Thwarting Real-Time Dynamic Unpacking

Leyla Bilge, Andrea Lanzi, Davide Balzarotti
Institute Eurecom, Sophia Antipolis

{bilge, lanzi, bal zarotti} @urecomfr

ABSTRACT

Packing is a very popular technique for obfuscating progtaand
malware in particular. In order to successfully detect packnal-
ware, dynamic unpacking techniques have been proposeeéiia-li
ture. Dynamic unpackers execute and monitor a packed prmgra
and try to guess when the original code of the program is -avail
able unprotected in memory. The major drawback of dynamic un
packers is the performance overhead they introduce. Taecithe
overhead and make it possible to perform dynamic unpacking a
end-hosts, researches have proposed real-time unpalkkeoper-
ate at a coarser granularity, namely OmniUnpack and Justin.
this paper, we present a simple compile-time packing algori
that maximizes the cost of unpacking and minimizes the amoun
of program code that can be automatically recovered bythe-
coarse grained unpackers. The evaluation shows that thémea
dynamic unpackers are totally ineffective against thi@atgm.

1. INTRODUCTION

Inrecent years, packing has become a popular techniqueiich
for obfuscating malware code and for evading signaturedasti-
virus (AV) scanners [18]. In general, the packing and unpack
ing process is simple. The packer modifies the original lyinar
by encrypting the code and inserting an unpacking routinbeiV
the packed binary is executed, the unpacking routine urgptiek
code and transfers the control flow to the unpacked code.eSinc
signature-based anti-virus scanners analyze suspicicgsgms
statically, they cannot inspect the original binary code &il to
detect when this code is malicious.

To deal with packed malicious code, several unpacking syste

dynamic approaches.

Dynamic unpackers execute and monitor a packed program, and
try to guess when it has finished unpacking itself so that taay
locate the unprotected code in memory. To this end, the dymam
unpackers employ a number of heuristics and leverage théhtac
the programs are typically packed as a whole. Depending @n th
deployment scenarios, the heuristics trade off the pm@tisiith
performance, and vice-versa. Off-line dynamic unpackepally
run inside a sand-box (e.g., a virtual environment or an atot
and are mainly used as a part of the malware analysis progess [
20]. As a result, such off-line dynamic unpackers do not fsixiet
time constraints. Hence, they can apply very precise mongo
techniques and heuristics to detect the execution of urgohcide.

One important drawback of the off-line dynamic unpackers is
the performance overhead they introduce. Unfortunathiy,ger-
formance overhead makes it impossible to install and rumths
real-time systems on end-user machines. Therefore, itsisadde
to have an effective real-time dynamic unpacker that is iefiic
enough to be run on an end-user machine.

To date, only two real-time dynamic unpackers have been pro-
posed: Omniunpack [13] and Justin [8]. They both try to fing th
point in time where the binary is unpacked in the memory. Once
they detect this point, they invoke the AV scanner for ititiag
the detection procedure. Omniunpack and Justin are abletéctd
malicious code that is packed by a wide range of packers [Z, 2,
6, 15, 16, 17, 23, 25].

To the best of our knowledge, there has not been any previous
research that evaluates the effectiveness of the realdimamic
unpackers against more sophisticated packing techniduethis
paper, we perform an analysis on the real-time dynamic uapac

have been proposed. These systems have been developed to suf"S Proposed to date. To this end, we implemented a prototype

port AV scanners by providing them the unpacked binary code t
scan. They originally operated statically by trying to rgeize the
packing scheme used to protect the code, and to recoveritiie or
nal code using a manually-written routine. Malware authsmsn
discovered that for defeating static unpackers it was seffido
use a slightly different packing algorithm each time sudt ttus-
tom unpacking routines needed to be constantly adaptedh&se
reasons, static systems have been superseded by systadohas

Permission to make digital or hard copies of all or part o thvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

compile-time packer designed to maximize the cost of unipack
and minimize the amount of program code that can be automati-
cally recovered. The packing scheme we propose is basedeon th
same principles of the Themida packer (function level pagkbut

with more finer packing granularity. The aim of our prototyp¢o
have a tool that can perform different levels of packing. (fLexc-
tions, basic block, instruction) to test real-time unpaskdhe re-
sults of our experiments show that our packer makes existialg
time unpacking solutions ineffective.

