not
required to be statically computable.

Eventually Zero (0). This indicates that the value of the
register will be eventually zero. Formally, In:(R,)™=0.
Unknown (7). This indicates that our analysis cannot
precisely determine the trend of this register’s value.

This labeling system proved to be really powerful and
generic. In fact, as our evaluation shows, this mechanism al-
lowed us to characterize a very large number of loops, without
having to rely on techniques based on pattern matching. We
chose this specific set of labels as they are helpful in modeling
and capturing the common behavior and evolution of the reg-
isters’ values that play a key role in controlling the number of
iterations in aloop. For example, loops are often controlled by
a variable that starts from a given value and increases at each
iteration (e.g., the loop in Figure 2). In this case, our analysis
will be able to capture exactly this property, by assigning the
value Increasing to the Value Trend label. As we will discuss
in the next section, this aspect of our work plays a key role
when determining whether the number of loop iterations is
bounded. We also note that some of the labels are introduced
specifically to precisely model known API functions that are
often used in Android. For example, the Eventually Zero
value is helpful when modeling the return value of the Itera-
tor.hasNext () API method that, under certain assumptions
(see Section 3.5), is known to eventually return false (or zero).

We are now ready to discuss and explain how these labels
are computed for each node of the expression tree. The system
first assigns an 4nitial label for each node in the tree without

2In the context of this paper, we do not consider the
possibility of integer overflows.



children (i.e., leaf nodes). For example, a register that is set
by the “const/4 R5 #42” bytecode instruction (which moves
the constant #42 in register R5) will be annotated with the
Statically Bound and Fized labels set to true, the Sign label
set to positive, and the Value Trend label set to Bounded.

When such precise information is not available, our analysis
takes into account the operations performed within the body
of the loop to extract more precise, meaningful labels. One
common case is when a relevant register is set to the return
value of a known framework API function. For example, if
a register is set to the return value of the List.size() API
function, the analysis first determines whether the list could
be modified during the execution of each iteration, and, if not
possible, the analysis is able to set the Value Trend label to
Bounded. More in general, the analysis combines information
about the control and the body of the loop. This aspect of
our analysis is described in Section 3.5.

Note that the computation of the initial values is more
challenging when the tree contains cyclic dependencies. For
example, consider the register R7 in Figure 4: the value that
R7 will assume during the next loop iteration, depends on
the value assumed during the current one. This makes the
analysis challenging especially when computing the value
for the Value Trend label. In fact, in order to set this label
to, for example, the Increasing value, the analyzer must first
prove that one of the next values assumed by a given register
will be greater than the current value. The analysis is able to
reconstruct this relation by identifying cyclic dependencies
in the expression trees and by determining, for example,
whether the next version is the result of the addition of the
current version and a quantity known to be positive (as
for register R7 in the example of Figure 4). In this case,
this would be enough to prove that the register’s value will
eventually increase. This analysis step is implemented by
iteratively propagating the information available, from the
leaves to the root of the tree, until convergence is reached.
Note that we called this analysis step Selective Abstract
Interpretation because we are actually performing abstract
interpretation (where the abstract domain is represented by
our annotation system), by only considering those instruc-
tions that are relevant for the loop’s bound analysis, i.e., the
ones that appear in the associated expression trees.

Once the initial values are computed for all the leaves,
propagating these labels throughout the entire tree is con-
ceptually trivial. This is achieved by iteratively merging, for
each node, the labels associated to their children nodes. The
merge operation for all the annotations labels (i.e., Statically
Bounded, Fized, Sign, and Bound Analysis) is trivially
implemented through a set of tables (one for each operand)
that specify what the output label should be given two labels
as input. For example, the addition of two registers that
are known to be positive, is positive. As another example,
consider a register that, at each iteration, is set to the
subtraction of a register whose Bound Analysis label is set
to Decreasing, and a register whose value is known to be
positive: clearly, the Bound Analysis label associated to the
addition node will be set to Decreasing as well.

