
Thwarting Real-Time Dynamic Unpacking

Leyla Bilge, Andrea Lanzi, Davide Balzarotti
Institute Eurecom, Sophia Antipolis
{bilge,lanzi,balzarotti}@eurecom.fr

ABSTRACT
Packing is a very popular technique for obfuscating programs, and
malware in particular. In order to successfully detect packed mal-
ware, dynamic unpacking techniques have been proposed in litera-
ture. Dynamic unpackers execute and monitor a packed program,
and try to guess when the original code of the program is avail-
able unprotected in memory. The major drawback of dynamic un-
packers is the performance overhead they introduce. To reduce the
overhead and make it possible to perform dynamic unpacking at
end-hosts, researches have proposed real-time unpackers that oper-
ate at a coarser granularity, namely OmniUnpack and Justin.In
this paper, we present a simple compile-time packing algorithm
that maximizes the cost of unpacking and minimizes the amount
of program code that can be automatically recovered by real-time
coarse grained unpackers. The evaluation shows that the real-time
dynamic unpackers are totally ineffective against this algorithm.

1. INTRODUCTION
In recent years, packing has become a popular technique of choice

for obfuscating malware code and for evading signature-based anti-
virus (AV) scanners [18]. In general, the packing and unpack-
ing process is simple. The packer modifies the original binary
by encrypting the code and inserting an unpacking routine. When
the packed binary is executed, the unpacking routine unpacks the
code and transfers the control flow to the unpacked code. Since
signature-based anti-virus scanners analyze suspicious programs
statically, they cannot inspect the original binary code, and fail to
detect when this code is malicious.

To deal with packed malicious code, several unpacking systems
have been proposed. These systems have been developed to sup-
port AV scanners by providing them the unpacked binary code to
scan. They originally operated statically by trying to recognize the
packing scheme used to protect the code, and to recover the origi-
nal code using a manually-written routine. Malware authorssoon
discovered that for defeating static unpackers it was sufficient to
use a slightly different packing algorithm each time such that cus-
tom unpacking routines needed to be constantly adapted. Forthese
reasons, static systems have been superseded by systems based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

dynamic approaches.
Dynamic unpackers execute and monitor a packed program, and

try to guess when it has finished unpacking itself so that theycan
locate the unprotected code in memory. To this end, the dynamic
unpackers employ a number of heuristics and leverage the fact that
the programs are typically packed as a whole. Depending on the
deployment scenarios, the heuristics trade off the precision with
performance, and vice-versa. Off-line dynamic unpackers typically
run inside a sand-box (e.g., a virtual environment or an emulator)
and are mainly used as a part of the malware analysis process [9,
20]. As a result, such off-line dynamic unpackers do not havestrict
time constraints. Hence, they can apply very precise monitoring
techniques and heuristics to detect the execution of unpacked code.

One important drawback of the off-line dynamic unpackers is
the performance overhead they introduce. Unfortunately, this per-
formance overhead makes it impossible to install and run them as
real-time systems on end-user machines. Therefore, it is desirable
to have an effective real-time dynamic unpacker that is efficient
enough to be run on an end-user machine.

To date, only two real-time dynamic unpackers have been pro-
posed: Omniunpack [13] and Justin [8]. They both try to find the
point in time where the binary is unpacked in the memory. Once
they detect this point, they invoke the AV scanner for initializing
the detection procedure. Omniunpack and Justin are able to detect
malicious code that is packed by a wide range of packers [7, 2,4,
6, 15, 16, 17, 23, 25].

To the best of our knowledge, there has not been any previous
research that evaluates the effectiveness of the real-timedynamic
unpackers against more sophisticated packing techniques.In this
paper, we perform an analysis on the real-time dynamic unpack-
ers proposed to date. To this end, we implemented a prototype
compile-time packer designed to maximize the cost of unpacking
and minimize the amount of program code that can be automati-
cally recovered. The packing scheme we propose is based on the
same principles of the Themida packer (function level packing) but
with more finer packing granularity. The aim of our prototypeis to
have a tool that can perform different levels of packing (i.e. func-
tions, basic block, instruction) to test real-time unpackers. The re-
sults of our experiments show that our packer makes existingreal-
time unpacking solutions ineffective.

The paper is organized as follows. Section 2 briefly introduces
the packers and their limitations, and surveys the various tech-
niques proposed in the literature to recover packed code. Section 3
presents the packing algorithm we have developed to attack real-
time unpackers. Section 4 discusses the results of the evaluation.
Finally, Section 5 concludes the paper.

