
AVATAR: A Framework for

Dynamic Security Analysis of

Embedded Systems’ Firmwares

Jonas Zaddach
(zaddach@eurecom.fr)

Luca Bruno, Aurélien Francillon,
Davide Balzarotti

Outline

•  Introduction

•  AVATAR overview

•  Framework components

•  Use cases

•  Conclusion

2/24/14 2

Software is everywhere

•  Embedded devices are diverse – but all of them

run software

2/24/14 3

Reasons for embedded security

•  Embedded devices are ubiquitous

– Even if invisible, they are essential to your life

•  Can operate for many years

– Legacy systems, no (security) updates

•  Have a large attack surface

– Networking, forgotten debug interfaces, etc

2/24/14 4

Third party security evaluation

•  No source code available

•  No toolchain available

•  No documentation available

•  Distinct tools (to flash and debug) for each

manufacturer

2/24/14 5

Wishlist for security evaluation

2/24/14 6

•  Typical PC security toolbox

– Advanced debugging techniques

•  Tracing

•  Fuzzing

•  Tainting

•  Symbolic Execution

–  Integrated tools

•  IDA Pro

•  GDB

 A

B C

D E

≤ 0 > 0

< 8 ≥ 8

0 < x < 8

Challenges

•  Advanced dynamic analysis needs

emulation

•  Full emulation

– Unknown peripherals

– Firmware fails if peripherals are missing

•  Integration

– Support multiple vendors and platforms

2/24/14 7

Outline

•  Introduction

•  AVATAR overview

•  Framework components

•  Use cases

•  Conclusion

2/24/14 8

AVATAR

•  Orchestrate execution between emulator

and device

•  Forward peripheral accesses to the device

under analysis

•  Do not attempt to emulate peripherals

– No documentation

– Reverse engineering is difficult

2/24/14 9

Avatar overview

2/24/14 10

Emulator

 . . .

mov r2, r0

mov r3, r1

add r3, r3, #1

ldr r2, [r2, #0]

cmp r2, r3

 . . .

Device

In-memory

stub

Memory

Registers
CPU state

Avatar

Analysis script

plugins
Analysis

plugins

Avatar overview

2/24/14 11

Emulator

 . . .

mov r2, r0

mov r3, r1

add r3, r3, #1

ldr r2, [r2, #0]

cmp r2, r3

 . . .

Device

In-memory

stub

Memory

Registers
CPU state

Avatar

Analysis script

plugins
Analysis

plugins

Avatar overview

2/24/14 12

Emulator

 . . .

mov r2, r0

mov r3, r1

add r3, r3, #1

ldr r2, [r2, #0]

cmp r2, r3

 . . .

Device

In-memory

stub

Memory

Registers
CPU state

Avatar

Analysis script

plugins
Analysis

plugins

Avatar overview

2/24/14 13

Emulator

 . . .

mov r2, r0

mov r3, r1

add r3, r3, #1

ldr r2, [r2, #0]

cmp r2, r3

 . . .

Device

In-memory

stub

Memory

Registers
CPU state

Avatar

Analysis script

plugins
Analysis

plugins IRQ

Outline

•  Introduction

•  AVATAR overview

•  Framework components

•  Use cases

•  Conclusion

2/24/14 14

Emulator

2/24/14 15

Emulator Avatar

Configuration

Qemu GDB

Remote Memory

S2E

Qemu

Klee

LLVM

Analysis

plugins

Memory

Registers
CPU state

Avatar core

2/24/14 16

Emulator Avatar Device

Configuration

interface

GDB interface

Remote

memory

GDB interface

plugins
Analysis

plugins

Analysis script

Embedded target

2/24/14 17

Device

In-memory

stub

Memory

Registers
CPU state

Avatar

JTAG

server

Target communication

•  Either a debugging interface

– JTAG

– Debug Serial Interface

•  Or code injection and a communication

channel

– Custom GDB Stub + Serial Port

2/24/14 18

Bottlenecks

•  Emulated execution is much slower than

execution on the real device

– Memory access forwarding through low-

bandwidth channel is the bottleneck

–  In one case down to ~10 memory accesses/

sec.