The paper is organized as follows. Section 2 briefly intreguc
the packers and their limitations, and surveys the varieah-t
nigues proposed in the literature to recover packed codgioBe3
presents the packing algorithm we have developed to attzalk r
time unpackers. Section 4 discusses the results of theatiaiu
Finally, Section 5 concludes the paper.

2. BACKGROUND

Packing is one of the program obfuscation techniques eregloy
by malware authors to protect their software (i.e.., préwvkatec-
tion and complicate the reverse engineering). This sedtia@fly
describes how packers work and discusses the techniques-for
covering packed code.

2.1 Packing Schemes and Their Limitations

In the traditional form, packing is applied to the executaptio-
grams produced in output by compilers (as shown in Figur&4).
sentially, packing consists of taking the original contehthe ex-
ecutable, packing this data by encrypting or compressijrand in
generating a new program composed by the packed executable i
age and the appropriate unpacking routine. When invokéeingw
program will execute the unpacking routine first. The unpagk
routine will restore the original image of the executableriam-
ory, and then transfer the execution to the original entriytpof
the program. Thus, any attempt to statically analyze thé&gmzhc
program is made ineffective, since the real code of the jprogs
only accessible at run-time. This form of packing is widedppted
because it is very easy to apply and because it can be usedmyith
program, independently from the source language in whielptb-
gram is written. The majority of the open-source and comiakrc
packers follow this approach ([7, 2, 4, 6, 15, 16, 17, 23,.25])

However, this type of packing is very weak and easy to defsat.
the end of the execution of the packing routine, the wholgzom
image is accessible in memory in an unprotected form. Thakwe
ness is a consequence of the fact that the packer does noamave
insight on the program itself. In fact, the analysis of exables or
assembly programs cannot, in general, assure soundnessrand
pleteness [1]. Without any precise information about thetrcd-
flow and the data-flow of the program, it is difficult for the gac
to reliably partition the program into fragments and camnstran
unpacking routine that unpacks these fragments increitheratia
run-time. Hence, the normal approach consists in packiagth
tire program. There are, however, some exceptions to tiiawe
ior. For example, Armadillo [19] partitions the programdrgages
and unpack only the page to be executed. This approach 4is reli
able since partitioning does not require to analyze theraragbut
just leverages hardware protection mechanisms to detegiabe
that is going to be executed. Although Armadillo unpackspite
gram on-demand, once a page is accessed and unpacked, ¢he pa
remains unprotected in memory until the program terminafés
nally, we believe that the function level granularity, sagpd by
Themida [24], is the finest granularity that can be achievét-w
out performing any sophisticated (and error-prone) amalys the
executable.

Recently, obfuscation techniques that are based on codmlvir
ization have become popular [24]. In few words, code viiazal
tion consists of translating the instructions of the pragiato new
instructions belonging to a custom instruction set, ancietieg
them using an ad-hoc emulator, which is embedded directty in
the program. Although code virtualization can be used tasbf
cate bhinaries as packers do, the analysis of programs pedtedth
code virtualization is a completely separate researchi@mof21],
and it is outside the focus of this paper.

2.2 Unpacking Techniques

The historical method for unpacking a packed program isdase
on algorithmic unpackingAs the name indicates, this method em-
ploys a manually written algorithm that mimics the unpagkiau-
tine embedded in the packed program. This approach is very ef
fective and efficient at unpacking programs that are packitd w

well-known packing schemes. However, its effectivenesstiegen
decreasing since the development of a specific unpackiogitim
requires substantial expert knowledge, and since malwearelap-
ers are continuously developing new packing schemes touskha
experts’ resources.

