
Systematic Comparison of Symbolic Execution Systems:
Intermediate Representation and its Generation

Sebastian Poeplau
Aurélien Francillon

sebastian.poeplau@eurecom.fr
aurelien.francillon@eurecom.fr

EURECOM
Sophia Antipolis, France

ABSTRACT
Symbolic execution has become a popular technique for software
testing and vulnerability detection. Most implementations trans-
form the program under analysis to some intermediate represen-
tation (IR), which is then used as a basis for symbolic execution.
There is a multitude of available IRs, and even more approaches to
transform target programs into a respective IR.

When developing a symbolic execution engine, one needs to
choose an IR, but it is not clear which influence the IR generation
process has on the resulting system. What are the respective bene-
fits for symbolic execution of generating IR from source code versus
lifting machine code? Does the distinction even matter? What is the
impact of not using an IR, executing machine code directly? We feel
that there is little scientific evidence backing the answers to those
questions. Therefore, we first develop a methodology for systematic
comparison of different approaches to symbolic execution; we then
use it to evaluate the impact of the choice of IR and IR generation.
We make our comparison framework available to the community
for future research.

CCS CONCEPTS
• Security and privacy → Software security engineering; • Soft-
ware and its engineering→ Software testing and debugging.

KEYWORDS
symbolic execution, intermediate representation

ACM Reference Format:
Sebastian Poeplau and Aurélien Francillon. 2019. Systematic Comparison of
Symbolic Execution Systems: Intermediate Representation and its Gener-
ation. In 2019 Annual Computer Security Applications Conference (ACSAC
’19), December 9–13, 2019, San Juan, PR, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3359789.3359796

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00
https://doi.org/10.1145/3359789.3359796

1 INTRODUCTION
Symbolic execution has gained popularity as a means of exploring
software states without predefined inputs, leading to an increase of
the coverage of the tested program, which is, e.g., very attractive
for bug finding. Conceptually, a symbolic execution engine keeps
track of how each intermediate value is computed while executing
a program. Whenever the program hits a conditional statement, the
symbolic execution engine can pass the collected information to a
solver in order to generate program inputs that yield the desired
outcome at the branch point. In otherwords, symbolic execution can
ideally generate exactly one input for each possible path through
the program under test.

Recent years have seen the development of several symbolic
execution engines, both in academic environments and by com-
mercial actors [1]. However, the performance of symbolic execu-
tion remains a major challenge, especially when the technique is
applied to larger software systems. Recent work has shown that
combining symbolic execution with fuzz testing has the potential
of handling the weaknesses of either approach and combining their
strengths [39, 43]. In this context, the speed of symbolic execution
is of the essence: exploration is driven by the fuzzer, which also
takes care of vulnerability checks, and the only task of the symbolic
execution engine is to generate relevant new test inputs as quickly
as possible. It is therefore of utmost importance to obtain a better
understanding of how the various design decisions in symbolic
execution affect its performance.

Typically, symbolic execution engines translate the program
under test to an intermediate representation (IR) which they can
subsequently execute symbolically. Generating the IR from binary
may be the only solution when source code is not available. Testing
the binary directly also has the advantage of testing the “shipped”
product, independently of source language and compiler [4]. How-
ever, when source is available, both approaches are possible and
the choice of how to generate IR is a distinguishing factor between
the various approaches. There is quite some conventional wisdom
surrounding it: one intuition is that high level source code seman-
tics (e.g., buffer boundaries, types) can be preserved and will make
symbolic execution, and bug finding, more efficient [14]. However,
to the best of our knowledge, there is no systematic study backing
such claims. The goal of our work is therefore to systematically as-
sess how the choice of IR, and the process of generating it, influence
various aspects of symbolic execution.

We select several popular implementations, each with their own
mechanism for IR generation, and compare them to discern the

https://doi.org/10.1145/3359789.3359796
https://doi.org/10.1145/3359789.3359796

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

effect on their relative performance. In particular, we aim at an-
swering the following research questions:

(1) Is there a benefit in generating IR from source code as com-
pared to IR generation from binaries?

(2) Are there significant differences between symbolic execution
of different IRs generated from the same programs? What
about the special case of symbolically executing machine
code directly?

Along the way, we discovered that the presumably simple engi-
neering task of setting up a number of symbolic execution engines
in a stable environment and running a fair comparison on them is
actually quite a challenge in itself. We therefore make our environ-
ment and dataset publicly available.

In summary, our contributions are the following:

• We devise a framework for systematic comparison of differ-
ent implementations of symbolic execution.

• We provide an assessment of the impact that the choice
of IR generation mechanism has on the performance of a
symbolic execution engine and derive recommendations for
future work in symbolic execution.

• We publish our setup and data as a common basis for future
evaluations.

2 BACKGROUND
This section gives the reader required background information.
We focus on the general idea of symbolic execution as well as
intermediate representations and SMT solving, before the next
section puts the subject of our research in the more general context
of designing a symbolic execution engine.

2.1 Symbolic Execution
Symbolic execution was originally proposed by King in 1975 [22]. It
was envisioned as a technique for software testing that is more rig-
orous than manual tests and more practical than formal verification.
The early 2000s have finally seen the development of several more
or less practical symbolic execution engines (e.g., [9]), fueled by
significant improvements in Boolean satisfiability (SAT) and satisfi-
ability modulo theories (SMT) solving [44], and the field continues
to be very active to this day.

At the core of most modern symbolic execution engines, an in-
terpreter runs the program under test while keeping a record of
how each intermediate value in the program is computed. Those
computations are typically expressed in the logic of bit vectors and
arrays. A noteworthy exception is Qsym [43], to be discussed in
more detail later, which executes x86 machine code directly. When-
ever the target program encounters a conditional whose outcome
depends on intermediate values, the symbolic execution engine
can express the condition in terms of the original input values of
the program, using the knowledge of how the intermediate values
were derived from the inputs in the course of execution. An SMT
solver can in many cases solve the expression corresponding to the
desired result of the conditional (the so-called path constraints) for
the input values; in other words, the solver generates inputs that
cause the program to run up to the conditional and then take the
desired path out of it.

When symbolic execution is used with the goal of testing an en-
tire program, the execution engine typically tries to follow each path
out of any conditional statement, i.e., it forks and tries to generate
inputs for each possible outcome. A common problem arising from
forking at each conditional is path explosion: the number of paths
to explore grows exponentially over time. More recent approaches
combine symbolic execution with fast random testing [39, 43]. In
this latter scenario, a fuzzer selects interesting inputs and symbolic
execution merely follows a fixed path dictated by a given concrete
program input; the symbolic execution engine thus does not have
to cope with path explosion. It just uses the solver to compute
inputs that diverge from the predetermined path at any desired
point, possibly even trading precision for speed [43]. Especially
in this hybrid setting, faster symbolic execution amounts to more
tested code and—all else being equal—a higher chance of detecting
vulnerabilities.

2.2 Intermediate Representation
When emulating the execution of a program, symbolic execution
faces the challenge that the instruction sets of modern CPUs are
large and complex; writing a symbolic emulator for them is not
trivial. Therefore, it is common to lift the program under test to
some intermediate representation, which is then emulated. Sym-
bolic execution at the IR level also increases portability: in order to
support a new architecture, one “only” needs to reimplement the
IR generator, while the rest of the system can remain unchanged.

Symbolic execution engines differ in the choice of IR and in their
approach to generating IR from either a binary or from source code.
We refer to the process as IR generation, no matter whether the
initial artifact is a machine-code binary or source-code files, because
the term lifting is only appropriate for IR generation that starts
from machine code. The choice of IR-generation mechanism has
a considerable influence on several aspects of symbolic execution,
which is the motivation for this study.