2. BACKGROUND
Packing is one of the program obfuscation techniques employed

by malware authors to protect their software (i.e.., prevent detec-
tion and complicate the reverse engineering). This sectionbriefly
describes how packers work and discusses the techniques forre-
covering packed code.

2.1 Packing Schemes and Their Limitations
In the traditional form, packing is applied to the executable pro-
grams produced in output by compilers (as shown in Figure 1).Es-
sentially, packing consists of taking the original contentof the ex-
ecutable, packing this data by encrypting or compressing it, and in
generating a new program composed by the packed executable im-
age and the appropriate unpacking routine. When invoked, this new
program will execute the unpacking routine first. The unpacking
routine will restore the original image of the executable inmem-
ory, and then transfer the execution to the original entry point of
the program. Thus, any attempt to statically analyze the packed
program is made ineffective, since the real code of the program is
only accessible at run-time. This form of packing is widely adopted
because it is very easy to apply and because it can be used withany
program, independently from the source language in which the pro-
gram is written. The majority of the open-source and commercial
packers follow this approach ([7, 2, 4, 6, 15, 16, 17, 23, 25]).

However, this type of packing is very weak and easy to defeat.At
the end of the execution of the packing routine, the whole program
image is accessible in memory in an unprotected form. This weak-
ness is a consequence of the fact that the packer does not haveany
insight on the program itself. In fact, the analysis of executables or
assembly programs cannot, in general, assure soundness andcom-
pleteness [1]. Without any precise information about the control-
flow and the data-flow of the program, it is difficult for the packer
to reliably partition the program into fragments and construct an
unpacking routine that unpacks these fragments incrementally at
run-time. Hence, the normal approach consists in packing the en-
tire program. There are, however, some exceptions to this behav-
ior. For example, Armadillo [19] partitions the program into pages
and unpack only the page to be executed. This approach is reli-
able since partitioning does not require to analyze the program, but
just leverages hardware protection mechanisms to detect the page
that is going to be executed. Although Armadillo unpacks thepro-
gram on-demand, once a page is accessed and unpacked, the page
remains unprotected in memory until the program terminates. Fi-
nally, we believe that the function level granularity, supported by
Themida [24], is the finest granularity that can be achieved with-
out performing any sophisticated (and error-prone) analysis on the
executable.

Recently, obfuscation techniques that are based on code virtual-
ization have become popular [24]. In few words, code virtualiza-
tion consists of translating the instructions of the program into new
instructions belonging to a custom instruction set, and executing
them using an ad-hoc emulator, which is embedded directly into
the program. Although code virtualization can be used to obfus-
cate binaries as packers do, the analysis of programs protected with
code virtualization is a completely separate research problem [21],
and it is outside the focus of this paper.

2.2 Unpacking Techniques
The historical method for unpacking a packed program is based

on algorithmic unpacking. As the name indicates, this method em-
ploys a manually written algorithm that mimics the unpacking rou-
tine embedded in the packed program. This approach is very ef-
fective and efficient at unpacking programs that are packed with

well-known packing schemes. However, its effectiveness has been
decreasing since the development of a specific unpacking algorithm
requires substantial expert knowledge, and since malware develop-
ers are continuously developing new packing schemes to exhaust
experts’ resources.

To overcome this limitation, a new unpacking technique, called
generic unpacking, has been proposed. The main idea behind generic
unpacking is to rely directly on the unpacking routine embedded in
the packed program, and to execute this routine until the program
is completely restored in memory. To this end, generic unpackers
either emulate or monitor the execution of the program and adopt
several heuristics to detect when the unpacking is completed and
the original program can be identified in memory in an unprotected
state. Heuristics are necessary because the detection of the end of
the unpacking is an undecidable problem [20]. All generic unpack-
ers are based on the same heuristics that detect an unavoidable be-
havior: the execution ofpreviously written code. On the other hand,
unpackers might implement this heuristic at a different granularity
(e.g., at the byte or at the page granularity) and might combine it
with additional ones to improve the accuracy and to optimizethe
performance.