To overcome this limitation, a new unpacking techniquelecal
generic unpackinghas been proposed. The main idea behind generic
unpacking is to rely directly on the unpacking routine endsztin
the packed program, and to execute this routine until thgrpro
is completely restored in memory. To this end, generic ukegac
either emulate or monitor the execution of the program araptad
several heuristics to detect when the unpacking is contplatel
the original program can be identified in memory in an unpotete
state. Heuristics are necessary because the detectioa efhthof
the unpacking is an undecidable problem [20]. All generipagk-
ers are based on the same heuristics that detect an unaedidab
havior: the execution gfreviously written codeOn the other hand,
unpackers might implement this heuristic at a differenhgtarity
(e.g., at the byte or at the page granularity) and might comi
with additional ones to improve the accuracy and to optintiee
performance.

Depending on the precision of the heuristics used by generic
packers to detect the end of the unpacking, unpackers might o
might not be suitable for real-time scenarios (i.e., on bosts).
Examples of off-line generic unpackers, whose heuristiestao
precise and expensive for real-time deployment, are Reaod
PolyUnpack [9, 20]. Both unpackers detect the end of the cipa
ing by emulating the execution of the program and monitogtg
memory writes and instruction fetches, and consider dituictions
fetched from previously written memory locations to be ssse
fully unpacked.

Real-time packers, such as OmniUnpack and Justin [13, 8], in
comparison, use coarse grained heuristics that are musteles
pensive to deploy. They can be used on end-hosts to recaver, o
behalf of the AV, the protected malicious code. More prdgjse
these unpackers track memory writes and instruction fetahéhe
page level, at a very low-cost, leveraging directly harawanotec-
tion mechanisms offered by the CPU. To compensate the coarse
ness of this heuristic, to increase the precision of thesisguabout
the end of the unpacking, and to reduce the number of in@éféect
AV invocations (i.e., to scan memory locations containingethat
is only partially unpacked), OmniUnpack and Justin leveraddi-
g?ional heuristics. That is, OmniUnpack does not consideruth-
packing to be concluded until the execution of alleged ukedc
code is followed by the invocation of a dangerous system(call
a system call that could potentially alter the safe statéhefsys-
tem). The rationale is that the unpacking routine is typjceke-
cuted in batch mode, immediately after the program is laedch
and that dangerous interactions with the system (e.g.,reéraion
of a new file) only take place after the malware is completely u
packed. The approach taken by Justin, instead, is to cortside
unpacking concluded only when the stack layout during tleeex
tion of previously written memory locations is compatibléwthe
layout expected in the absence of packing. The intent istichca
the instant of time at which themi n function of the protected
program is executed.

3. ON-THE-FLY (UN)PACKING

Figure 2 shows an overview of the packing scheme we implezdent
for our experiments. Compared to traditional schemes, pur a
proach offers diner packing granularity In traditional packing
schemes, the program is typically packed as a whole. In asitr
our approach partitions the program into multipkcking units(a

Header

Data

char msg[] ="
void main() {

Compilation

}

Code

Packing

Header Header

Data

Data

Execution
Code

Unpacking TPECRITT
routine routine

SSSS

Figure 1: Overview of the traditional (un)packing scheme (coss-hatched regions are packed)

char msg[] ="
void main() {

Compilation

Code
}

Unpacking
routine

Header Header
Packing — Packing
D _

Execution

Executios

Code

Unpacking
routine

Unpacking
routine

Figure 2: Overview of proposed on-the-fly (un)packing schem (cross-hatched regions are packed; white regions insidbé cross-

hatched regions are not)

unit is a fragment of the program’s code or data), each of whic
is packed and unpacked independently. More precisely, in ou
scheme, a packing unit is unpacked on-the-fly, just beforeghe
used. In addition, it is repacked immediately after use.r&tuee,
the whole program is never entirely in memory in an unpretct
fashion. Rather, only a small unit at a time is unprotectdt dnly
way to recover the entire program is to force it to unpack ezch
its units (e.g., by forcing the program to execute a parictggion

of code or to access a particular region of data). Moreowewea
demonstrate in Section 4, this approach effectively catesgime
generic unpackers to perform excessive trashing [5], andatso
prevent them to recover the entire program.