2.3 SMT solving
Symbolic execution engines need to solve path constraints for input
values; in other words, they need to solve formulas in the logic of
bitvectors and arrays (see Section 5.5 for examples). The field of SMT
solving provides tools to address this (generally hard [23]) problem:
in many cases, modern SMT solvers can solve such difficult queries
in acceptable time, using various heuristics that are themselves
an active area of research. It is, however, in the best interest of
any symbolic execution engine to generate queries in a form that
SMT solvers can solve quickly. We conjecture that the way IR is
generated has a profound impact on the complexity of the resulting
SMT queries.

3 DESIGN SPACE
While this study focuses on the generation of intermediate repre-
sentations and the impact of that choice on the overall performance
of symbolic execution, the design of a symbolic execution engine
involves many other decisions. In this section, we give an overview
of important dimensions in the design space and frame our par-
ticular object of study, namely the IR generation process, in the
larger context. We refer interested readers to the recent survey by

Symbolic Execution: IR and its Generation ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Baldoni et al. [1] for a more comprehensive discussion of symbolic
execution techniques in general.

Figure 1 gives an overview of the components in a typical sym-
bolic execution engine. We focus on IR and its execution, which is
the core part that is present in every such system. There may be
additional components, such as security checks and a machinery
for state forking and scheduling. However, they are dropped in
more recent symbolic execution engines, where symbolic execu-
tion functions in concert with a fuzzer which takes care of crash
detection and input prioritization [39, 43].

3.1 Path Selection
At each branching point in the program under analysis, a symbolic
execution engine faces the decision which path to follow. In King’s
original proposal, the user was prompted every time [22]. Mod-
ern systems typically employ heuristics that do not rely on user
interaction. There are two major approaches:

(1) Concolic execution follows the path dictated by a given con-
crete input, typically generating new inputs along the way
that leave the predetermined path. In this case, the question
of path selection is addressed externally; it mostly revolves
around choosing a concrete input to process in each itera-
tion of the system. Examples of symbolic execution engines
that follow this approach are SAGE [20] and the symbolic
components of Driller [39] and Qsym [43].

(2) Some symbolic execution engines choose to pursue all fea-
sible code paths simultaneously, conceptually forking the
executor at each branching point. The scheduling of the re-
sulting execution states is a crucial element of those systems’
design because a good selection strategy may quickly guide
execution toward unexplored code, while less sophisticated
strategies risk getting stuck (e.g., in loops). KLEE [8] and
Mayhem [10] are examples of symbolic execution engines
that conceptually follow all code paths at once.

While the path selection strategy is crucial for the effectiveness
of conventional symbolic execution, it is irrelevant for the more
recent systems running symbolic execution in concolic mode along
with a fuzzer. Therefore, we use concolic mode for all systems,
implementing it where necessary. Concolic execution allows us to
pass the same fixed input to all engines and trust that they follow
the same code path.

3.2 Incremental Solving
As symbolic execution follows a path through the code under anal-
ysis, it collects the constraints imposed on symbolic data at each
branching point. The resulting path constraints are used whenever
a branching point is encountered: execution may proceed down a
path if and only if there exists a concrete value for the symbolic
data that fulfills (1) all path constraints conjoined with (2) the de-
sired outcome of the branching condition; the latter is subsequently
added to the path constraints. Intuitively, the consequence is that
path constraints are large conjunctions that build up incrementally,
one conjunct per branching point in the program. Modern SMT
solvers can take advantage of the incremental nature of resulting
SMT queries, conceptually reusing knowledge gained in answering
previous queries when processing the next increment. Liu et al.

showed that incremental solving indeed leads to significant perfor-
mance improvements in practice [27].

For reasons unknown to us, there are symbolic execution en-
gines that do not use incremental solving. When evaluating query
complexity in our study, we therefore reset the SMT solver before
each query, essentially preventing it from exploiting any incremen-
tal nature in the queries. This eliminates differences unrelated to
our subject of study, which would otherwise skew the results.

3.3 Interleaved Execution
Symbolic execution is only necessary when the executed code
works with symbolic data—when everything is concrete, the code
can as well be executed natively, which is usually significantly
faster. Therefore, many symbolic execution engines have support
for alternating back and forth between symbolic execution and
some form of direct execution for code that does not work with
symbolic data. For instance, Qsym distinguishes at the instruction
level whether the code to be executed has symbolic inputs. It then
only instruments instructions that need to handle symbolic data
by adding complementary symbolic computations [43]. The ap-
proaches taken by the different symbolic execution engines vary
in granularity and concrete execution mechanism, but they share
the common goal of using fast execution techniques as often as
possible and only falling back to slow symbolic execution when
necessary. Therefore, even slow symbolic executors may achieve a
high overall performance in terms of test coverage per time if they
manage to execute a large portion of the code under test natively.

Among the systems in our study, some allow the user to configure
whether or not code with only concrete data is executed natively,
whereas others do not work without interleaved concrete execution
or do not support it at all. We take great care to compare only results
obtained using similar strategies when measurements are affected
by this aspect of symbolic execution. We discuss this problem in
more detail in Section 5.4.

There are many more degrees of freedom in the design of a
symbolic execution system, such as the approach to state forking,
query caching techniques, and vulnerability detection mechanisms.
However, since we focus on concolic execution (e.g., in concert
with a fuzzer) those factors do not impact our experimental setup.
Therefore, we do not discuss them here and refer to the literature
for details [1].

4 APPROACHES UNDER ANALYSIS
In this study, we compare common IR generation approaches, each
represented by a tool that implements the approach. Our test set
includes KLEE [8] for source-based IR generation, S2E [11] for
binary-based generation, angr [38] as a binary-based approach
with a different IR, and Qsym [43] as representative for systems
that do not use IR at all. This section presents each of the tools,
before the next section details the actual analysis. Unless otherwise
noted, when talking about machine code we refer to the x86 and
AMD64 instruction sets.

KLEE. Published in 2008, KLEE [8] is a well-known symbolic
execution engine that is commonly used as a basis for further re-
search [7, 11, 13, 14, 24, 33]. KLEE interprets LLVM bitcode, the

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

source code

machine code

compiler

IR

native execution

1

SMT queries

IR
execution

query cache

library/OS
interface

security checks
2

state forking search strategy

SMT solver

IR generation Execution Symbolic backend

Figure 1: Overview of symbolic execution, showing our focus on IR, IR execution, and SMT queries. Numbers indicate orthog-
onal studies by (1) Kim et al. [21] and (2) Palikareva and Cadar [29] as well as Liu et al. [27]. Dashed elements are not always
present. IR and machine code may be identical (e.g., in Qsym [43]).

Name Version IR IR generator Solver(s) Programming language Concrete execution

KLEE 4efd7f6 LLVM Clang (from source) Z3 (4.4.1), others C++ None
S2E 2018-09-24 LLVM QEMU + lifter Z3 (4.7.1) C, C++ (mostly) QEMU with KVM
angr 7.8.8.1 VEX libvex Z3 (4.5.1) Python Unicorn
Qsym 6f00c3d x86 machine code n/a Z3 (4.5.0) C++ (mostly) Directly on the CPU

Table 1: Comparison of design choices relevant to our study in the four symbolic execution engines that we analyze.

intermediate representation of the LLVM compiler framework. No-
tably, the C/C++ compiler clang can emit LLVM bitcode, which
is the IR generation approach proposed originally by KLEE’s au-
thors.1 This makes KLEE unique in our study: it is the only tool
that generates IR from source code rather than lifting binaries. It
uses the SMT solver STP [6] by default but also supports Z3 [15],
which we use as a common ground in our study. KLEE executes all
user code at the IR level.

S2E. In order to address several perceived shortcomings of KLEE,
Chipounov et al. proposed Selective Symbolic Execution (S2E) [11].
It builds on top of KLEE but executes programs inside a full virtual
operating system. The important difference for our purposes is
that S2E generates IR from binaries instead of source code. The
program and its environment run inside QEMU [3], a system emu-
lator based on binary translation, and a lifter from QEMU’s internal
representation to LLVM IR converts the code to a format suitable
for consumption by KLEE on demand. Only code interacting with
symbolic data is executed symbolically; all other code, including the
emulated operating system, runs directly in QEMU. Note that KLEE
and S2E use the same symbolic execution engine as well as the same
IR but different mechanisms to generate it. This similarity allows
us to compare their respective IR generation strategies without the
measurement noise from other differences.

angr. Shoshitaishvili et al. created angr [38] with the goal of
implementing various previously published binary-analysis tech-
niques in a single framework in order to make them comparable.