•  Interrupts can saturate debug connection

2/24/14 19

Improving performance

•  Transfer execution/state

– From the device to the emulator

– From the emulator to the device

•  Migrate memory and code snippets

– Keep memory regions in the emulator

– Execute IO-intensive pieces of code on the

device

2/24/14 20

Full separation mode

2/24/14 21

Emulator Device

State

Register

State

Memory

Avatar

Memory access optimization

2/24/14 22

Emulator Device

State

Register

Memory

State

IO Memory

Avatar

Execute code snippets on the

device

2/24/14 23

Emulator Device

State State Avatar

Code

Execute code snippets on the

device

2/24/14 24

Emulator Device

State State

Code

Code

Outline

•  Introduction

•  AVATAR overview

•  Framework components

•  Use cases

•  Conclusion

2/24/14 25

Use case: Hard Disk

•  Recover bootloader protocol with symbolic

execution

–  Inject GDB stub

–  Instrument flash loading

–  Inject symbolic values for

data read from serial port

– Keep track of which input

leads into which code flow

2/24/14 26

http://www.s3.eurecom.fr/docs/ndss14_zaddach.pdf

Use case: GSM Phone

•  Search vulnerabilities in SMS decoding
routine
– Connect through JTAG

– Execute on device until SMS
decoding

– Replace SMS payload
with symbolic values

– Check for symbolic values in
•  program counter

•  load/store address

2/24/14 27

Use case: Econotag

•  Find proof-of-concept bug in user

application

– Connect through JTAG

– Execute on device until Zigbee packet arrives

– Replace payload with symbolic values

– Check for symbolic

values in

•  program counter

•  load/store address

2/24/14 28

We are adding more devices

2/24/14 29

Outline

•  Introduction

•  AVATAR overview

•  Framework components

•  Use cases

•  Conclusion

2/24/14 30

Future work

•  Enhance state consistency

– DMA memory changes not tracked

•  Automatically emulate peripherals

•  Improve symbolic execution

– Coherency between HW and SW

–  Improve bug-finding strategies

2/24/14 31

Conclusion

•  AVATAR is a modular open-source tool to

– Enable dynamic analysis

– And perform symbolic execution

– On embedded devices

– Where only binary code is available

!A first step towards better analysis tools

for embedded systems!

2/24/14 32

Questions?

2/24/14 33

•  Thank you for listening!

•  Open source on github:
https://github.com/eurecom-s3/avatar-python

•  Project page:

http://s3.eurecom.fr/tools/avatar/

Thanks to Pascal Sachs and Luka Malisa who built an earlier prototype of the system,

and Lucian Cojocar for applying and extending AVATAR

References

•  AVATAR web page: http://www.s3.eurecom.fr/tools/avatar/

•  AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems' Firmwares, Jonas Zaddach, Luca Bruno, Aurelien Francillon,
Davide Balzarotti

•  Howard: a dynamic excavator for reverse engineering data structures, Asia
Slowinska, Traian Stancescu, Herbert Bos

•  KLEE webpage: http://ccadar.github.io/klee/

•  S2E webpage: https://s2e.epfl.ch/

•  S2E: A Platform for In-Vivo Multi-Path Analysis of Software Systems, italy
Chipounov, Volodymyr Kuznetsov, George Candea

•  The S2E Platform: Design, Implementation, and Applications, Vitaly
Chipounov, Volodymyr Kuznetsov, George Candea

•  QEMU webpage: http://qemu.org

•  Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations,
Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, Herbert Bos

2/24/14 34

Injecting a debugger

2/24/14 35

•  Requires writing and executing memory

– Debug menus allow this sometimes

– A code execution vulnerability can be used

•  Requires a communication channel

– Serial port, GPIO, Power consumption, …

– GPIO

•  Requires an unused memory location in
the firmware
– Stub is about 3k of code

Full separation mode

2/24/14 36

Emulator Device

State

Register

State

Memory

Avatar

Memory access optimization

2/24/14 37

Emulator Device

State

Register

Memory

State

IO Memory

Avatar

Transfer execution

from emulator to device

2/24/14 38

Emulator Device

State

Register

Memory

State

Transfer execution

from emulator to device

2/24/14 39

Emulator Device

State Avatar State

Register

Memory

Transfer execution

 from device to emulator

2/24/14 40

Emulator Device

State State

Register

Memory

Transfer execution

 from device to emulator

2/24/14 41

Emulator Device

State

Register

Memory

State Avatar

Software interrupts

•  Software Interrupts

– Are issued by an interrupt

instruction in the code

•  Can be entirely emulated

– Qemu manages calling of

software interrupt handlers

2/24/14 42

http://home.netcom.com/~swansont/interrupt.jpg

Task completion interrupts

•  Triggered by application requests

– Responses aligned with firmware execution

speed

– E.g., signal that a requested DMA transfer has

finished

•  Can be forwarded from the device to the

emulator

– A stub on the device traps interrupts and

forwards them

2/24/14 43

External event interrupts

•  Signals an external event
– Events aligned to wall-clock instead of execution

time

– E.g., that a time span has elapsed

•  Solution depends

– Controllable interrupts can be forwarded

– Uncontrollable interrupts need to be synthesized
•  Original interrupts are suppressed

•  Emulated interrupts are inserted according to emulated
execution speed

2/24/14 44