3.3.4 Characterizing Conditional Instructions

Once all registers of a given conditional instruction are
properly annotated, it is conceptually simple to characterize
it. For example, the Value Trend labels of the registers
can be used to determine whether the loop is guaranteed
to terminate: If the first register is known to increase, and
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the second register is known to be bounded (or decreasing),
then it is easy to see that the conditional instruction will be
eventually satisfied, and hence that the loop will eventually
terminate. In some cases, it is even possible to statically
determine the number of iterations in the worst possible
case. This is done by consulting the Statically Bounded
labels of each register. Moreover, the information encoded in
the expression trees can be used not only to perform bound
analysis, but also to determine whether a given conditional
instruction depends on the return value of specific methods,
fields, or other factors. This additional information is useful
to characterize which categories of API functions control the
number of iterations of a given loop.

3.3.5 Generalization to Complex Loops

All analysis steps described so far focus on the characteriza-
tion of a single conditional instruction. We now discuss how
our analysis can be generalized to complex loops. For what
concern the bound analysis, our analysis proceeds by consid-
ering all exit paths, and it reconstructs a boolean formula
that represents the combination of all of them. Then, our sys-
tem minimizes the boolean formula (by applying well-known
simplification techniques), and converts it to a canonical rep-
resentation. At this point, our analysis determines whether
a given complex loop is guaranteed to terminate according
to the following two observations: The conjunction of two
conditions is eventually satisfied if and only if both the condi-
tions are known to be eventually satisfied; The disjunction of
two conditions is eventually satisfied if either one of the two
conditions is eventually satisfied. By following these simple
rules, our analysis is able to characterize complex loops as
well. As an explanatory example, for the loop in Figure 2,
the minimized boolean formula that represents all exit paths
is: i >=1.size() V (i < i.size() A e == null). Thus,
the analysis can establish that the loop will terminate since
the variable i (stored in R7) is known to eventually increase,
while 1.size() (stored in R6) is known to be a fixed value.

3.4 Loop Body Characterization

This section discusses how our analysis characterizes the
behavior and the body of a given loop. From a high-level
point of view, our analysis aims to determine the set of
framework API functions that might be possibly invoked
(intra- and inter-procedurally) within the context of a loop’s
iteration. To do that, the analysis first considers all basic
blocks that belong to the body of the loop. Then, it identifies
all invoke-* bytecode instruction, and, for each of them, the
previously-computed inter-procedural call graph is consulted.
For each potential target, the analysis proceeds according to
the following algorithm: if the target is a framework method,
then this method is added to the set of framework methods
that could be potentially invoked; alternatively, if the target
method is a method defined within the application, the analy-
sis adds to the set of possible targets all the methods that are
(directly, or indirectly) reachable by traversing the call graph.

Asthe next step, each framework method is associated with
a fine-grained label that indicates what type of operation it
performs. These labels are assigned according to a manually-
written configuration file, which specifies which label should
be assigned to which method. To compile this configuration
file, we started by consulting the results from PScout [6]
and SuSi [26], and then we augmented their results and
annotations by consulting the Android documentation. Our
configuration file currently specifies about 650 entries. Note



Table 1: Breakdown of the results related to the characterization
on loops control aspect.

Simple Complex No Exit Paths Total
Bounded 2,060,485 540,755 0 2,601,240
Risky 20,431 4,411 0 24,842
Unknown 1,108,471 294,707 0 1,403,178
Potentially 800 1816 3,550 6,256
Infinite
Non-Supported 5,842 69,152 0 74,994
Total 3,196,119 910,841 3,550 4,110,510

Table 2: Number of loops controlled by various categories of
framework APIs.

Category of API :\rlll\::)ncl:)i:o(:s
Iterators 761,394
Parsing 630,076
GUlI-related 474,683
Input/Output 439,558
Data Structure 296,541
Crypto 279,234
Information Gathering 175,307
User Data Access 165,465
Network 105,662
Polling Peripherals Status 64,860

that each entry often describes multiple methods through
the usage of regular expressions. Section 4 reports the details
about the labels currently supported by our analysis.