1We use clang version 3.8 with wllvm version 1.2.2 to generate LLVM bitcode.

Among many tools for binary analysis, angr provides a symbolic ex-
ecution engine based on VEX, the intermediate representation used
by the Valgrind tools [28]. The system translates binaries to VEX IR,
which is then interpreted by angr’s symbolic executor. The user can
configure whether code that handles only concrete data is passed
on to the Unicorn CPU emulator [32]. The core emulator is imple-
mented in Python in order to facilitate quick experimentation and
scripting. This decision influences execution speed in comparison
with tools that are written in lower-level programming languages.
We discuss the aspect in more detail during our analysis.2

Qsym. Yun et al. argue that IR generation and semantic discrep-
ancy between the machine code and IR instruction sets are a major
hindrance in modern symbolic execution [43]. To address this prob-
lem, they propose Qsym, a symbolic execution engine that directly
executes instrumented machine code. The implementation of the
symbolic executor is more involved than in conventional IR-based
systems, having to handle the large and complex instruction sets
of modern CPUs, but the authors argue that the significant perfor-
mance gains justify the additional implementation work. In our
study, we are interested in Qsym precisely because of its lack of
IR generation mechanism. The system supplies an interesting data
point for our analysis of execution speed and SMT query com-
plexity. Qsym decides at the instruction level whether to execute
symbolically or natively.

2The authors recommend executing angr in PyPy, a JIT-compiling implementation of
Python; we use PyPy version 5.1.2.

Symbolic Execution: IR and its Generation ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

5 EVALUATION
This section conducts the actual measurements. Recall that our
ultimate goal is to answer the following research questions:

(1) What is the impact on symbolic execution of generating IR
from source code as opposed to IR generation from binaries?

(2) Does one IR perform better than others when IR generation
is comparable? What is the impact of not using IR at all?

In order to answer those high-level questions, we need to decide
on concretely measurable properties that supply the necessary
evidence. What do we expect of an ideal IR generation technique
for symbolic execution? Since we are going to execute the IR, we
want it to be easy to interpret efficiently, and we want it to be
concise. Moreover, since SMT solving consumes a considerable
portion of the overall analysis time, we would like the IR to lead
to SMT queries that the solver can answer quickly. We therefore
evaluate the various IR generation mechanisms under three aspects
motivated by the observations above:

(1) How much does the translation to IR increase or decrease
the number of instructions?

(2) How efficiently can we execute the resulting IR?
(3) How hard are the solver queries derived from the IR?

We first discuss our methodology and the non-trivial task of
generating a set of programs that are supported by all the symbolic
execution engines we selected. Then we investigate the effect on the
number of instructions before presenting the results on execution
speed and query complexity. Interested readers will find additional
visualizations and a link to raw data in the appendix. We discuss
the implications of our results in the next section, where we also
answer the research questions.

5.1 Experimental Setup
A core challenge in assessing the impact of IR and IR generation
on symbolic execution is that different symbolic execution engines
generally differ in many factors, not just the IR generation process.
For instance, KLEE and angr differ in how they generate IR, but
in addition to this aspect relevant to our study there are other
differences that introduce noise into our measurements:

• One is implemented in C++, the other in Python.We find that
this has a major impact on the speed of symbolic execution.

• Their respective execution engines vary in search strategy,
i.e., they use different heuristics for prioritizing execution
states. Some simple heuristics like depth-first search are
supported by both but generally do not lead to interesting
paths through the software under test [10, 37].

• The systems have been developed with different goals in
mind. While the one focuses on speed and fully automatic
execution, the other places some emphasis on scriptability
and interactive exploration.

• Implementations of symbolic execution may be faulty. While
our goal is to evaluate a given approach, we can only analyze
the implementation at hand and have to trust that it faithfully
represents the approach. Previous work has shown that there
can be discrepancies [34].

It is therefore difficult to isolate the effects of IR generation from
the influence of other differences. One option would be to imple-
ment a grand unified symbolic execution engine working on top of
the various IRs in order to eliminate most variables. However, the
symbolic execution engines we analyze are tuned to the properties
of their respective IR; for instance, KLEE can run optimizations
on the input LLVM bitcode that are meant to compensate some
shortcomings of the IR generation process and make the IR more
suitable for symbolic execution. We felt that running the IR of the
various systems in a more generic execution engine would lead
to a less fair comparison. Instead, we strove to eliminate as many
variables as possible by identifying design decisions that could in-
troduce noise into our measurements (see Section 3) and making
minimal changes to all systems in order to remove any such differ-
ences (discussed below). We believe that such an analysis, despite
its possible limitations, yields the most valuable insights into the
problem at hand.

While measuring the impact on code size of each system is
relatively easy, in order to evaluate the execution speed and the
complexity of generated queries we first had to find a set of binaries
that all four symbolic execution engines under analysis are able
to execute. We remark that this has turned out to be a significant
challenge: while the four systems share an overall goal, the specifics
vary enough to make it difficult to find binaries for which each tool
is usable. We discuss the implications for our benchmarks in more
detail below.

After some experimentation, we decided to use the programs
from DARPA’s Cyber Grand Challenge (CGC) for our evaluation,
mainly for two reasons: First, the CGC programs have explicitly
been designed as a test suite for automated vulnerability detection
and exploitation systems. They are supposed to exhibit common
code patterns. Moreover, they run on DECREE, a Linux-based op-
erating system with a simplified system call interface, originally
designed in order to reduce the engineering burden on the partici-
pants in the CGC competition. This makes it easier for us to add
missing support to symbolic execution engines. Second, S2E and
angr were used by teams participating in the CGC. Therefore, those
tools are known to work with the CGC programs. Furthermore, the
authors of Qsym evaluate their system on a variant of the CGC
binaries in the original publication [43]. The CGC suite contains a
total of 131 different programs.

As discussed in Section 3.1, the choice of path selection and
scheduling algorithms has a major impact on symbolic execution.
We eliminate this potential source of noise in our measurements
by evaluating concolic execution, i.e., we make symbolic execution
follow the path determined by a fixed input. In particular, we use
the proofs of vulnerability (PoVs) provided by DARPA for each
CGC application. They represent interactions with the applications
that exercise bugs. Where multiple such PoVs are available, we
choose the first. Our input selection procedure is thus analogous
to the Qsym authors’ strategy. The motivation to use the PoVs for
test input, as outlined by Yun et al. [43], is the implicit assumption
that inputs reaching the bugs in the CGC applications exercise
interesting portions of code.

DARPA provides the PoVs in a custom XML format designed
to describe the interaction with a target application. We wrote a

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

tool that translates the XML description to raw data; we skip appli-
cations where the translation of the corresponding PoVs was not
possible. This happens in a few cases where the input exercising
the vulnerability in a program depended on previous output re-
ceived from the program—the XML format provides facilities for
handling such scenarios, but the same logic cannot be reflected in
raw data inputs. We confirmed with the authors of Qsym that this
aspect of our procedure is analogous to their evaluation, helping
comparability.

All four symbolic execution engines required modifications or
extensions for our experiments. We strove to keep our changes to
the engines minimal in order to avoid interference, andwemake our
modifications available to the community. Concretely, we added 134
lines of code (LoC) to KLEE (partial support for mmap and munmap),
67 LoC to S2E (time measurements and early termination of execu-
tion states), 19 LoC to angr and 26 LoC to Qsym (timing and query
logging in both cases). We wrote considerably more code, but it
is concerned with the generation of suitably compiled programs,
conversion of the inputs provided by DARPA into the right formats,
proper invocation of the tools, automated measurements, etc.—it
does not affect the inner workings of the engines under analysis.