Depending on the precision of the heuristics used by genericun-
packers to detect the end of the unpacking, unpackers might or
might not be suitable for real-time scenarios (i.e., on end-hosts).
Examples of off-line generic unpackers, whose heuristics are too
precise and expensive for real-time deployment, are Renovoand
PolyUnpack [9, 20]. Both unpackers detect the end of the unpack-
ing by emulating the execution of the program and monitoringall
memory writes and instruction fetches, and consider all instructions
fetched from previously written memory locations to be success-
fully unpacked.

Real-time packers, such as OmniUnpack and Justin [13, 8], in
comparison, use coarse grained heuristics that are much less ex-
pensive to deploy. They can be used on end-hosts to recover, on
behalf of the AV, the protected malicious code. More precisely,
these unpackers track memory writes and instruction fetches at the
page level, at a very low-cost, leveraging directly hardware protec-
tion mechanisms offered by the CPU. To compensate the coarse-
ness of this heuristic, to increase the precision of their guess about
the end of the unpacking, and to reduce the number of ineffective
AV invocations (i.e., to scan memory locations containing code that
is only partially unpacked), OmniUnpack and Justin leverage addi-
tional heuristics. That is, OmniUnpack does not consider the un-
packing to be concluded until the execution of alleged unpacked
code is followed by the invocation of a dangerous system call(i.e.,
a system call that could potentially alter the safe state of the sys-
tem). The rationale is that the unpacking routine is typically exe-
cuted in batch mode, immediately after the program is launched,
and that dangerous interactions with the system (e.g., the creation
of a new file) only take place after the malware is completely un-
packed. The approach taken by Justin, instead, is to consider the
unpacking concluded only when the stack layout during the execu-
tion of previously written memory locations is compatible with the
layout expected in the absence of packing. The intent is to catch
the instant of time at which themain function of the protected
program is executed.

3. ON-THE-FLY (UN)PACKING
Figure 2 shows an overview of the packing scheme we implemented
for our experiments. Compared to traditional schemes, our ap-
proach offers afiner packing granularity. In traditional packing
schemes, the program is typically packed as a whole. In contrast,
our approach partitions the program into multiplepacking units(a

Unpacking
routine

char msg[] = "...";
void main() {

...
}

Header

Data

Code

Header

Data

Code

Unpacking
routine

Header

Data

Code

Compilation Packing Execution

Figure 1: Overview of the traditional (un)packing scheme (cross-hatched regions are packed)

char msg[] = "...";
void main() {

...
}

Header

Data

Code

Unpacking
routine

Header

Data

Code

Unpacking
routine

Packing
Unit

Header

Data

Code

Unpacking
routine

Packing
Unit

Compilation Execution Execution

Figure 2: Overview of proposed on-the-fly (un)packing scheme (cross-hatched regions are packed; white regions inside the cross-
hatched regions are not)

unit is a fragment of the program’s code or data), each of which
is packed and unpacked independently. More precisely, in our
scheme, a packing unit is unpacked on-the-fly, just before being
used. In addition, it is repacked immediately after use. Therefore,
the whole program is never entirely in memory in an unprotected
fashion. Rather, only a small unit at a time is unprotected. The only
way to recover the entire program is to force it to unpack eachof
its units (e.g., by forcing the program to execute a particular region
of code or to access a particular region of data). Moreover, as we
demonstrate in Section 4, this approach effectively causesreal-time
generic unpackers to perform excessive trashing [5], and can also
prevent them to recover the entire program.

The fine packing granularity is possible in our scheme as the
packing is performedtransparentlyat compile time. Thus, we have
access to high-level program information, which is not available
to traditional packers working directly on compiled executables (as
described in Section 2.1). In our scheme, thanks to the high-level
information we have access to, we can partition the program into
multiple packing units and protect these separately. By relying on
conservative information, we have the guarantee that the transfor-
mations we apply to the program preserve its semantics. Depending
on the desired level of security, a packing unit can be a module of
the program, a function, a basic block, and even a single instruc-
tion, or a variable.

Although our packing scheme share some similarities with the
obfuscation scheme presented by Sharif et al. [22], our scheme
generalizes the obfuscation and is intended to be applied towhole
programs.

3.1 (Un)Packing Mechanism
The steps required for packing a program for on-the-fly (un)packing
are shown in Figure 3. In short, the usual compilation process is
extended with two additional steps in order to make the program
capable of unpacking and packing its code and data at run-time,

and for the initial packing of the compiled executable.
The source code is translated into a high-level intermediate form

by the front-end of the compiler (Step 1 in Figure 3). The inter-
mediate form is analyzed with the aim of identifying the packing
units, and is then instrumented to introduceunpack andpack
operations respectively at entry and exit points of each unit (Step
2 in Figure 3). After instrumentation, the intermediate form is op-
timized and is then compiled into an executable object (Step3 in
Figure 3). Finally, the instrumented executable is packed (Step 4 in
Figure 3).