3.5 Dependency Between Control and Body

In some circumstances, to assign a precise control label
(as the ones described in Section 3.3) to the return value of
a method, it is necessary to characterize the operations per-
formed in the body of the loop. For example, consider a loop
bounded by the List.size() API method. In many cases,
the size of the list will not change after each iteration. How-
ever, it could be possible that the loop’s body modifies the
list, thus changing its size. Similarly, consider the example of
the Iterator.hasNext () API method. The hasNext method
is known to return zero when no more items can be processed,
which, under normal conditions, is eventually going to
happen. However, if the body of the loop does not invoke the
Iterator.next() API method (to process the current item
in the list), the hasNext API method will never return the
value zero, thus functionally creating an infinite loop.

For this reason, we extended our static analysis framework
so that the actions in the body are taken into account when
characterizing the return value of some known API functions.
For example, when a loop is bounded by the List.size()
API method, our analysis verifies that there is no path
(within the body of the loop) that might invoke a method
to modify the list: if that is the case, the analysis will label
the return value of the size() API method as a fized value.
Similarly for the hasNext() example, our analysis verifies
that all possible paths invoke the next () method, in which
case the analysis will be able to label the return value of
the hasNext() API method as Fventually Zero. As part
of the process, our analysis also performs a conservative
intra-procedural on-demand alias analysis step to determine
whether the body of the loop operates on the same (or
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different) object than the one used for control. This simple,
but effective technique proved to significantly improve our
results both in terms of precision and performance.

4. EMPIRICAL STUDY

In this section, we discuss how we used our static analysis
framework to perform the first large-scale empirical study on
why and how Android applications make use of loops. First,
we describe the dataset we used for our study. Then, we
discuss the results of the bound and body analysis, by also
including several insights related to the performance and
security aspects.

4.1 Dataset

To build our dataset, we considered the applications col-
lected by the PlayDrone project [27]. Essentially, PlayDrone
is a crawler for the official Google Play Store, and it has been
used to crawl more than one million applications between
2013 and 2014. We opted to use this dataset because it is
the most representative source of Android apps that spans
over the entire market, and because this dataset is publicly
accessible. For our experiments, we selected, at random, a
subset of 15,240 applications. These applications span over
several categories on the market store, and they contain
hundreds to several thousands methods, depending on the
complexity of the application and the libraries they include.

4.2 Overall Results

Among the 15,240 applications selected for the experi-
ments, our prototype was able to successfully analyze 11,823
(77.57%) of them. The analysis of the remaining 3,417 ap-
plications did not terminate before the timeout was reached
(given the size of the dataset and the complexity of the
analysis, we opted to enforce a timeout of 30 minutes for the
analysis of each application). For the applications that were
successfully processed, our tool identified and analyzed a
cumulative total of 4,110,510 loops, and a total of 118,190,014
API framework methods that could potentially be invoked
in these loops. On average, analyzing each application took
96.77 seconds, and analyzing each loop took 50.86 seconds.

4.3 Loop Control and Bound Analysis

In this section, we will discuss the results of our analysis
that are related to how the number of iteration of each loop is
controlled. As a first aspect, our analysis identified 3,196,119
(77.70%) simple loops (i.e., loops with only one exit path with
one condition) and 910,841 (22.22%) complex loops (i.e., loops
with one or more exit paths with several exit conditions).
For the 3,550 (0.08%) remaining loops, our analysis deter-
mined that there was no exit path associated to it. We dis-
cuss this case later in this section (see the Potentially Infinite
paragraph). As another interesting statistic, we found that
266,667 (6.48%) of the loops contain at least one nested loop.

Another important aspect that our analysis helps char-
acterizing is related to the following question: how often
it is possible to statically determine whether a loop can
be guaranteed to terminate? Table 1 reports the details
about the different categories of our results. In particular,
it shows the breakdown of the bound analysis with respect
to the complexity of the loop. The remainder of this section
discusses the different analysis results.