We execute each symbolic execution engine on each CGC appli-
cation with a timeout of 30 minutes and a memory limit of 24 GB.
The experiments run under Ubuntu 16.04 and each use one core of
an Intel Xeon Gold 6130 CPU. We skip any applications that are not
supported by all engines. Note that, while 30 minutes of symbolic
execution would be far too short for vulnerability discovery, we do
not let the systems explore the target applications freely. Instead,
we execute symbolically along a predetermined path (which, coin-
cidentally, is known to lead to a vulnerability), observing run-time
aspects such as the speed of execution and generated SMT queries
on the way. The time frame of 30 minutes is sufficient to finish
execution in most cases; we exclude any experiments that run into
a timeout or exceed the memory quota.

5.2 Benchmark size
Out of the 131 CGC programs, only 24 execute successfully in all
four symbolic execution engines (see Table 2; Appendix C describes
the applications). While IR generation is not typically a problem
since all systems use mature generators, incompatibilities of the
IR execution engines precluded successful analysis in many cases.
For example, KLEE immediately exits if the program under test
contains floating-point instructions; we compiled the target pro-
grams statically to make sure that the offending instructions only
occur in programs where they are strictly required, but even so
KLEE exhibits the smallest number of supported programs. In the
case of angr, its focus on scripting and interactive exploration often
renders it too slow to work on large binaries. S2E, in turn, has
only recently gained the ability to track data through MMX/SSE
registers; in earlier versions, the contents of such registers were
concretized, causing the symbolic execution engine to lose track of
the corresponding symbolic expressions. Note that SSE registers
are used in prominent places, such as the strcmp and strncmp
functions in GNU libc. The example of S2E also demonstrates that
adding all missing features ourselves was not an option: the code
for MMX/SSE register support alone amounts to roughly 1400 lines

Qsym S2E angr KLEE all

Execution speed (Section 5.4) 70.2% 66.4% 75.6% 35.1% 18.3%
Query complexity (Section 5.5) 57.3% 74.8% 87.8% 38.9% 17.6%

Table 2: Percentage of CGC programs (out of 131) that we
were able to use per experiment and symbolic execution en-
gine. See Appendix C for more details.

of C/C++ across various libraries [35]; and this addresses a single
limitation in a single tool. In general, the missing features typically
depend on time-consuming engineering—which is presumably why
they have not been implemented in the first place. Similar problems
have been described by Qu and Robinson [30] and by Xu et al. [42].
Finally, fairness requires us to base our comparison only on targets
that are supported by all engines, which further restricts the test
set.

The lack of extensive tool support is the main reason why we
believe it is not currently possible to compare symbolic execution
engines on large sets of applications, especially on applications
with high complexity. Even assembling a set of 24 applications that
work with all four symbolic execution tools in our analysis has cost
us significant time and effort. Under such circumstances, is there
even value in the comparison? We strongly believe that there is,
for two reasons:

(1) Even on a limited data set we can see trends; such obser-
vations add rigor to a discussion that has until now been
driven by intuition and anecdotal evidence.

(2) As a community, we should incentivize comparable research—
if a new tool in the field cannot meaningfully be compared to
existing approaches, we cannot assess its value. We should
therefore strive to establish a shared benchmarking method-
ology and data set; this paper attempts to take a step in that
direction.

5.3 Code Size
We have previously mentioned the intuition that IR derived from
source code contains “more high-level information” than binary-
based IR; a more precise way of expressing this intuition is to
say that we expect source-derived IR to contain more semantic
information per IR statement than IR derived from binaries.3 In
order to test this hypothesis we apply the IR generation techniques
under analysis to a fixed set of programs and compare the resulting
number of IR instructions. The base line for our experiments is the
number of machine-code instructions.

In addition to the CGC programs discussed above, we use the
programs of version 8.30 of the coreutils suite [19] for this compar-
ison; they are a popular benchmark in the literature on symbolic
execution. For each binary in the set of test programs (i.e., CGC
and coreutils), we recover the CFG with angr and subsequently
apply each symbolic execution engine’s IR translation mechanism
to all discovered basic blocks. This requires wrapping the relevant

3There is the additional effect that some information is actually lost during compilation,
such as buffer sizes [12]. This is a concern for security checks that may be part of
a symbolic execution engine but does not affect the core components of symbolic
execution that we focus on in this study (see Figure 1).

Symbolic Execution: IR and its Generation ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

0
1
2
3
4
5
6
7
8
9

KLEE McSema S2E angr angr
(ARM)

In
fla
tio

n
ra
te

Figure 2: Inflation factor per IR generation mechanism, i.e.,
the number of generated IR instructions per machine-code
instruction, across all tested programs (123 CGC and 106
coreutils binaries). The box encloses the second and third
quartile of the data with a horizontal line marking the me-
dian. The whiskers include data points up to 1.5 times the
interquartile range away; outliers beyond that point are de-
picted individually.

parts of code in S2E and angr: the former exposes the translation
component as a shared library that we can use from a C++ program,
whereas the latter offers a Python interface which we use from a
custom script. Qsym and KLEE do not require custom extensions
for this step of our study: the former works directly on machine
code, so that no translation is necessary, and the latter conveniently
uses the output of the C/C++ compiler clang.

For comparison, we conducted some further experiments on the
programs of the coreutils suite:

• We added the results of McSema, a static translator from
machine code to LLVM bitcode [16] based on the commer-
cial disassembler IDA Pro. Note that we intentionally used
McSema unmodified for best performance, meaning that it
employed IDA Pro for disassembly rather than angr. While
we had initially hoped to be able to run KLEE on the bitcode
thatMcSema generates, we found that there are incompatibil-
ities in the respective sets of supported bitcode instructions;
substantial changes would be required to make the two sys-
tems compatible.

• We compiled the coreutils binaries for ARM, using the target
arm-none-eabi, and ran angr’s IR generation on them. The
other symbolic execution engines do not support ARM or,
in the case of KLEE, the IR does not differ significantly.

We compare the number of generated IR instructions to the
corresponding number of machine instructions, resulting in a quan-
tity that we call inflation factor. Table 3 shows the results of our
measurements, and Figure 2 visualizes the data.

We see that, in general, the binary-based techniques produce a
higher number of IR instructions than KLEE’s source-based trans-
lation; of course, there are many factors involved the size of the
generated translation artifacts. It is more meaningful when the
target of the translation process is the same IR, which removes

IR generator IR CGC coreutils

Qsym Machine code 1.00 1.00
KLEE (clang) LLVM bitcode 0.74 0.78
S2E LLVM bitcode 6.68 6.29
angr (libvex) VEX IR 4.57 5.35

McSema LLVM bitcode 4.54
angr on ARM (libvex) VEX IR 4.40

Table 3: Mean inflation factor per IR generationmechanism
and data set, i.e., average number of generated IR instruc-
tions per machine-code instruction as shown in Figure 2.
The CGC data set contains 123 programs, the coreutils suite
106 programs.

one variable from the analysis. Therefore, the cases of S2E and
McSema are of particular interest: both tools start at the binary
level and produce LLVM IR, so we can compare their results with
the source-based LLVM IR generated by KLEE. Note that, while the
IR produced from source code is rather succinct, in almost all cases
containing less instructions than the equivalent machine code and
reaching an inflation factor below 1 on average, the corresponding
IR generated from binaries increases the number of instructions
by a factor of above 6 for S2E and 4.54 for McSema. S2E’s higher
inflation factor may be due to the two IR translations (QEMU IR
to LLVM IR). Furthermore, it is interesting to see that angr’s trans-
lation to VEX IR yields an increase in the number of instructions
that is similar to the binary-based tools translating to LLVM IR; in
fact, manual analysis suggests that the semantic content of instruc-
tions in VEX IR is comparable to LLVM IR. The ARM experiment
confirms the overall picture on a different architecture. On average,
we find that the IR generated from binaries is considerably larger
than source-based IR.

