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Software is everywhere 

•  Embedded devices are diverse – but all of them 

run software  
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Reasons for embedded security 

•  Embedded devices are ubiquitous 

– Even if invisible, they are essential to your life 

•  Can operate for many years 

– Legacy systems, no (security) updates 

•  Have a large attack surface   

– Networking, forgotten debug interfaces, etc 
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Third party security evaluation 

•  No source code available 

•  No toolchain available 

•  No documentation available 

•  Distinct tools (to flash and debug) for each 

manufacturer 
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Wishlist for security evaluation 
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•  Typical PC security toolbox 

– Advanced debugging techniques 

•  Tracing 

•  Fuzzing 

•  Tainting 

•  Symbolic Execution 

–  Integrated tools 

•  IDA Pro 

•  GDB 
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Challenges 

•  Advanced dynamic analysis needs 

emulation 

•  Full emulation 

– Unknown peripherals 

– Firmware fails if peripherals are missing 

•  Integration 

– Support multiple vendors and platforms 
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AVATAR 

•  Orchestrate execution between emulator 

and device 

•  Forward peripheral accesses to the device 

under analysis 

•  Do not attempt to emulate peripherals 

– No documentation 

– Reverse engineering is difficult 
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Avatar overview 
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Emulator 
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Avatar core 
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Embedded target 
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Target communication 

•  Either a debugging interface 

– JTAG 

– Debug Serial Interface 

•  Or code injection and a communication 

channel 

– Custom GDB Stub + Serial Port 
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Bottlenecks 

•  Emulated execution is much slower than 

execution on the real device 

– Memory access forwarding through low-

bandwidth channel is the bottleneck 

–  In one case down to ~10 memory accesses/

sec. 

•  Interrupts can saturate debug connection 
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Improving performance 

•  Transfer execution/state 

– From the device to the emulator 

– From the emulator to the device 

•  Migrate memory and code snippets 

– Keep memory regions in the emulator 

– Execute IO-intensive pieces of code on the 

device 
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Full separation mode 
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Memory access optimization 
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Execute code snippets on the 

device 
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Use case: Hard Disk 

•  Recover bootloader protocol with symbolic 

execution 

–  Inject GDB stub 

–  Instrument flash loading 

–  Inject symbolic values for  

data read from serial port 

– Keep track of which input  

leads into which code flow 

2/24/14 26 

http://www.s3.eurecom.fr/docs/ndss14_zaddach.pdf 



Use case: GSM Phone 

•  Search vulnerabilities in SMS decoding 
routine 
– Connect through JTAG 

– Execute on device until SMS  
decoding 

– Replace SMS payload  
with symbolic values 

– Check for symbolic values in  
•  program counter 

•  load/store address 
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Use case: Econotag 

•  Find proof-of-concept bug in user 

application 

– Connect through JTAG 

– Execute on device until Zigbee packet arrives 

– Replace payload with symbolic values 

– Check for symbolic  

values in 

•  program counter 

•  load/store address 
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We are adding more devices 
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Future work 

•  Enhance state consistency 

– DMA memory changes not tracked 

•  Automatically emulate peripherals 

•  Improve symbolic execution 

– Coherency between HW and SW 

–  Improve bug-finding strategies 
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Conclusion 

•  AVATAR is a modular open-source tool to  

– Enable dynamic analysis 

– And perform symbolic execution 

– On embedded devices 

– Where only binary code is available 

!A first step towards better analysis tools 

for embedded systems! 
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Questions? 
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•  Thank you for listening! 

•  Open source on github:  
https://github.com/eurecom-s3/avatar-python 

•  Project page:  

http://s3.eurecom.fr/tools/avatar/ 

Thanks to Pascal Sachs and Luka Malisa who built an earlier prototype of the system, 

and Lucian Cojocar for applying and extending AVATAR 
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Injecting a debugger 
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•  Requires writing and executing memory 

– Debug menus allow this sometimes 

– A code execution vulnerability can be used 

•  Requires a communication channel 

– Serial port, GPIO, Power consumption, … 

– GPIO 

•  Requires an unused memory location in 
the firmware 
– Stub is about 3k of code 



Full separation mode 
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Memory access optimization 
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Transfer execution  

from emulator to device 
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Transfer execution 
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Software interrupts 

•  Software Interrupts 

– Are issued by an interrupt  

instruction in the code 

•  Can be entirely emulated 

– Qemu manages calling of  

software interrupt handlers 
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Task completion interrupts 

•  Triggered by application requests 

– Responses aligned with firmware execution 

speed 

– E.g., signal that a requested DMA transfer has 

finished 

•  Can be forwarded from the device to the 

emulator 

– A stub on the device traps interrupts and 

forwards them 
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External event interrupts  

•  Signals an external event 
– Events aligned to wall-clock instead of execution 

time 

– E.g., that a time span has elapsed  

•  Solution depends   

– Controllable interrupts can be forwarded 

– Uncontrollable interrupts need to be synthesized 
•  Original interrupts are suppressed 

•  Emulated interrupts are inserted according to emulated 
execution speed 
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