Theunpack andpack operations are responsible, respectively,
for unpacking a packing unit just before usage, and for packing it
again after the usage. In other words, these operations guarantee
that the code or the data region represented by the packing unit are
accessible in memory only when the memory region is effectively
executed or accessed. Practically speaking, a packing unitrepre-
senting a fragment of code (e.g., a function) is unpacked only when
the fragment is being executed. On the other hand, a packing unit
representing a global variable is unpacked only when the variable
is being read or written.

The instrumentation performed in the second step of the compi-
lation process then depends on the desired granularity of packing
and on the type of packing unit. For example, for on-the-fly pack-
ing at function granularity, each function of the program istreated
as a different packing unit. Thus, the instrumentation consists of
wrapping all function calls and of addingpack andunpack op-
erations to pack the caller and to unpack the callee. In contrast, for
packing at basic block granularity, the instrumentation consists of
extending each basic block with a prologue and an epilogue. The
prologue unpacks the code of the basic block at the entry, while
the epilogue packs the basic block at the exit. Finally, for packing a
variable, the instrumentation consists of inserting anunpack oper-
ation before each usage of the variable, and of inserting apack op-
eration after each usage. To detect all program instructions that ac-

char msg[] = "...";
void main() {

...
}

%1 = load ...
%2 = load ...
%3 = add %1, %2

%1 = call @unpack
%2 = load ...
%3 = load ...
%4 = add %2, %3
%5 = call @pack

0f8422f6
ffff8b95
ebb583bd
8cfbffff
94fcffff

f68574fb
0375448b
0f94c08b
f7ea89f0
ff81ea6d

Parsing &
translation

1

Instrumentation

2

Compilation
& linking

3

Packing

4

Source code Byte-code
Instrumented

byte-code
Executable

Packed
executable

Figure 3: Overview of the compilation and packing process

cess a particular variable, we rely on alias information made avail-
able by the compiler.

Figure 4 shows a fragment of a sample program (in assembly)
and compares the code of the program without packing and with
packing at basic block granularity (Figures 4(a) and 4(b) respec-
tively). The code of a basic block in the packed program is very
similar to that in the unprotected copy of the program. In the
packed program, each basic block begins with anunpack oper-
ation and ends with apack operation. Thepack operation is
followed by an optional indirect control transfer instruction that
transfers the execution to the next non-adjacent basic block. The
two packing operations delimit the real code of the basic block (the
crosshatched region in the Figure). This code is almost identical
to the code in the unprotected block. The only difference is in the
control transfer instructions used to transfer the execution to the
next basic block (conditional and unconditional jumps and calls).
In unprotected blocks (Figure 4(a)), control transfers aredirect. In
protected blocks (Figure 4(b)), control transfers are indirect, and
the address of the next block to execute is stored in a specialvari-
able (nextbb in Figure 4(b)), which is set locally. The intent is to
further complicate reverse engineering by preventing the adversary
to guess how basic blocks are linked together, and thus to guess the
structure of the program.

It is worth noting that the proposed scheme supports flawlessly
dynamically linked programs, where shared libraries are not packed.
In fact, when the execution flows from the program to a shared li-
brary, no portion of the program is left unprotected.

At a first sight,unpack operations might seem easy to detect
(e.g., using pattern matching). If detected, they could be executed
to unpack the associated packing unit. Our claim is that multiple
pairs ofpack andunpack operations can be used in the same
program. Potentially, each packing unit could be protectedusing a
different pair of operations and, in case of extreme paranoia, they
could be even obfuscated using standard—but hard to reverse—
obfuscation techniques (e.g., [11]).