Bounded Loops. Our analysis was able to determine that
2,601,240 of the loops are guaranteed to terminate (indicated



with Bounded in the table). This constitutes an interesting
result, as these loops correspond to a substantial portion
(63.28%) of the analyzed loops. In fact, it shows that, even
if determining whether a loop terminates is an undecidable
problem in the general case, it is possible to provide an
answer in a surprisingly-high number of cases. Another
interesting aspect is that the method annotations and alias
analysis described in the previous sections were critical to
prove termination for 1,037,105 loops. Moreover, our tool
identified 92,795 (2.26%) loops for which the number of iter-
ations in the worst case can be statically determined. Note
that most existing techniques only focus on this (small) set of
loops’ categories, which indicates the need for more generic
loop analysis techniques, like the one proposed in this paper.

Risky Loops. Our analysis identified 24,842 (0.60%) loops
that are implemented in a risky way (indicated as Risky
in the table). With the term “risky,” we refer to loops
implemented so that, independently from whether they
terminate or not, a subtle change in the loop’s body might
cause the loop to become infinite. As a clarifying example,
consider the loop “for (i=0; i !'= 12; i+=3){...}”: this
loop will iterate exactly four times. However, a modification
to how the variable i is updated could suddenly introduce
an infinite loop. A much safer yet equivalent alternative
to implement the loop in example would be to convert the
different than comparison (!=) to a less than comparison (<).

Loops with Unknown Bound. For 34.16% of the loops,
our analysis was not able to determine whether the execution
is bounded or not (indicated as Unknown in the table). One
of the root causes for which our static analysis framework
cannot determine whether a loop is bounded or not is
constituted by the fact that the number of iterations of
a loop can be influenced by the return value of a method
invocation. In 512,675 cases, the number of iterations is
controlled by the return value of the invocation of a method
implemented in the application. Alternatively, the loop
could be controlled by the value returned by a framework
API function. As part of our experiments, we explored which
categories of API functions are controlling the execution of
loops more often. The most frequent entries are reported in
Table 2. Unsurprisingly, the most common API functions are
those that associated with iteration and parsing. However,
other results are more interesting: For example, our analysis
identified 105,662 cases where a loop is directly controlled by
network-related API functions. Although this is innocuous
in most scenarios, a loop that depends on an external
component might have several security-related implications,
which we discuss at the end of this section.

Potentially Infinite and Non-Supported Loops. A
minor portion of the loops (6,256 in total) were classified as
Potentially Infinite. For these loops, our analysis determined
that there was no (explicit) exit path in their control-flow
graph. Clearly, this property indicates that a loop might be
an infinite loop, but, of course, it is not necessarily the case.
In fact, these loops might have implicit exit paths imple-
mented by means of exceptions or by means of concurrently
modifying values in different threads. These two aspects are
not supported by our prototype, thus making it currently
impossible to discern whether a loop is actually infinite or not.
Nonetheless, we believe these loops represent cases of poorly-
implemented functionality, regardless on whether they are

infinite or not. In fact, in these cases, the loop’s termination
condition is implemented in a different place than the loop it-
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self, and this decreases the readability of the code. Moreover,
the Android framework is fundamentally event-driven and it
offers to a developer a plethora of callback-based mechanisms
to avoid implementing loops whose termination condition
is triggered from a thread different than the one executing
the loop. To make things worse, aggressive power savings
in Android [2] often pause and later resume an application,
potentially rendering these loops infinite, if not carefully
implemented. Finally, our analyzer was not able to analyze
74,994 loops, the reason being that they rely on switch-like
bytecode instructions (instead of the simpler if-* bytecode
instruction), which our prototype currently does not fully
support. Of course, the analysis can be easily extended to
handle these cases as well, which is left as future work.

Performance Aspect. Our analysis can be useful to iden-
tify (potential) missed opportunities for performance-related
optimizations. In particular, our analysis determined that
for 259,014 loops (6.30% of the total), the body of the loop
repeatedly invokes an API function whose return value does
not change after each iteration nor has side effects. For
example, this situation arises when a developer writes a loop
to iterate over the items of a list by using an index variable
that goes from zero to the size() of the structure: If the
structure is not modified, the return value of the size () API
method would not change after each iterations, and hence its
return value could be cached.