In summary, the data supports the hypothesis that a source-based
approach has more high-level information available to generate
a succinct IR. The following experiments assess the properties of
symbolic execution on such IR.

5.4 Execution Speed
The first aspect of symbolic execution that we are interested in is
how well the generated IR is suited for execution. There is a spec-
trum between Qsym, which forgoes translation to IR entirely and
directly executes instrumented machine code, computing symbolic
constraints on the fly, and KLEE, which interprets high-level IR
derived from source code. Intuitively, we would expect IR that is
close to (or identical with) machine code to be efficiently executable,
while a more abstract representation may be more suited to static
analysis but slower in execution.

A major challenge in comparing the execution speed of the four
symbolic execution engines is that they use very different strategies
on the matter of interleaving concrete and symbolic execution, an
issue that was briefly mentioned in Section 3.3. In general, code
can be executed in one of four modes:

Native The simplest case is native execution of machine code
on the CPU, possibly with some sort of instrumentation.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

Native Native
(emulated)

IR
(concrete)

IR
(symbolic)

Qsym ✓ ✓

S2E ✓ ✓

angr ✓ ✓ ✓

KLEE ✓ ✓

Table 4: Execution modes used by the symbolic execution
engines in our study. For Qsym, the “IR” in symbolic mode
is machine code.

This is what Qsym does for concrete execution, and S2E uses
QEMU with KVM enabled, resulting in a similar effect.

Native (emulated) This case is similar to raw native execu-
tion, except that the CPU is emulated. angr uses emulated
native execution for code that does not work with symbolic
data.

IR (symbolic) When code works with symbolic data, it has to
be translated to IR, which is then interpreted symbolically.
All four systems in our study use this mode; in the case of
Qsym, the “IR” is machine code.

IR (concrete) KLEE does not support interleaved concrete ex-
ecution, so even code that works with only concrete data
is executed at the IR level. Similarly, angr may heuristically
choose to run even concrete computations with IR in situa-
tions where the cost of switching back and forth between IR
and emulated native execution would otherwise be too high.

Table 4 shows the use of the various execution modes by the
systems in our analysis. We are interested in the execution of IR, so
for the purpose of this study we count only instructions executed
in one of the two IR modes, and we only measure the time spent in
those modes.

Apart from the difficulty of handling different execution modes,
the question of execution speed is particularly prone to being influ-
enced by other factors than merely the IR generation process. In
particular, the programming language that a symbolic executor is
implemented in has a large effect on how fast it can execute its IR
(see Table 1). There is little we can do to eliminate this bias (short
of reimplementing all systems in a common language); we will take
it into account when interpreting our results.

In order to assess the speed of execution we count the number of
instructions executed at the IR level and the time spent on said exe-
cution while conducting the experiments described in Section 5.1.
In terms of Table 4, we capture the last two columns, which contains
any possible execution of IR. The result is a quantity that we call
execution rate; it represents the number of instructions executed per
unit of time. Figure 3 shows the rates we measured. For comparabil-
ity between different IRs, we translate the execution rates from IR
instructions per time to the common basis of machine instructions
per time using the inflation factors from Table 3.4 In other words,
we obtain a measure of execution speed that is comparable across
different IR generation processes.

4See Appendix B for a visualization of the untranslated rates, expressed in IR instruc-
tions per time.

0.1

1

10

100

1000

10000

100000

1 × 106
1 × 107

Qsym S2E Angr KLEE

Ex
ec
ut
io
n
ra
te

(m
ac
hi
ne

in
st
ru
ct
io
ns
/s
)

Figure 3: Execution speed of symbolically executed instruc-
tions, translated to the common basis of machine-code in-
structions, across 24 CGC programs. Higher rates mean
faster execution.

We observe that Qsym executes its “IR” the fastest, followed by
KLEE, S2E and angr. This matches our intuition, given that Qsym
uses the lowest-level IR and implements its symbolic component
in C++. KLEE and S2E share a common basis, but while KLEE
executes a very concise IR (see Section 5.3), S2E has significantly
more instructions to interpret. Moreover, S2E has to generate IR on
the fly while, in the case of KLEE, IR generation is a preprocessing
step. We largely attribute angr’s lower execution rate to the fact
that its symbolic reasoning is implemented in Python, whereas S2E
uses C++. See Appendix B for data supporting this hypothesis.

In summary, the measurement of execution rates supports the
hypothesis that low-level IR can be executed faster than high-level
IR, and that LLVM bitcode and VEX IR have quite similar properties
when it comes to IR interpretation. Note that “low-level IR” refers
to the level of abstraction of the IR language, not of the artifact that
the IR was generated from. For instance, raw machine code (Qsym)
is executed faster than LLVM bitcode (KLEE and S2E). However, the
source of the translation still impacts the concision of the generated
IR (see Section 5.3)—e.g., LLVM bitcode generated from binaries
(S2E) is typically more verbose than bitcode generated from source
code (KLEE) and hence requires more time to perform equivalent
computations.

5.5 Query Complexity
Along with IR execution, SMT solving is one of the major workloads
in symbolic execution [27, 29]. Consequently, there is promise in
exploring to which extent the IR generation process impacts the
difficulty of the SMT queries arising during execution. Intuitively,
if IR carries a lot of semantic information it should be possible for
the symbolic executor to formulate succinct queries. For example,
consider the program in Listing 1; it just reads five bytes from stan-
dard input, checks a number of conditions on the input and prints a
result message. Listings 2 and 3 show the queries generated by S2E
and KLEE, respectively, for the C expression data[3] == 55. While
the semantic content is the same in both queries, note how S2E
expresses the equality check in bit-wise AND and OR operations as

Symbolic Execution: IR and its Generation ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

well as a bit-vector addition; the query is more similar to machine
code than to the original C code. The KLEE-generated query, in
contrast, resembles the source code rather closely. This example
illustrates the notion that queries with identical semantics can be
formulated in different ways, which may differ in the difficulty they
pose for SMT solvers.

Listing 1: A simple program to demonstrate SMT queries.
1 #include <stdio.h>
2

3 int main(int argc , char* argv []) {
4 char data [5];
5

6 for (int i = 0; i < 5; i++)
7 data[i] = getchar ();
8

9 if (data [0] > 15 && data [1] == 32 &&
10 data [2] > 27 && data [2] < 100 &&
11 data [3] == 55 && data [4] == 123)
12 printf("Correct !\n");
13 else
14 printf("Try again ...\n");
15

16 return 0;
17 }

Listing 2: Part of S2E’s assertion for Listing 1.Weuse stan-
dard SMT-LIB syntax [2] for SMT queries.

1 (= (_ bv0 64)
2 (bvand
3 (bvadd
4 ;; 0xFFFFFFFFFFFFFFC9
5 (_ bv18446744073709551561 64)
6 ((_ zero_extend 56)
7 ((_ extract 7 0)
8 (bvor
9 (bvand
10 ((_ zero_extend 56)
11 (select stdin (_ bv3 32)))
12 ;; 0x00000000000000FF
13 (_ bv255 64))
14 ;; 0xFFFF88000AFDC000
15 (_ bv18446612132498620416 64)))))
16 (_ bv255 64)))

Listing 3: Part of KLEE’s assertion for Listing 1.
1 (= (_ bv55 8)
2 ((_ extract 7 0)
3 ((_ zero_extend 24)
4 (select stdin (_ bv3 32)))))

In general, assessing the difficulty of SMT queries is not an
easy task. Even with a proper definition of the elusive concept of
“difficulty” there may be no effective means of measuring it. We
observe that, from a practical point of view, the essential property
of an “easy” query is that the solver can answer it fast. Therefore,
our approach is to run all symbolic execution engines on the same
fixed paths in concolic mode and record the queries that are sent
to the solver. We then run the solver on those queries in isolation

0

100

200

300

400

500

600

700

800

Qsym S2E Angr KLEE

Z3
qu

er
y
ra
te

(q
ue
rie

s/
s)

Figure 4: Comparison of the query rates for each system
(using a common solver) as a proxy for query complexity,
across 23 CGC programs. Higher rates indicate queries that
are easier to solve. Note the differences in median.

and measure its response time. This allows us to assess the average
solver effort for each tool on identical workloads, isolated from
external factors like IR execution speed.