The fine packing granularity is possible in our scheme as the
packing is performetransparentlyat compile time. Thus, we have
access to high-level program information, which is not kadée
to traditional packers working directly on compiled exexdies (as
described in Section 2.1). In our scheme, thanks to the leig-
information we have access to, we can partition the program i
multiple packing units and protect these separately. Byinglon
conservative information, we have the guarantee that testor-
mations we apply to the program preserve its semantics. ri2ipg
on the desired level of security, a packing unit can be a neodtil
the program, a function, a basic block, and even a singleuiast
tion, or a variable.

Although our packing scheme share some similarities wiéh th
obfuscation scheme presented by Sharif et al. [22], ourrsehe
generalizes the obfuscation and is intended to be appliedode
programs.

3.1 (Un)Packing Mechanism

The steps required for packing a program for on-the-fly (ackng
are shown in Figure 3. In short, the usual compilation predss
extended with two additional steps in order to make the puogr
capable of unpacking and packing its code and data at rus-tim

and for the initial packing of the compiled executable.

The source code is translated into a high-level intermed@m
by the front-end of the compiler (Step 1 in Figure 3). Theiinte
mediate form is analyzed with the aim of identifying the pagk
units, and is then instrumented to introdusepack and pack
operations respectively at entry and exit points of each (Btep
2 in Figure 3). After instrumentation, the intermediatenfias op-
timized and is then compiled into an executable object (Stép
Figure 3). Finally, the instrumented executable is paclstdd 4 in
Figure 3).

Theunpack andpack operations are responsible, respectively,
for unpacking a packing unit just before usage, and for pagki
again after the usage. In other words, these operationsigfiegr
that the code or the data region represented by the packihgren
accessible in memory only when the memory region is effelytiv
executed or accessed. Practically speaking, a packingepré-
senting a fragment of code (e.g., a function) is unpackegwhkn
the fragment is being executed. On the other hand, a packiihg u
representing a global variable is unpacked only when thialviar
is being read or written.

The instrumentation performed in the second step of the somp
lation process then depends on the desired granularity akinz
and on the type of packing unit. For example, for on-the-flgkpa
ing at function granularity, each function of the prograntréated
as a different packing unit. Thus, the instrumentation =is®of
wrapping all function calls and of addimgack andunpack op-
erations to pack the caller and to unpack the callee. In asttfor
packing at basic block granularity, the instrumentationsists of
extending each basic block with a prologue and an epilogte. T
prologue unpacks the code of the basic block at the entrylewhi
the epilogue packs the basic block at the exit. Finally, talging a
variable, the instrumentation consists of insertingiapack oper-
ation before each usage of the variable, and of insertpack op-
eration after each usage. To detect all program instrustioat ac-

char msg[] = " Parsing & |9 = call @npack |Compilation(of 8422f 6) f68574f b
void main() { translation Instrumentation %2 = load ... &linking | ffff8b95| Packing | 0375448b
%8 = load ... ebb583bd 0f 94c08b

} 1 2 % = add %, 9B 3 8cfbffff 4 f 7ea89f 0
% = call @ack 94fcffff ff8lea6d

Source code Byte-code ms;/::r_zizgad Executable e)f;i(ijlizg N

Figure 3: Overview of the compilation and packing process

cess a particular variable, we rely on alias information enawhil-
able by the compiler.