This kind of situations can arise for two reasons. First, it
might be a developer’s mistake: she could write a loop that
invokes an API function within the body of a loop, instead of
invoking it — just once — before the loop’s first iteration. In
this case, the value could have been cached. Second, it could
be that the compiler itself does not have enough information
to determine whether the return value of the API function
is going to change or not. Hence, it has no other choice than
invoking the API function for every iteration.

Although our analysis is not precise enough to identify all
missed opportunities (hence, it might be affected by false
negatives), the number of problematic loops we identified is
already non-negligible. Moreover, we believe these optimiza-
tions could lead to important performance boosts, since they
would prevent the invocation of framework API functions. As
another observation, we note that in all these cases, it would
have been possible to use one of the known Java constructs,
such as iterators, which are known to improve the perfor-
mance. Specifically, on the Android platform, index-based
iterations are known to be slower than by using iterators, ex-
plicitly or implicitly through the “enhanced” for-each “:” syn-
tax. This aspect is specifically mentioned in the performance-
related tips in the official Android documentation [4].

Security Aspect. The analysis on how the number of
iterations is controlled can be used to gain insights related
to the security aspect as well. In fact, loops could be
intentionally written to be infinite loops, so to make the
device unusable and drain its battery. Our loop control
analysis helps in highlighting these problematic cases, by
identifying potentially infinite loops that do not have any
explicit exit paths, or whose exit conditions do not seem to be
satisfiable. As we already mentioned, most of these loops, in
practice, do terminate. However, as the number of warnings
only represents the 0.15% of the total number of loops, we
believe it is worth it to check them manually. At the very
least, these cases might indicate a poorly-implemented loop,
thus deserving human attention anyways.



Table 3: Breakdown of the number of loops that can possibly
invoke a method with a given semantic.

Invoked Invoked Within

Within Loop  Ul/Main Thread
Alarm 35,598 25,293
Android-Specific 1,001,833 772,053
Audio 58,931 44,856
Bluetooth 60,590 39,528
Camera 5,944 5,286
Concurrency 1,247,208 882,272
Crypto 2,445,049 1,786,780
Data Structure 3,552,636 2,519,611
Device Settings 2,330 1,877
Exception 505,232 339,887
Face Detector 173 156
Garbage Collector 15,539 11,089
GUI 3,420,748 2,546,585
Device Data 1,992,174 1,473,369
Iterators 3,960,567 2,666,318
Intent 831,777 635,166
Internals 319,602 228,487
Input/Output 2,975,636 2,145,467
Keyguard 6,270 4,898
Log 945,011 706,759
Multithread 445,365 351,762
Network 1,057,628 764,240
NFC 60,372 39,363
Object Comparison 638,745 479,699
Parsing 1,967,496 1,452,295
Phone 696,440 522,025
Power Manager 298,692 210,882
Privileged Operation 8,095 3,426
Process 6,391 5,187
Random 728,221 537,012
Reflection 933,875 680,074
Resource 296,015 221,096
Sensor 6,869 4,882
SMS 796 709
Speech 2 1
StrictMode-related 295,617 207,888
String 432,772 298,039
Telephony 688,520 514,868
Usb 691,891 518,117
Userdata 2,647,813 1,976,974
Video 315,706 225,922
VPN 21 19
Webkit 35,554 27,806
WIFI 297,730 209,340

Another interesting aspect related to security is that we
identified some loops whose number of iterations depends
from a factor external to the application itself. For example,

we identified 105,662 loops that depend on network input.