3.2 Implementation Details
We have implemented a prototype of the proposed packing scheme

using LLVM, an open-source, and language-independent compiler [10].
The prototype consists of three components. The first component is
a LLVM “pass”, which takes the intermediate bytecode generated
by the compiler and instruments it to add on-the-fly (un)packing
capabilities, at the requested granularity level. The second com-
ponent is the real packer; it takes the final executable produced
by the compiler, identifies the various packing units using sym-
bols information, and packs them. The third component is a script
that allows (malicious) users to pack their programs with noeffort.
Essentially, the script is meant to substitute the originalcompiler
and to translate the source code into LLVM bytecode, to applythe
instrumentation “pass”, to compile and link the bytecode, and fi-
nally, to pack the resulting executable. In summary, (malicious)
users can protect their programs without changing a single line
in the source code, and by compiling their code using the script

we provide. For example, programs compiled using Make can be
packed simply by instructing Make to use a different compiler (e.g.,
make CC=otfpcc).

The LLVM “pass” traverses all the functions in the program, de-
tects the appropriate instrumentation points (according to the re-
quested packing granularity), and inlines the operations for on-the-
fly (un)packing. From the LLVM prospective, our “pass” is a user-
written optimization, and can be hooked into the compilation chain.
Given the high-level API offered by LLVM, the instrumentation is
trivial to perform. That is, less than a hundred lines of C++ are
sufficient to analyze the bytecode, and to augment it with on-the-
fly (un)packing capabilities at function, or basic block granularity.
Currently, our prototype does not support on-the-fly (un)packing of
data.

In the current prototype, the packing units are encrypted byXOR-
ing their content with a variable length key. Each packing unit is
encrypted with a different key and the keys are embedded sepa-
rately in each unit, within the code we insert during the instrumen-
tation “pass”. Obviously, more sophisticated and multipleencryp-
tion schemes can be used to protect the program. Furthermore,
inlined operations for packing and unpacking are reentrant: they
check whether the packing unit is already being used (and thus,
unpacked) by another thread. The packing unit is unpacked bythe
first thread that accesses it and repacked when the last thread ceases
to use it.

3.3 Limitations
Although the proposed packing scheme is simple and easy to

implement, there are few situations in which it cannot be safely
applied. For example, a program that uses self-checksumming to
guarantee untampered execution will fail to execute because the
checksummed regions of the programs will most likely be packed.

Although the packing of data would be very easy to implement
using LLVM, our prototype currently does not support such a fea-
ture. In any case, packing could be applied only to global andstat-
ically allocated variables because the packing of dynamically allo-
cated variables (e.g., in the stack or in the heap) would require to
instrument library code as well.

4. EVALUATION
The purpose of our evaluation is to demonstrate that our pack-

ing scheme is very effective in protecting packed code and that
it renders real-time generic unpackers such as OmniUnpack and
Justin completely ineffective. Indeed, by continuously unpacking
and repacking each packing unit, the heuristics adopted by Omni-
Unpack and Justin keep triggering and unpacking becomes inef-
fective because most of the resources of the CPU are consumedto
perform useless analysis. Moreover, our packing scheme violates
the assumption, made by OmniUnpack and Justin, that a block of
code sufficiently big for reliable detection is available inmemory
unprotected. In fact, AVs need to analyze a certain number offunc-
tions in order to guess the maliciousness of the code with a low

xor %esi,%esi
add $0x1,%edx
cmp $0x4,%esi
jbe B3

B1

mov %al,%ecx
add $0x1,%ebx
add $0x1,%ecx

B2 shl $0x4,%esi
add $0x1,%edx
lea 0x0(%eax),%edi
jmp B4

B3

(a)

unpack(..)
xor %esi,%esi
add $0x1,%edx
cmp $0x4,%esi
ja L1:
mov B3, nextbb
jmp L2
L1: mov B2, nextbb
L2: pack(..)
jmp nextbb

B1

unpack(..)
mov %al,%ecx
add $0x1,%ebx
add $0x1,%ecx
pack(..)

B2 unpack(..)
shl $0x4,%esi
add $0x1,%edx
lea 0x0(%eax),%edi
mov B4, nextbb
pack(..)
jmp nextbb

B3

(b)

Figure 4: Sample fragment of a program: (a) without packing and (b) with packing (at basic block granularity).

false-positive rate.
For the evaluation, we developed a cross-platform dynamic bi-

nary instrumenter on top of PIN [12]. This application traces an ar-
bitrary program, logs all memory accesses (i.e., fetches, loads, and
stores) that occur during its execution, and takes completesnap-
shots of the content of the memory at will. We used this appli-
cation to inspect the content of the memory during the execution
of several experimental packed programs, and also to simulate the
heuristics adopted by OmniUnpack and Justin for detecting the end
of the unpacking. In particular, we simulated the W⊕X policy at
the page level (i.e., a page can be either writable or executable).
Note that this policy is used by both unpackers to track the exe-
cution of previously written code. Furthermore, we programmed
our application to take full snapshots of the content of the memory
at each system call and each time the constraints used in Justin’s
heuristic were satisfied.