Figure 4 shows a fragment of a sample program (in assembly)
and compares the code of the program without packing and with
packing at basic block granularity (Figures 4(a) and 4(bpee-
tively). The code of a basic block in the packed program iy ver
similar to that in the unprotected copy of the program. In the
packed program, each basic block begins wittuapack oper-
ation and ends with @ack operation. Thepack operation is
followed by an optional indirect control transfer instioct that
transfers the execution to the next non-adjacent basidkbldbe
two packing operations delimit the real code of the basiclb(the
crosshatched region in the Figure). This code is almosttickdn
to the code in the unprotected block. The only differenca ithe
control transfer instructions used to transfer the exeoutd the
next basic block (conditional and unconditional jumps aalisg.

In unprotected blocks (Figure 4(a)), control transfersdirect. In
protected blocks (Figure 4(b)), control transfers areraxti and
the address of the next block to execute is stored in a speial
able fiext bb in Figure 4(b)), which is set locally. The intent is to
further complicate reverse engineering by preventing thesary
to guess how basic blocks are linked together, and thus &sghe
structure of the program.

It is worth noting that the proposed scheme supports flalyless
dynamically linked programs, where shared libraries atgpaoked.

In fact, when the execution flows from the program to a shared |
brary, no portion of the program is left unprotected.

At a first sight,unpack operations might seem easy to detect
(e.g., using pattern matching). If detected, they couldxXezeted
to unpack the associated packing unit. Our claim is thatipialt
pairs ofpack andunpack operations can be used in the same
program. Potentially, each packing unit could be proteasdg a
different pair of operations and, in case of extreme pagartbey
could be even obfuscated using standard—but hard to reverse
obfuscation techniques (e.g., [11]).

3.2 Implementation Details

We have implemented a prototype of the proposed packingrsehe
using LLVM, an open-source, and language-independent tenfip0].
The prototype consists of three components. The first coeda
a LLVM “pass”, which takes the intermediate bytecode getagla
by the compiler and instruments it to add on-the-fly (un)magk
capabilities, at the requested granularity level. The seéamm-
ponent is the real packer; it takes the final executable mexdiu
by the compiler, identifies the various packing units usigm-s
bols information, and packs them. The third component igigtsc
that allows (malicious) users to pack their programs witkeffiort.
Essentially, the script is meant to substitute the origemahpiler
and to translate the source code into LLVM bytecode, to afipy
instrumentation “pass”, to compile and link the bytecods] &-
nally, to pack the resulting executable. In summary, (nalis)
users can protect their programs without changing a singée |
in the source code, and by compiling their code using theptscri

we provide. For example, programs compiled using Make can be
packed simply by instructing Make to use a different conrfieg.,
make CC=ot f pcc).

The LLVM “pass” traverses all the functions in the prograre; d
tects the appropriate instrumentation points (accordinthé re-
quested packing granularity), and inlines the operationsii-the-
fly (un)packing. From the LLVM prospective, our “pass” is &us
written optimization, and can be hooked into the compilatibain.
Given the high-level API offered by LLVM, the instrumentatiis
trivial to perform. That is, less than a hundred lines of C+e a
sufficient to analyze the bytecode, and to augment it witthen-
fly (un)packing capabilities at function, or basic block mukarity.
Currently, our prototype does not support on-the-fly (uokozy of
data.

In the current prototype, the packing units are encrypted®iR-
ing their content with a variable length key. Each packing im
encrypted with a different key and the keys are embedded sepa
rately in each unit, within the code we insert during therumsten-
tation “pass”. Obviously, more sophisticated and multgheryp-
tion schemes can be used to protect the program. Furthermore
inlined operations for packing and unpacking are reentrérgy
check whether the packing unit is already being used (ansl, thu
unpacked) by another thread. The packing unit is unpacketieoy
first thread that accesses it and repacked when the lastitbeaaes
to use it.