In certain scenarios, this external dependency might cause
issues: depending on the threat model, the attacker might
have a chance to alter network data and create an infinite
(or, at the very least, a very long-running) loop by sending
properly-crafted data to the device.
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4.4 Loop Body and Behavior Analysis

As we discussed in Section 3.4, our analysis characterizes
the operations performed by the body of the loop by deter-
mining the framework API functions that could potentially
be invoked from within the loop body. This is done by both
considering the class hierarchy analysis (to conservatively
take into account the dynamic dispatch mechanism) and by
consulting the inter-procedural call graph. Then, our system
associates a semantic label to the reached framework meth-
ods (according to the manually-written policies described in
Section 3.4). Table 3 reports how many loops have been found
to possibly invoke a method with a given semantic label.

Our results show that, in most cases, developers make
use of loops to invoke low-risk APIs. For example, they
use loops to perform simple iterations over app-specific
objects (Iterators), perform cryptographic operations
(Crypto), generating random numbers (Random), parsing
data (Parsing), iterating over different data structures
(Data Structure). Thus, the majority of loops appear to be
innocuous. Loops also use Android-specific methods, iden-
tified in Table 3 by the following labels: Android-Specific,
Face Detector, Device Data, User Data. However, as we
will discuss in the following paragraphs, we also found that
a non-negligible portion of loops might invoke several APIs
that, in an event-driven system like the Android platform,
can impact both performance and security.

Finally, our analysis found that 306,593 (7.45%) loops
do not invoke any framework API functions. After man-
ual investigation of few samples, we found out the most
common case to be one of the following: either the loop
performs some sort of mathematic computation, or it updates
application-specific objects’ fields.

Performance Aspect. Every Android application is exe-
cuted by several threads: one Ul thread, which takes care of
handling user interaction, and several other non-UI threads.
Since the UI thread is in charge of executing the interactive
part of an application, blocking tasks, such as I/O operations
or network connections, should always be executed in a
non-UT thread. Doing otherwise is specifically discouraged
by the official guidelines for Android developers [4]. This is
because Android has strict time constraints on UI threads:
If a UI thread is not ready to handle a UI action, then the
application will be terminated with the infamous Application
Not Responding (ANR) error message [1].

This aspect is so problematic that a recent version of
Android introduced StrictMode [3], which is, quoting the
official documentation, “a developer tool which detects
things you might be doing by accident and brings them to
your attention so you can fix them.” In particular, it is
often used to “catch accidental disk or network access on the
application’s main thread.” However, this mechanism can be
explicitly disabled by an Android application. For example,
to allow the invocation of network-related APIs within the
UI thread, an application can invoke: android.os.Strict-
Mode$ThreadPolicy$Builder!permitNetwork().

To analyze this potentially-problematic aspect, we im-
plemented a simple analysis step to determine whether
a given loop could be executed within a UI thread. In
particular, this step performs reachability analysis starting
from a given method, and it proceeds backward until the
entry points are reached. Then, the analysis flags a loop
as potentially-executed within a Ul thread if at least one of
these entry points is a method known to be associated to the



GUI (i.e., Activity.onCreate()). Note that this analysis
step might be affected by imprecisions. Nonetheless, we
believe this to be an interesting experiment.

The breakdown of our results is reported in Table 3.
For example, our analysis identified that 1,057,628 loops
could potentially invoke network-related API functions
(Network), 764,240 of which might be invoked within a UI
thread. More importantly, our analysis identified 207,888
loops that explicitly invoke at least one StrictMode-related
API function within a Ul thread, and thus could create
performance-related issues. We note that, although these
loops are not malicious, they do not follow the suggested
guidelines, and hence we think it is interesting to report them.

Security Aspect. The security relevance of the invocation
of an API function can increase depending whether it is
executed within the context of a loop: the mere fact that a
method can be invoked multiple times makes a given opera-
tion intrinsically more dangerous. For instance, a single invo-
cation of the File.delete() method (which can be used to
delete a file) is practically innocuous: However, if this method
is executed within a loop, then the application has suddenly
the capability to wipe out the phone’s data, and thus should
be considered as suspicious, or, at least, should be inspected
by an analyst. Our analysis comes in handy because it pro-
vides detailed labels for a loop body indicating the kind of op-
erations it can perform. Thus, these labels can be used to iden-
tify suspicious loops. A very interesting example we found is
the following: our analysis identified 442 loops that repeat-
edly invoke the android.os.Debug!isDebuggerConnected ()
framework method. This method is used to check whether
the application is being debugged or not. However, this
very same API function can also be used by a malicious
application to avoid debugging, and it should thus be
considered potentially-suspicious.