We measure the time taken by Z3 to solve all the logged queries
of successful executions as per Section 5.1. The four symbolic ex-
ecution engines install different versions of Z3 (see Table 1); for
comparability, we picked one and used it for all measurements. We
chose S2E’s build of Z3 because it is the most recent among the
four, so we expect it to gracefully handle the queries generated by
the other engines. Note that we deliberately do not set a timeout
for individual queries: We are interested in how long a query would
run to completion—i.e., its complexity—instead of just the time that
it would be allowed to run in practice.

Figure 4 shows the query rates we measured, i.e., the number of
queries that Z3 can solve in a fixed amount of time. We see that
angr and Qsym exhibit lower query rates than KLEE, whose median
rate is significantly higher. S2E’s queries fall into a range similar to
KLEE’s (which is sensible because S2E is based on KLEE), but note
that S2E’s median is considerably lower and more in line with angr
and Qsym. In general, it seems that the three binary-based symbolic
execution systems generate more difficult queries than the source-
based system KLEE. Moreover, the observation that both KLEE and
S2E issue relatively easy queries in many cases supports the notion
that LLVM IR is beneficial for deriving SMT queries. However, we
cannot rule out the possibility of KLEE generating simpler queries
than the other systems due to implementation details; since S2E is
based on KLEE, it would inherit the same advantage.

6 DISCUSSION
In this section, we interpret the results of our evaluation and discuss
their significance.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

6.1 Results
We have measured the impact of IR generation on code size, the
suitability of different IRs for symbolic execution, and the complex-
ity of the resulting SMT queries. In summary, we have found the
following:

• For code size, the most important factor is whether IR is
generated from source code or binaries. While source-based
IR is often more succinct than machine code, binary-based
IR tends to inflate the code by a factor between 3 and 7.

• We do not observe a significant difference in execution speed
between LLVM bitcode and VEX IR that could not be attrib-
uted to implementation aspects. Qsym, however, gains a
distinct advantage in speed by dispensing with a traditional
IR and instrumenting machine code directly, at the expense
of portability.

• When generated from machine code, LLVM bitcode and
VEX IR lead to queries of similar complexity; queries de-
rived directly from machine code are in the same range. S2E
does generate simpler queries than angr and Qsym in some
cases, but the median query rate is similar. Source-based IR,
however, appears to reliably lead to simpler queries during
symbolic execution.

Therefore, we are now in a position to answer our original re-
search questions.

When source is available, should we generate IR from source code or
binaries? We find that query complexity is lower when IR is gener-
ated from source code. Of course, we acknowledge that source code
is not always available and that sometimes low-level information is
exactly what one is interested in; therefore, there are good reasons
for binary-based symbolic execution as well.

Does any IR perform better than others? We find that the level of
abstraction of the IR is important for execution speed; in particular,
executing machine code directly yields performance benefits. When
comparing the “traditional” IRs, there is no observable difference
between LLVM bitcode (generated from binaries) and VEX IR in our
measurements; we believe that, for choosing one or the other, prac-
tical concerns such as API stability and the availability of language
bindings are more important factors than the impact on symbolic
execution.

To summarize, we show that the most important influence on
query complexity is whether the IR is generated from source code or
binaries, whereas execution speed is mostly affected by the level of
abstraction of the IR, with raw machine code performing best. This
creates an interesting tension in the design of symbolic execution
engines: for highest execution speed, execution should be based
on low-level instructions, whereas the best solver performance is
achieved with queries generated from high-level code.

6.2 Future Work
Our study focuses on the speed of symbolic execution, and we argue
that faster execution and SMT solving yield more exploration in
the same time, thus increasing the probability of discovering vul-
nerabilities. An interesting direction for future work, especially in
the context of combined fuzzing and symbolic execution, would be
to assess the quality of new program inputs generated by symbolic

execution. A measurable notion of quality should include factors
like the resulting increase in code coverage, similarity to existing
test cases (for easier bug triage), redundancy of test inputs, and “di-
rectedness” towards interesting pieces of code, among others. After
finding a quantifiable definition of test case quality, one would have
to develop a sound methodology to actually measure it; we believe
that the results could be very interesting for the community.

In a similar vein, it would be interesting to evaluate what makes
queries hard for a solver. We showed in our study that IR gener-
ated from binaries leads to harder SMT queries than IR generated
from source code—what is the root cause of the difference in diffi-
culty? Compiler optimizations come to mind as a possible source of
complexity. However, we expect at least some of them to simplify
reasoning about code rather than making it harder: for instance,
when a multiplication is replaced with a bit shift during strength
reduction, the optimization should not only speed up the program
but also reduce the difficulty of the corresponding queries. A sys-
tematic evaluation of the sources of complexity in the queries that
arise during symbolic execution might lead to IR generators that
produce more “solver-friendly” IR.

Finally, in our study we have analyzed the impact of IR and
IR generation on specific aspects of symbolic execution, but we
have not evaluated the effect on the overall goal: how does the
IR aspect impact bug discovery? While this is a highly interesting
question, we believe that answering it is a hard challenge. The dif-
ferent symbolic execution engines use vastly different strategies to
generate new test cases, involving different choices in the selection
and configuration of the SMT solver, the caching and preprocessing
of queries, the soundness requirements on the analysis, etc. Figura-
tively speaking, all the components of symbolic execution depicted
in Figure 1 would introduce variables in such an end-to-end com-
parison. We would be delighted to see more modularization in this
space: if the individual components of symbolic execution engines
were interchangeable, measuring the impact of a single choice on
the overall goal would become much more feasible.

6.3 Limitations
Comparing design decisions of symbolic execution engines in isola-
tion is a complicated matter: we have discussed numerous ways for
seemingly unrelated design decisions to threaten the accuracy of
our measurements. And while we have invested significant effort
to eliminate such noise from our experiments, there may be effects
that we couldn’t fully remove. Moreover, some differences cannot
be reasonably eliminated, such as the impact of the respective pro-
gramming languages that the systems are built in. Finally, we have
run our experiments on a limited set of test programs that may not
be representative. We would like to explicitly encourage follow-up
work that strives to identify remaining biases in the comparison of
symbolic execution engines.

6.4 Remark: Programming Languages
We note in passing that the choice of programming language plays
an important role in positioning a symbolic execution engine. For
example, KLEE is written in C++, which gives it considerable per-
formance advantages over angr, implemented in Python. However,
we know from experience that modifying the former is much more

Symbolic Execution: IR and its Generation ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

time-consuming than building on top of the latter; we attribute
the difference to the different characteristics of the respective pro-
gramming languages. There is, of course, no perfect solution; the
ideal choice for a given project will vary depending on, among a lot
of other factors, whether production use or experimentation and
exploration are the main goal. However, we think it is important to
consider such aspects upfront and to make a conscious decision.

7 RELATEDWORK
To the best of our knowledge, the impact of the choice of IR and
IR generation process on symbolic execution has not been studied
before. However, our work builds on top of various previous results.
In this section, we frame our study in the context of the current
state of the art, focusing in particular on symbolic execution and
intermediate representations for static and dynamic analysis.