3.3 Limitations

Although the proposed packing scheme is simple and easy to
implement, there are few situations in which it cannot beslgaf
applied. For example, a program that uses self-checksugtoin
guarantee untampered execution will fail to execute berdus
checksummed regions of the programs will most likely be pdck

Although the packing of data would be very easy to implement
using LLVM, our prototype currently does not support suclea f
ture. In any case, packing could be applied only to globalsaat
ically allocated variables because the packing of dynalfgietio-
cated variables (e.g., in the stack or in the heap) wouldireda
instrument library code as well.

4. EVALUATION

The purpose of our evaluation is to demonstrate that our-pack
ing scheme is very effective in protecting packed code aadl th
it renders real-time generic unpackers such as OmniUnpadk a
Justin completely ineffective. Indeed, by continuouslyacking
and repacking each packing unit, the heuristics adoptedrbgiO
Unpack and Justin keep triggering and unpacking becomés ine
fective because most of the resources of the CPU are constamed
perform useless analysis. Moreover, our packing schematg®o
the assumption, made by OmniUnpack and Justin, that a biock o
code sufficiently big for reliable detection is availableni@mory
unprotected. In fact, AVs need to analyze a certain numbgmaf
tions in order to guess the maliciousness of the code wittwa lo

B,

%esi , Yesi
$0x1, %edx
$0x4, Y%esi
B3

add
cnp

B
mv Y%l , Y%ecx Sz:j $8Xiv Z;'EZ'
add $0x1, %ebx 2 § XL el
add $0x1, %ecx llea Ox0(%ax), %edi
jnmp By

@

funpack(.)
Xor. - Yesi, Yesi
add - $0x1, %edx
cnp $0x4, Yesi

Figure 4: Sample fragment of a program: (a) without packing and (b) with packing (at basic block granularity).

false-positive rate.

For the evaluation, we developed a cross-platform dynarnic b
nary instrumenter on top of PIN [12]. This application traea ar-
bitrary program, logs all memory accesses (i.e., fetcloasld, and
stores) that occur during its execution, and takes comsledg-
shots of the content of the memory at will. We used this appli-
cation to inspect the content of the memory during the exacut
of several experimental packed programs, and also to sientile
heuristics adopted by OmniUnpack and Justin for detectinghd
of the unpacking. In particular, we simulated thep¥ policy at
the page level (i.e., a page can be either writable or exela)ta
Note that this policy is used by both unpackers to track the ex
cution of previously written code. Furthermore, we prognaed
our application to take full snapshots of the content of tieenory
at each system call and each time the constraints used in'dust
heuristic were satisfied.

In the first experiment, we tested how OmniUnpack and Justin
are able to deal with our packer. Using our packer, each pgcki
unit is unpacked before execution and packed immediatedy. af
Thus, each time a packing unit is executed, at least two tidois.
of the WX policy occur, each of which results in a page-fault ex-
ception. When the packing unit is unpacked, the memory faage t
contains it is marked as being writable and not executableetw
the unpacking is concluded and the execution begins, th@ége-
fault occurs, and the page is marked as being executableand n
writable. Similarly, when the execution is concluded anel timit
is repacked, another page-fault occurs. Therefore, thebauwf
page-faults caused by thedX policy is at leasu, wherew is
the number of times the program executes a different paakirty
This is a lower bound on the number of page-faults since aipack
unit overlapping adjacent pages would cause multiple gault

Thus, it is imaginable that the number of page-faults can eas
ily explode to the point where most of the CPU time is spent in
responding to these faults. To prove our assumption, we tieed
PIN-based application to measure the number of executddngac
units in simple packed applications. Table 1 reports soraelte
of our experiments. As an example, we packed tthe utility
(at function granularity) and used it to compress the cdniéthe
/ et ¢ directory on a common Linux distribution. During the ex-
ecution of the packed utility, we observed that more thand@®
packing units were executed. In such a situation, thieX\policy

ja L1:
nmov - Bz, nextbb
jmp-L2
L1: ‘nmov Bs, nextbb
L2: pack(..)
jmp nextbb
L J
\
unpack(..)
unpack(..) shl $0x4, Y%esi
mov Y%l , Yecx add -~ $0x1; %edx
add ~$0x1, Y%ebx I'ea 0x0(%eax) ; ¥edi
add $0x1, %ecx nov By, nextbb
pack(..) pack(..)
jmp nextbb
(b)
executed # page-faults
Program packing units (estimated)
far ~7105,000 ~210,000
gzi p ~143,000 ~286,000
sed ~60,200 ~120,400
grep ~26,100 ~52,200
wget ~139,000 ~278,000