5. RELATED WORK

Previous research has been focused on automatically ana-
lyzing loops in programs using techniques similar to the ones
we used, but with different goals. Specifically, loop analysis
has been often used for Worst-Case Execution Time (WCET)
analysis, whose goal is to determine the maximum length in
time of the execution of a given functionality. Clearly, the
analysis of loops plays a key role when precisely estimating
the worst-case time, and several approaches have been
proposed in the past. Specifically, [22] uses a pattern-base
approach to determine the upper bound of the number of iter-
ations for specific classes of program loops. Other approaches,
such as [13, 21], achieve the same goal by using program
analysis and abstract interpretation, similarly to what we
implemented in this work. Different approaches have been
proposed too. For instance, [9] develops an approach based on
data-flow and compares it with the approach used by aiT [16]
(an automatic tool to detect timing behavior of safety-critical
software) showing strengths and weaknesses of both.

Other works focus on designing “compilation passes” to opti-
mize the compilation of loops. For instance, many tools focus
on analyzing loops to automatically rewrite them to exploit
parallelism, both in CPUs [29] and GPUs [30]. Refer to (7,
23] for an introduction to loop-optimization techniques used,
respectively, in GCC and LLVM. The tool we developed uses
some of the techniques presented in these works, but with a dif-
ferent goal. Our goal is not to precisely measure a program’s
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execution time nor to improve code compilation, but to au-
tomatically identify problematic cases of loop usage, to help

developers or the market-scale vetting process of applications.
In addition, we use our tool to perform a large-scale analysis of
Android applications to automatically obtain insights about
why and how loops are currently used by developers.

Although it is an undecidable problem in the general case,
previous research also focused on automatically verifying
loops’ termination in programs written both in C [15] and
Java [8]. Our tool can also be used to detect non-terminating
loops, however our goal is much broader. In fact, we designed
our analysis to be more generic and, to this end, we relaxed
the requirement of exactly understanding the number of itera-
tions of a given loop. In this way, our analysis is able to extract
interesting insights even for loops whose number of iterations
cannot be precisely computed by using static analysis.

Static analysis has been also extensively used to auto-
matically detect a variety of risky programming practices
and vulnerabilities (e.g., [25, 14, 24, 12, 31, 19, 18]) in
Android applications. However, to the best of our knowledge,
our work is the first to specifically focus on automatically
analyzing problems related to loops, which, given the event-
driven nature of Android, play a key role when analyzing
applications. In addition, static analysis has been also used
to identify malware in the Android ecosystem (e.g., [20, 32,
5]). Although our tool does not focus specifically on malware
detection, it can be used to identify specific malicious
behaviors (such as time-consuming or non-terminating loops,
exhausting device’s resources or device’s battery) that are not
within reach of current generic malware-detection systems.

6. CONCLUSIONS

In this paper, we presented CLAPP, a tool to automatically
extract information about many aspects of loops, such as how
they are controlled, and their body and behavior. For this
work, we developed our analysis for the Android system, and
we performed the first large-scale study on how and why loops
are used in Android apps. In particular, we used our tool to
analyze 4,110,510 loops contained in 11,823 distinct Android
applications, and we discussed several insights related to the
performance and security aspects. In the future, we envision
CLAPP to be used to help developers in identifying incorrectly-
programmed loops, and to assist the market-scale application
vetting process by pinpointing applications containing suspi-
cious or risky loops that should be manually investigated.
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8.

ARTIFACT EVALUATION

The CLAPP analysis system has been successfully evalu-
ated by the Replication Packages Evaluation Committee and
found to meet expectations.
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