In the first experiment, we tested how OmniUnpack and Justin
are able to deal with our packer. Using our packer, each packing
unit is unpacked before execution and packed immediately after.
Thus, each time a packing unit is executed, at least two violations
of the W⊕X policy occur, each of which results in a page-fault ex-
ception. When the packing unit is unpacked, the memory page that
contains it is marked as being writable and not executable. When
the unpacking is concluded and the execution begins, the first page-
fault occurs, and the page is marked as being executable and not
writable. Similarly, when the execution is concluded and the unit
is repacked, another page-fault occurs. Therefore, the number of
page-faults caused by the W⊕X policy is at least2u, whereu is
the number of times the program executes a different packingunit.
This is a lower bound on the number of page-faults since a packing
unit overlapping adjacent pages would cause multiple faults.

Thus, it is imaginable that the number of page-faults can eas-
ily explode to the point where most of the CPU time is spent in
responding to these faults. To prove our assumption, we usedthe
PIN-based application to measure the number of executed packing
units in simple packed applications. Table 1 reports some results
of our experiments. As an example, we packed thetar utility
(at function granularity) and used it to compress the content of the
/etc directory on a common Linux distribution. During the ex-
ecution of the packed utility, we observed that more than 105,000
packing units were executed. In such a situation, the W⊕X policy
adopted by OmniUnpack and Justin would have caused more than

Program # executed # page-faults
packing units (estimated)

tar ∼105,000 ∼210,000
gzip ∼143,000 ∼286,000
sed ∼60,200 ∼120,400
grep ∼26,100 ∼52,200
wget ∼139,000 ∼278,000

Table 1: Estimated number of page-faults that would be caused
by the W⊕X policy used by OmniUnpack and Justin (programs
packed at function granularity)

210,000 page-faults. By adopting a finer packing granularity (e.g.,
at the basic block level), the number of page-faults would have been
even higher.

Note that, OmniUnpack and Justin invoke an AV scanner such
that it scans the unpacked memory, instead of taking the snapshots
of the content of the memory. Similarly to OmniUnpack and Justin,
a human expert, with the help of an emulator or a debugger, might
try to reconstruct the unpacked program by taking arbitrarysnap-
shots of the content of the memory. Our packing scheme is resistant
against all such attempts. That is, there is no instant in time where
the program that is being executed is in completely unpackedstate
in memory. Further, the amount of code that is unpacked at a given
time solely depends on the granularity of the packing.

In order to measure the amount of code exposed by our unpacker,
we packed several sample applications at the function leveland we
ran them. For each execution of the program, we took snapshots of
the content of the memory at two different instants in time: system
call time (conservative approximation of OmniUnpack’s heuristics)
and at the start of themain function (Justin’s heuristics). As ex-
pected, in all cases, we never found the entire program in themem-
ory, but only one packing unit (the function) being executedat the
time of the snapshot. In any of the snapshots taken using OmniUn-
pack’s heuristics, we did not find any function in unprotected form
in the memory. The explanation is simple: at every function call,
the caller is packed right before entering the callee. Afterwards, the
callee is unpacked only if it is one of the functions of the packed
program. Otherwise, if the callee is either a library function or a
system call, obviously it is not unpacked. Since OmniUnpacktrig-
gers the AV scanner only on specific system calls (i.e. dangerous
system calls), at the time the AV scanner is called no unprotected

Program % of unprotected code
OmniUnpack Justin

tar 0% 1.34%
gzip 0% 2.9%
sed 0% 2.9%
grep 0% 6.0%
wget 0% 2.54%

Table 2: Percentage of program’s code that would be recov-
ered by OmniUnpack and Justin (programs packed at function
granularity)

code is available in the memory. On the other hand, the heuris-
tics employed by Justin work differently: They are based on the
assumption that the program is packed as a single block and itat-
tempts to detect when the unpacking routine transfers the control
to the original entry point of the program (e.g., themain). The
results of our experiments show that at the time Justin’s heuristics
are triggered, the percentage of unprotected code is very small, as
it can be seen from Table 2.