Table 1: Estimated number of page-faults that would be caus®
by the Wa X policy used by OmniUnpack and Justin (programs
packed at function granularity)

210,000 page-faults. By adopting a finer packing granyigeitg.,
at the basic block level), the number of page-faults woulethmeen
even higher.

Note that, OmniUnpack and Justin invoke an AV scanner such
that it scans the unpacked memory, instead of taking thesbioép
of the content of the memory. Similarly to OmniUnpack andidus
a human expert, with the help of an emulator or a debuggehtmig
try to reconstruct the unpacked program by taking arbitssgp-
shots of the content of the memory. Our packing scheme istagdi
against all such attempts. That is, there is no instant ie tirhere
the program that is being executed is in completely unpaskete
in memory. Further, the amount of code that is unpacked atemgi
time solely depends on the granularity of the packing.

In order to measure the amount of code exposed by our unpacker
we packed several sample applications at the function Ewtwe
ran them. For each execution of the program, we took snapsifiot
the content of the memory at two different instants in timestem
call time (conservative approximation of OmniUnpack’s H&tics)
and at the start of themi n function (Justin’s heuristics). As ex-
pected, in all cases, we never found the entire program imgra-
ory, but only one packing unit (the function) being execuaethe
time of the snapshot. In any of the snapshots taken using Qmani
pack’s heuristics, we did not find any function in unproteldigrm
in the memory. The explanation is simple: at every functiah, c
the caller is packed right before entering the callee. Afteds, the
callee is unpacked only if it is one of the functions of the kmat
program. Otherwise, if the callee is either a library fuostor a
system call, obviously it is not unpacked. Since OmniUnptaigk
gers the AV scanner only on specific system calls (i.e. danger

adopted by OmniUnpack and Justin would have caused more thansystem calls), at the time the AV scanner is called no unptete

% of unprotected code

Program OmniUnpack Justin
tar 0% 1.34%
gzip 0% 2.9%
sed 0% 2.9%
grep 0% 6.0%
wget 0% 2.54%

Table 2: Percentage of program’s code that would be recov-
ered by OmniUnpack and Justin (programs packed at function
granularity)

(5]

(6]
(7]

(8]

(9]

code is available in the memory. On the other hand, the heuris [10]

tics employed by Justin work differently: They are based e t
assumption that the program is packed as a single block atd it

tempts to detect when the unpacking routine transfers thaao
to the original entry point of the program (e.g., thrai n). The
results of our experiments show that at the time Justin’sisiges
are triggered, the percentage of unprotected code is veajl, a8
it can be seen from Table 2.

Table 2 reports some results of our experiments. For example [12]
in common Linux utilities such asget andt ar , packed with our
packing scheme at function granularity, the percentageaafered
unprotected code using OmniUnpack’s and Justin's hecsistas
respectively 0% and 2.54% for the first utility, and 0% and4%3
for the second one.

In conclusion, we speculate that the only way to fully recove
a program packed with our packer is to rely on off-line unpack

ers that can execute all possible paths, either manually arsb
ing multi-path exploration techniques (e.g., [3, 14]) tbah take
a snapshot of the memory each time a previously unseen pgackin [14]
unit is unpacked. That means that new techniques for unpgeki
the end-host, in real-time, must be developed.

5.