7.1 Symbolic Execution
Symbolic execution lies on a spectrum between more rigorous ap-
proaches, such as model checking [18, 31], and techniques that
sacrifice soundness for practicality, such as fuzz testing [17]. Apart
from the four symbolic execution engines that form the basis of our
analysis, namely KLEE [8], S2E [11], angr [38] and Qsym [43], each
representing a design category as described in Section 4, several
others have been proposed and implemented. Manticore [40] is
similar in focus to angr and implemented in Python as well but
does not use any intermediate representation. Triton [36] is based
on dynamic binary translation, like Qsym. Mayhem [10], based
on BAP [5], is the winner of the DARPA CGC competition (but
not freely available, and BAP alone does not support symbolic ex-
ecution in recent versions). SAGE [20] is a closed-source system
developed by Microsoft, following a concolic execution approach.
Inception [14], based on KLEE, is among the few symbolic execu-
tion engines with support for ARM, and it addresses the challenge
of handling inline assembly in source-based symbolic execution.
However, it targets microcontrollers that run their target software
directly, without an operating system. This difference in focus ren-
ders it hard to compare to the four systems in our study. Finally,
various other systems extend KLEE with additional functionality,
e.g., localized vulnerability detection [33], support for floating-point
arithmetic [13], parallel analysis [7], or state merging [24]. Recently,
combining symbolic execution with fuzzing has been shown to hold
great promise [39, 43].

Our study focuses on a particular aspect in the design and im-
plementation of symbolic execution systems. In a similar spirit,
previous work has focused on the choice of SMT solvers [29] and
the impact of incremental SMT solving [27]. A recent survey by Bal-
doni et al. [1] covers the general subject area of symbolic execution,
and Xu et al. survey challenges of the field [41].

7.2 Intermediate Representations
There are a variety of intermediate representations. LLVM bit-
code [25], employed by KLEE and S2E, was originally designed
for use inside compilers. VEX [28], used by angr, targets binary
instrumentation and was conceived for the Valgrind framework.
Others, such as REIL [26] and BIL [5] have been developed specifi-
cally for security analysis. Kim et al. [21] investigate the semantic

correctness of lifters for many intermediate representations. Their
work is orthogonal to ours: we assess the impact of the IR and the
associated generation process on symbolic execution (presupposing
correctness), while they focus on the semantic correctness of the
IR generators.

8 CONCLUSION
We have presented a framework for comparing different symbolic
execution engines and applied it to the question of how IR and
IR generation impact symbolic execution. We believe that such
systematic evaluation forms amuch better basis for design decisions
than anecdotal evidence or common belief. It is our hope that this
study lays the groundwork for further comparison of specific design
aspects in symbolic execution, ultimately leading tomore principled
decisions and, hopefully, more efficient systems.

ACKNOWLEDGEMENTS
We are grateful to Insu Yun for detailed information on the evalua-
tion of Qsym [43], which greatly simplified its setup for the purpose
of our study. Moreover, we would like to thank Vitaly Chipounov
for his help in debugging problems with S2E [11]. Experiments pre-
sented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and includ-
ing CNRS, RENATER and several Universities as well as other orga-
nizations (see https://www.grid5000.fr). This work was supported
by the DAPCODS/IOTics ANR 2016 project (ANR-16-CE25-0015).

REFERENCES
[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 50.

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB standard:
Version 2.0. In Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), Vol. 13. 14.

[3] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[4] Ella Bounimova, Patrice Godefroid, and David Molnar. 2013. Billions and Billions
of Constraints: Whitebox Fuzz Testing in Production. In Proceedings of the 2013 In-
ternational Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway,
NJ, USA, 122–131. http://dl.acm.org/citation.cfm?id=2486788.2486805

[5] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A binary analysis platform. In International Conference on Computer Aided
Verification. Springer, 463–469.

[6] Robert Brummayer and Armin Biere. 2009. Boolector: An efficient SMT solver
for bit-vectors and arrays. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 174–177.

[7] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
symbolic execution for automated real-world software testing. In Proceedings of
the 6th ACM SIGOPS/EuroSys Conference on Computer Systems. ACM, 183–198.

[8] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI, Vol. 8. 209–224.

[9] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2008. EXE: automatically generating inputs of death. ACM Transactions
on Information and System Security (TISSEC) 12, 2 (2008), 10.

[10] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing mayhem on binary code. In 2012 IEEE Symposium on Security and
Privacy. IEEE, 380–394.

[11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. In ACM SIGARCH
Computer Architecture News, Vol. 39. ACM, 265–278.

[12] Cristina Cifuentes and K. John Gough. 1995. Decompilation of binary programs.
Software: Practice and Experience 25, 7 (1995), 811–829.

[13] Peter Collingbourne, Cristian Cadar, Paul H.J. Kelly, et al. 2011. Symbolic cross-
checking of floating-point and SIMD code. In European Conference on Computer
Systems (EuroSys 2011).

https://www.grid5000.fr
http://dl.acm.org/citation.cfm?id=2486788.2486805

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

[14] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception:
system-wide security testing of real-world embedded systems software. In 27th
USENIX Security Symposium (USENIX Security 18). 309–326.

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[16] Artem Dinaburg and Andrew Ruef. 2014. McSema: Static translation of x86
instructions to LLVM. In ReCon 2014 Conference, Montreal, Canada.

[17] Joe W. Duran and Simeon Ntafos. 1981. A Report on Random Testing. In Proceed-
ings of the 5th International Conference on Software Engineering (ICSE ’81). IEEE
Press, Piscataway, NJ, USA, 179–183. http://dl.acm.org/citation.cfm?id=800078.
802530

[18] E. Allen Emerson and Edmund M. Clarke. 1980. Characterizing correctness
properties of parallel programs using fixpoints. In International Colloquium on
Automata, Languages, and Programming. Springer, 169–181.

[19] Free Software Foundation. 2016. Coreutils - GNU core utilities. https://www.gnu.
org/software/coreutils/. Accessed: 2019-02-04.

[20] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44.

[21] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl Jung, DongYeop Oh,
JongHyup Lee, and Sang Kil Cha. 2017. Testing intermediate representations for
binary analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 353–364.

[22] James C. King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[23] Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, and Armin Biere. 2014. On
the complexity of symbolic verification and decision problems in bit-vector logic.
In International Symposium on Mathematical Foundations of Computer Science.
Springer, 481–492.

[24] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. Acm Sigplan Notices 47, 6 (2012),
193–204.

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization. IEEE Computer Society, 75.

[26] Lixin Li and Chao Wang. 2013. Dynamic analysis and debugging of binary code
for security applications. In International Conference on Runtime Verification.
Springer, 403–423.

[27] Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri. 2014. A
comparative study of incremental constraint solving approaches in symbolic
execution. In Haifa Verification Conference. Springer, 284–299.

[28] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation (PLDI 2007), Vol. 42. ACM,
89–100.

[29] Hristina Palikareva and Cristian Cadar. 2013. Multi-solver support in symbolic
execution. In International Conference on Computer Aided Verification. Springer,
53–68.

[30] Xiao Qu and Brian Robinson. 2011. A case study of concolic testing tools and their
limitations. In 2011 International Symposium on Empirical Software Engineering
and Measurement. IEEE, 117–126.

[31] Jean-Pierre Queille and Joseph Sifakis. 1982. Specification and verification of
concurrent systems in CESAR. In International Symposium on Programming.
Springer, 337–351.

[32] Nguyen Anh Quynh and Dang Hoang Vu. 2015. Unicorn – The ultimate CPU
emulator. https://www.unicorn-engine.org/. Accessed: 2019-02-26.

[33] David A. Ramos andDawson Engler. 2015. Under-constrained symbolic execution:
Correctness checking for real code. In 24th USENIX Security Symposium (USENIX
Security 15). 49–64.

[34] Eric F Rizzi, Sebastian Elbaum, and Matthew B. Dwyer. 2016. On the techniques
we create, the tools we build, and their misalignments: a study of KLEE. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE,
132–143.

[35] S2E issue tracker. 2019. Add support for symbolic MMX registers. https://github.
com/S2E/s2e-env/issues/144. Accessed: 2019-06-04.

[36] Florent Saudel and Jonathan Salwan. 2015. Triton Dynamic Binary Analysis
Framework. https://github.com/JonathanSalwan/Triton. Accessed: 2019-04-02.