Table 2 reports some results of our experiments. For example,
in common Linux utilities such aswget andtar, packed with our
packing scheme at function granularity, the percentage of recovered
unprotected code using OmniUnpack’s and Justin’s heuristics was
respectively 0% and 2.54% for the first utility, and 0% and 1.34%
for the second one.

In conclusion, we speculate that the only way to fully recover
a program packed with our packer is to rely on off-line unpack-
ers that can execute all possible paths, either manually or by us-
ing multi-path exploration techniques (e.g., [3, 14]) thatcan take
a snapshot of the memory each time a previously unseen packing
unit is unpacked. That means that new techniques for unpacking at
the end-host, in real-time, must be developed.

5. CONCLUSIONS
In this paper, we performed an evaluation on the real-time dy-

namic unpackers. We implemented a prototype compile-time packer
designed to maximize the cost of unpacking and minimize the amount
of program code that can be automatically recovered. By our eval-
uation we showed the proposed unpacking scheme makes real-time
dynamic unpacking solutions ineffective. We believe that in the
future hardware solutions could be used to design more resilient
unpackers.

Acknowledgments
The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement n 257007.

6. REFERENCES
[1] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.

WYSINWYX: What You See Is Not What You eXecute. In
Working Conference on Verified Software: Theories, Tools,
Experiments, Zurich, Switzerland, Oct. 2005.

[2] Bitsum Technologies. PECompact.
http://www.bitsum.com/pecompact.php, 2009.

[3] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,
and H. Yin. Towards Automatically Identifying
Trigger-based Behavior in Malware using Symbolic
Execution and Binary Analysis. Technical Report
CMU-CS-07-105, Carnegie Mellon University, 2007.

[4] Danilo Bzdok. Yoda’s Crypter.
http://yodap.sourceforge.net, 2010.

[5] P. J. Denning. Thrashing: Its Causes and Prevention. InFall
Joint Computer Conference, 1968.

[6] Dwing. UPack.http://dwing.cjb.net, 2010.
[7] Fast Small Good (FSG).http://www.woodmann.com/

collaborative/tools/index.php/FSG, 2009.
[8] F. Guo, P. Ferrie, and T. cker Chiueh. A Study of the Packer

Problem and Its Solutions. InProceedings of the Recent
Advances in Intrusion Detection Symposium, 2008.

[9] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden
Code Extractor for Packed Executables. InProceedings of
the 5th ACM Workshop on Recurring Malcode, 2007.

[10] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
Proceedings of the International Symposium on Code
Generation and Optimization, Mar. 2004.

[11] C. Linn, S. Debraydepartment, and C. Science. Obfuscation
of Executable Code to Improve Resistance to Static
Disassembly. InProceedings of the ACM Conference on
Computer and Communications Security. ACM Press, 2003.

[12] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Janapa, and R. K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. InProceeding of ACM Conference on
Programming Language Design and Implementation. ACM
Press, 2005.

[13] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack:
Fast, generic, and safe unpacking of malware. In
Proceedings of the Annual Computer Security Applications
Conference, 2007.

[14] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple
Execution Paths for Malware Analysis. InProceedings of the
2007 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2007.

[15] North Star Software. NsPack.
http://www.nsdsn.com/eng/index.htm, 2009.

[16] Nullsoft Inc. NSIS.http://nsis.sourceforge.net,
2009.

[17] M. Oberhumer. UPX, 2010.
[18] Panda Security.http:

//www.pandasecurity.com/homeusers/media/
press-releases/viewnews?noticia=8612, 2007.

[19] S. Realms. SoftwarePassport: Armadillo.
http://www.siliconrealms.com/
software-passport-armadillo.html, 2010.

[20] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware. InProceedings of the Annual
Computer Security Applications Conference, 2006.

[21] M. Sharif, A. Lanzi, J. Giffin, , and W. Lee. Automatic
Reverse Engineering of Malware Emulators. InProceedings
of The 2009 IEEE Symposium on Security and Privacy, 2009.

[22] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding
Malware Analysis Using Conditional Code Obfuscation. In
Proceedings of the 15th Annual Network and Distributed
System Security Symposium, 2008.

[23] StarForce. ASPack.http://www.aspack.com/, 2009.
[24] O. Technology. Themida: Advanced Windows Software

Protection System.http://www.oreans.com/, 2008.
[25] The EGOiSTE/TMG. tElock.

http://programmerstools.org/node/164, 2009.