In this paper, we performed an evaluation on the real-time dy

CONCLUSIONS

namic unpackers. We implemented a prototype compile-tinc&er
designed to maximize the cost of unpacking and minimize iingent
of program code that can be automatically recovered. By vair e

uation we showed the proposed unpacking scheme makesmeal-t

dynamic unpacking solutions ineffective. We believe thmatlie
future hardware solutions could be used to design moreiessil
unpackers.

Acknowledgments
The research leading to these results has received furndingthe

European Union Seventh Framework Programme (FP7/2003)201

under grant agreement n 257007.

6.
(1]

(2]
(3]

[4]

REFERENCES

G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.
WYSINWYX: What You See Is Not What You eXecute. In
Working Conference on Verified Software: Theories, Tools,
ExperimentsZurich, Switzerland, Oct. 2005.

Bitsum Technologies. PECompact.

http://ww. bi t sum com peconpact . php, 2009.
D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,
and H. Yin. Towards Automatically Identifying
Trigger-based Behavior in Malware using Symbolic
Execution and Binary Analysis. Technical Report
CMU-CS-07-105, Carnegie Mellon University, 2007.
Danilo Bzdok. Yoda’s Crypter.

http://yodap. sour cef or ge. net, 2010.

[11]

[13]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

P. J. Denning. Thrashing: Its Causes and PreventioRalin
Joint Computer Conferencé&968.

Dwing. UPackht t p: // dwi ng. cj b. net, 2010.

Fast Small Good (FSGht t p: / / www. woodrmann. comnl
col | abor ati ve/t ool s/index. php/ FSG 2009.

F. Guo, P. Ferrie, and T. cker Chiueh. A Study of the Packer
Problem and Its Solutions. Proceedings of the Recent
Advances in Intrusion Detection Symposj2d08.

M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden
Code Extractor for Packed ExecutablesPhoceedings of
the 5th ACM Workshop on Recurring Malco@®07.

C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
Proceedings of the International Symposium on Code
Generation and OptimizatioMar. 2004.

C. Linn, S. Debraydepartment, and C. Science. Obfimtat
of Executable Code to Improve Resistance to Static
Disassembly. IfProceedings of the ACM Conference on
Computer and Communications Securty\CM Press, 2003.
C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Janapa, and R. K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. IfProceeding of ACM Conference on
Programming Language Design and Implementat®@@M
Press, 2005.

L. Martignoni, M. Christodorescu, and S. Jha. Omniwipa
Fast, generic, and safe unpacking of malware. In
Proceedings of the Annual Computer Security Applications
Conference2007.

A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple
Execution Paths for Malware Analysis. Rroceedings of the
2007 IEEE Symposium on Security and Privd&EE
Computer Society Press, May 2007.

North Star Software. NsPack.

http://ww. nsdsn. conf eng/ i ndex. ht m 2009.
Nullsoft Inc. NSIS.ht t p: / / nsi s. sour cef or ge. net ,
20009.

M. Oberhumer. UPX, 2010.

Panda Securityht t p:

/I www. pandasecurity. conl honeuser s/ nedi a/
press-rel eases/ vi ewnews?noti ci a=8612,2007.
S. Realms. SoftwarePassport: Armadillo.

http://ww. siliconreal ns. com

sof t war e- passport-arnmadi |l o. ht n,2010.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware. IRroceedings of the Annual
Computer Security Applications Conferen2606.

M. Sharif, A. Lanzi, J. Giffin, , and W. Lee. Automatic
Reverse Engineering of Malware EmulatorsPlirmceedings
of The 2009 IEEE Symposium on Security and Priya699.
M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding
Malware Analysis Using Conditional Code Obfuscation. In
Proceedings of the 15th Annual Network and Distributed
System Security Symposiu?08.

StarForce. ASPackt t p: / / ww. aspack. coni , 2009.
O. Technology. Themida: Advanced Windows Software
Protection Systenht t p: / / www. or eans. coni , 2008.
The EGOISTE/TMG. tElock.
http://programerstool s. org/ node/ 164,2009.