[37] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE Symposium on Security and
Privacy. IEEE, 317–331.

[38] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.

[39] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

0.1

1

10

100

1000

10000

Qsym S2E Angr KLEE

Ex
ec
ut
io
n
tim

e
(s
)

Figure 5: Absolute execution time during the measurement
of execution speed.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS, Vol. 16. 1–16.

[40] Trail of Bits. 2017. Manticore: Symbolic execution for humans. https://blog.
trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans/. Ac-
cessed: 2019-02-27.

[41] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael R. Lyu. 2018. Benchmarking the
Capability of Symbolic Execution Tools with Logic Bombs. IEEE Transactions on
Dependable and Secure Computing (2018).

[42] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R. Lyu. 2017. Concolic execution on
small-size binaries: challenges and empirical study. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 181–
188.

[43] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18). 745–761.

[44] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. 2001.
Efficient conflict driven learning in a boolean satisfiability solver. In Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided design. IEEE
Press, 279–285.

A CODE AND DATASET AVAILABILITY
Wemake all code and data used in this study available to the commu-
nity at http://www.s3.eurecom.fr/tools/symbolic_execution/, hop-
ing that it will benefit future research.

B ADDITIONAL MEASUREMENTS
This section shows measurement results that are complementary
to those we present in Section 5. While they are not essential to
our study, we assume that some readers will be interested in the
additional data.

Figure 5 displays the absolute execution times of our measure-
ments of execution speed in Section 5.4. In particular, we see that
angr consumes an order of magnitude more time than S2E. Figure 6
shows the execution rates; however, here we express them in terms
of each system’s own IR instructions per time, i.e., before translat-
ing to the common basis of machine code instructions. Note that
the relative order of the four systems is the same as in Figure 3.

Figure 7 visualizes the absolute number of queries generated
by each system in our measurement of query complexity (see Sec-
tion 5.5). We note that angr and KLEE tend to issue more queries
than S2E and Qsym. However, we attribute the differences to the
varying degrees of instrumentation in the implementations rather
than the IR or its generation. For instance, KLEE performs bounds

http://dl.acm.org/citation.cfm?id=800078.802530
http://dl.acm.org/citation.cfm?id=800078.802530
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://www.unicorn-engine.org/
https://github.com/S2E/s2e-env/issues/144
https://github.com/S2E/s2e-env/issues/144
https://github.com/JonathanSalwan/Triton
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans/
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans/
http://www.s3.eurecom.fr/tools/symbolic_execution/

Symbolic Execution: IR and its Generation ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

0.1

1

10

100

1000

10000

100000

1 × 106
1 × 107

Qsym S2E Angr KLEE

Ex
ec
ut
io
n
ra
te

(IR
in
st
ru
ct
io
ns
/s
)

Figure 6: Execution speed of symbolically executed instruc-
tions. Higher rates mean faster execution.

1

10

100

1000

10000

100000

Qsym S2E Angr KLEE

N
um

be
ro

fg
en
er
at
ed

qu
er
ie
s

Figure 7: Absolute number of queries generated by the sym-
bolic execution engines during our measurements of query
complexity.

checks on every memory access and tests whether pointers may be
null; Qsym only involves the solver when the control flow depends
on symbolic data and defers any security checks to the fuzzer that
is expected to run concurrently (see Figure 1).

C TESTED APPLICATIONS
Table 5 provides an overview of the CGC programs that we used
for the experiments in Sections 5.4 and 5.5. When programs can be
used successfully for the speed measurements in Section 5.4 but not
for the assessment of query complexity in Section 5.5, the reason
is often that the generated queries are so complex that the solver
times out. (Recall that we do not set a timeout for individual queries
when evaluating their complexity.)

In the inverse case, i.e., programs used to measure query com-
plexity but not for execution speed, we encountered a few different
cases: angr issues SMT queries for each input byte in every execu-
tion, independently of whether the data is used. In some cases, it
never encounters instructions that operate on the symbolic input
data, so that we do not include the program in the evaluation of
execution speed; however, due to the behavior mentioned above,
there are still queries whose complexity can be assessed. Moreover,
we found S2E’s statistical counters to be lagging behind in some
cases. In programs with very few symbolic operations, the counters
may report zero, resulting in those programs being excluded from
the speed measurements. Since we still see SMT queries, however,
we include them in the experiments on query complexity.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA Sebastian Poeplau and Aurélien Francillon

Name Code size (LoC) Used in Description
Section 5.4 Section 5.5

CROMU_00020 414 ✓ ✓ Echo service
CROMU_00043 950 ✓ Protocol-aware packet analyzer
KPRCA_00010 1,391 ✓ ✓ Visualizer for uncompressed PCM audio files in both the time domain and the

frequency domain (with FFT)
KPRCA_00011 1,497 ✓ Simple movie rental service
KPRCA_00014 970 ✓ Basic virtual machine
KPRCA_00021 1,896 ✓ Parser for a custom JSON-like data format
KPRCA_00022 1,442 ✓ ✓ Online job application form, modeled after web applications
KPRCA_00023 1,667 ✓ Online job application form, modeled after web applications
KPRCA_00028 1,529 ✓ Interpreter for a custom list-based programming language
KPRCA_00031 1,927 ✓ Chat server with bots
KPRCA_00037 1,538 ✓ Extractor of section and symbol information for CGC executables
KPRCA_00038 4,304 ✓ Awk clone
KPRCA_00040 1,599 ✓ Custom compression algorithm
KPRCA_00042 1,769 ✓ Simple movie rental service
KPRCA_00047 101,921 ✓ Optical character recognition (OCR) engine
KPRCA_00053 2,387 ✓ Blogging site
NRFIN_00001 647 ✓ ✓ SNMP-like service
NRFIN_00004 706 ✓ ✓ Chat bots
NRFIN_00007 3,873 ✓ Simulation of mixing chemicals
NRFIN_00011 1,351 ✓ A client for HTML-like documents
NRFIN_00015 467 ✓ ✓ Stack-based virtual machine
NRFIN_00018 230 ✓ ✓ Matrix arithmetic
NRFIN_00021 398 ✓ Trading algorithm simulation
NRFIN_00023 1,752 ✓ Electronic trading system for matching buyers and sellers
NRFIN_00026 37,288 ✓ ✓ Packet parser
NRFIN_00029 1,998 ✓ UTF-enabled file server
NRFIN_00032 4,053 ✓ Network protocol dissector
NRFIN_00035 1,266 ✓ PLC simulation
NRFIN_00036 667 ✓ ✓ Personal finance management tool
NRFIN_00038 2,166 ✓ ✓ Stateful session-based network service
NRFIN_00040 1,766 ✓ Regular language recognition and enumeration
NRFIN_00041 1,446 ✓ ✓ Marine tracking system fashioned after AIS
NRFIN_00042 968 ✓ ✓ Memory as a service
YAN01_00011 398 ✓ Word completion game
YAN01_00012 270 ✓ Stack-based virtual machine

Table 5: Details of the CGC programs used in our measurements of execution speed and query complexity.

	Abstract
	1 Introduction
	2 Background
	2.1 Symbolic Execution
	2.2 Intermediate Representation
	2.3 SMT solving

	3 Design space
	3.1 Path Selection
	3.2 Incremental Solving
	3.3 Interleaved Execution

	4 Approaches under Analysis
	5 Evaluation
	5.1 Experimental Setup
	5.2 Benchmark size
	5.3 Code Size
	5.4 Execution Speed
	5.5 Query Complexity

	6 Discussion
	6.1 Results
	6.2 Future Work
	6.3 Limitations
	6.4 Remark: Programming Languages

	7 Related Work
	7.1 Symbolic Execution
	7.2 Intermediate Representations

	8 Conclusion
	References
	A Code and Dataset Availability
	B Additional Measurements
	C Tested Applications

